
1526
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019

PAPER

MF-CNN: Traffic Flow Prediction Using Convolutional Neural
Network and Multi-Features Fusion

Di YANG†, Student Member, Songjiang LI†, Zhou PENG†, Peng WANG†, Junhui WANG††,
and Huamin YANG†a), Nonmembers

SUMMARY Accurate traffic flow prediction is the precondition for
many applications in Intelligent Transportation Systems, such as traffic
control and route guidance. Traditional data driven traffic flow prediction
models tend to ignore traffic self-features (e.g., periodicities), and com-
monly suffer from the shifts brought by various complex factors (e.g.,
weather and holidays). These would reduce the precision and robustness
of the prediction models. To tackle this problem, in this paper, we propose
a CNN-based multi-feature predictive model (MF-CNN) that collectively
predicts network-scale traffic flow with multiple spatiotemporal features
and external factors (weather and holidays). Specifically, we classify traffic
self-features into temporal continuity as short-term feature, daily periodic-
ity and weekly periodicity as long-term features, then map them to three
two-dimensional spaces, which each one is composed of time and space,
represented by two-dimensional matrices. The high-level spatiotemporal
features learned by CNNs from the matrices with different time lags are
further fused with external factors by a logistic regression layer to derive
the final prediction. Experimental results indicate that the MF-CNN model
considering multi-features improves the predictive performance compared
to five baseline models, and achieves the trade-off between accuracy and
efficiency.
key words: Intelligent Transportation Systems, traffic flow prediction, con-
volutional neural networks, multiple spatiotemporal features, external fac-
tors

1. Introduction

With the rapid urban growth, traffic problems, such as traf-
fic congestion, traffic accidents, and air pollution, have be-
come the constraints of economic development and the bot-
tleneck of social progress in the world. Fortunately, Intelli-
gent Transportation Systems (ITS) can help people to solve
these issues by processing large amounts of traffic data to
provide traffic control, route guidance, road condition warn-
ing, etc. Among these applications, accurate traffic flow pre-
diction is the prerequisite of the implementation, which can
provide convenience for traffic management, improve public
travel quality, relieve road congestion, and reduce the acci-
dent rate.

Traffic flow is defined as the total number of vehi-
cles passing over a given section or point of a road dur-
ing a given time interval. The prediction of traffic flow has
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a long history in ITS, attracting numerous attention from
worldwide researchers. In general, there are two very ef-
fective models in traffic flow prediction: (1) statistical mod-
els, which focus on analyzing and forecasting at a single
point based on temporal and spatial series from historical
data of traffic flow, such as autoregressive integrated mov-
ing average model (ARIMA) [1]–[3], Kalman filter [4], grey
theory [5], and stochastic model [6]. The statistical mod-
els are characterized by simple computing and high effi-
ciency, however, they show weakness in dealing with non-
linearity within large-scale network data and the accuracy
decreases in the face of complex road conditions; (2) in-
telligent computational models, represented by neural net-
works [7], Bayesian networks [8], fuzzy and evolutionary
techniques [9], have obtained remarkable achievements in
traffic prediction. Compared with statistical models, intel-
ligent computational models have superior advantages in
prediction accuracy and nonlinear processing ability [10].
However, with rich amount of traffic data, most of them are
not entirely satisfying due to the shallow structure.

In recent year, deep learning [11] has been paid more
attention to establish traffic flow prediction models by us-
ing deep neural networks, which can perform better multi-
ple representations and abstractions with less prior knowl-
edge. For example, Lv et al. utilized a stacked autoen-
coders (SAE) model for traffic flow prediction [12]. Pol-
son et al. improved the structure of the deep neural net-
work with a linear model to forecast traffic flow [13]. Ma
et al. proposed a novel traffic forecast model based on long
short-term memory (LSTM) network for traffic speed pre-
diction [14]. Unfortunately, the majority of existing models
aim at the traffic prediction of a single road. It might ig-
nore part spatial features and temporal features in the traffic
network. Network-scale traffic, which is more effective and
practical for understanding traffic regularity, should be paid
more attention. How to extract spatial and temporal features
efficiently is the primary consideration. Convolutional neu-
ral network (CNN) is one of the effective methods to fill this
gap.

CNN, in the community of deep learning, has achieved
great success in computer vision tasks, image processing,
and natural language processing (NLP) tasks with the natu-
ral advantage of preserving neighborhood relations and spa-
tial locality [15], [16]. Motivated by the remarkable perfor-
mance of CNN, several attempts have been made to apply
CNN in traffic prediction tasks. Zhang et al. applied CNN
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and deep residual network to predict citywide crowd flows,
achieving satisfying results [17]. Ma et al. represented con-
tinuous road speed by a time-space matric, which learned by
CNN to predict traffic speed [18]. Yu et al. employed spa-
tiotemporal recurrent convolutional networks to predict the
traffic speed of urban roads, which utilized CNN to mine the
space features in traffic network, whereas LSTM to learn the
temporal features of traffic congestion evolution [19]. The
previous researches indicate that CNN has shown promising
performance in learning traffic data.

However, in most of researches, the prediction mod-
els suffer from the shifts brought by complex factors. The
self-features of traffic flow and external factors that directly
affect observed values are not fully considered. In time di-
mension, traffic flow not only exhibits temporal continuity,
but also observed periodicities in one day and one week.
Periodicities can help better understand traffic phenomena,
and find out the travel laws. In space dimension, traffic flow
of one road is not only related to its neighbors but also far
away roads according to the theory of propagation. Mean-
while, adverse weather and holidays are two main factors
that increase both travel time and crash risk, thus affecting
traffic flow. Without a comprehensive understanding of dif-
ferent traffic features, it will be difficult to prevent the pre-
diction models from the shifts brought by complex factors.
How to involve more realistic conditions to improve predic-
tion accuracy and robustness of the traffic flow model is an
important issue worthy of investigation.

Inspired by these successful researches, in this paper,
we propose a deep learning model, named MF-CNN, that
collectively considers spatiotemporal features and external
factors in the short-term traffic flow prediction, which aims
at preventing the prediction model from the complex fac-
tors’ shifts, utilizing the available traffic features to improve
the prediction accuracy. There are two stages in the MF-
CNN model. In the first stage, besides temporal continuity
as short-term feature, we consider two periodicities, namely
daily periodicity and weekly periodicity observed in traf-
fic flow as two long-term features. Then we map the com-
bination of temporal features and spatial features to three
two-dimensional spaces, each one is composed of time and
space, represented by two-dimensional matrices. In the sec-
ond stage, a comprehensive prediction model that incorpo-
rates three CNNs and a logistic regression layer for high-
level spatiotemporal features extraction and multi-features
fusion to derive the final prediction results. The contribu-
tions of the paper can be summarized as follows:

• The MF-CNN model coordinates both short-term and
long-term spatiotemporal features rather than a single
spatiotemporal feature, as well as external factors in
one end-to-end learning structure for short-term traffic
flow prediction.
• The inputs of multi-features involved have great im-

pacts on the predictive performance. With the same
network structure, different combinations of features
derive different performance. The findings extend and

complement the study of traffic flow features.
• The experimental results on two real traffic datasets

show that the MF-CNN model is effective and promis-
ing in short-term traffic flow prediction, which can
achieve the trade-off between efficiency and accuracy
compared with five baseline models.

The rest of this paper is organized as follows: Sect. 2
reviews the literature relating to traffic features analysis and
the CNN model. Section 3 describes the proposed model
MF-CNN with multi-features. Section 4 defines the exper-
imental settings, and two real-world traffic datasets are em-
ployed to test the accuracy and efficiency of the MF-CNN
model. Finally, the last section concludes the exposition.

2. Related Work

2.1 Traffic Features Analysis

In the past decades, a large amount of researches on traf-
fic flow prediction has been explored in need of the grow-
ing demand for ITS. Complex spatiotemporal features in
traffic network can provide significant information for the
accurate traffic flow prediction, which contain local salient
characteristics of traffic network [20], [21]. Traffic parame-
ters, such as flow, speed, and density, are observed strongly
correlated to time and space. To show the spatiotemporal
features in traffic data, the representation falls into three cat-
egories: (1)vectors. One-dimensional time vectors, space
vectors, and their combinations are most commonly used
in single road prediction [7], [12]; (2)matrices. The two-
dimensional O-D matrices and time-space matrices are two
typical representation. The former is usually employed to
reflect the transfer of traffic variables from one place to an-
other, and the latter is an intuitive representation of vari-
ables in time and space. Both of them are widely leveraged
in traffic problem [18], [22]; (3)tensors. Some researchers
have attempted to apply three-dimensional tensors on miss-
ing data imputation and anomaly detection in transportation
system. This is a more complex representation of traffic
data, and each dimension in tensors has different definitions
as needed [23], [24].

Besides the temporal continuity in self-features of traf-
fic flow, traffic flow often exhibits strong periodicities. This
is due to the strong temporal regularities of urban life, for
example, people need to work on time during workdays.
The SARIMA model first considered the periodic cycles
into the traffic flow prediction model, showing that the con-
sideration of periodicity can improve the prediction accu-
racy [25]. With the continuous studies of traffic flow fea-
tures, Jiang et al. proposed a hybrid wavelet-packet-ACF
model for analysis of traffic flow time series, concluded
that traffic flow exhibited a short-term periodicity with a
period of 24 hours(1 day) and a long-term periodicity with
168 hours (1 week), and the more extended period did not
display visible periodicity [26]. Zhang et al. studied traf-
fic flow data by spectral analysis technique, indicating that
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traffic flow exhibited strong day-to-day cyclical patterns,
which were beneficial to generate better predictive perfor-
mance [27]. These studies theoretically prove the existences
of periodicities in traffic flow. In addition, some researchers
point out that external factors, such as adverse weather,
holidays, weekends would cause uncertainties that dramat-
ically affect the patterns of traffic flow. Ordinarily adverse
weather, such as heavy rain, snow, fog, would cause travel
speed reduction and traffic flow accumulation, in serious
cases, may bring traffic accidents. Adding the weather fac-
tors into the prediction model can reduce the inaccuracy of
traffic prediction [28], [29]. Traffic flow patterns are differ-
ent between holidays and ordinary day, as well as workdays
and weekends [30]. The traffic flow increases extremely on
the rest days (holidays and weekends) due to the traditional
public travel habits.

In our work, we comprehensively consider the period-
icities of traffic flow, weather conditions, and holiday fac-
tors, so that the prediction model can be robust to spatiotem-
poral and external factors’ shifts.

2.2 Convolutional Neural Networks

The CNN is a typical deep neural network. The following
three aspects make it suitable for traffic prediction: 1) pow-
erful ability of local feature extraction. CNNs can implic-
itly learn the latent higher-level feature of the traffic flow,
avoiding the extraction of explicit spatiotemporal features;
2) weight sharing mechanism. The temporal and spatial cor-
relations of traffic flow are not only exhibited on a single
road but are reflected in all roads, which share the similar
properties. Weight sharing means that the same learning
features can be reused for each location of the traffic net-
work. In addition, the weight sharing reduces the number
of weights, which makes the network easy to optimize and
reduces the risk of overfitting; 3) high extensibility. CNNs
can also use the back propagation algorithm to learn network
parameters, which facilitates the combination of CNNs and
traditional neural networks (e.g., BP-NN) to complete the
learning of complex features (e.g., external features) for pre-
diction purposes.

A typical CNN is composed of input layer and output
layer, as well as multiple hidden layers as shown in Fig. 1.
The hidden layers typically consist of convolutional layers,
pooling layers, and fully connected layers. The convolu-
tional layers with convolution filters generate feature maps
from inputs through sliding window followed by nonlinear

Fig. 1 A typical structure of CNN.

activation functions, sharing the weights and reducing the
number of parameters. The feature maps can be calculated
as follows:

hi, j,k = f (wT
k xi, j + bk) (1)

where (i, j) is the pixel index in the feature map, k is used
to index the channels of the feature map, f is the activation
function, xi, j denotes the input patch centered at location
(i, j), hi, j,k represents the output in the feature map of the k-
th channel at location (i, j), wk and bk respectively stand for
the weights and biases.

Pooling layers compress the feature maps passed from
convolutional layers, and further simplify computing com-
plexity. Let down stand for the pooling operation. Then the
feature maps can be further represented as follows:

Sk = down(Hk) (2)

where Hk denotes the feature map of the k-th channel from
the convolutional operation, Sk represents the pooling re-
sults.

After continuous operations of convolution and pool-
ing, high-level features are learned from the original inputs.
The final tensor of feature maps S will be flattened to be a
vector. The fully connected layers are used to connect all the
high-level features in the vector and perform prediction by
back propagation algorithm to optimize the network struc-
ture. The process is as follows:

o = g (w ∗ f latten (S) + b) (3)

where o stands for the outputs, g is the activation function.
The CNN essentially learns a large number of map-

pings between input and output without the need for any
previous knowledge. To our cases, the typical CNN is the
basis of the proposed model MF-CNN, in which we will
combine the multi-features of traffic flow to complete the
prediction task.

3. Methodology

In this section, the MF-CNN model is introduced to capture
the multiple spatiotemporal features and external factors in
short-term traffic flow prediction. First, we present the pro-
posed architecture of MF-CNN model in Sect. 3.1. Then
two main components of the MF-CNN model are respec-
tively exhibited in Sect. 3.2 and 3.3. Subsection 3.2 intro-
duces the traffic representation based on multi-features in
the MF-CNN model, and Sect. 3.3 illustrates the traffic fea-
tures extraction and traffic flow prediction.

3.1 The MF-CNN Model

The self-features of traffic flow provide meaningful infor-
mation for prediction models. The traffic flow is observed
temporal continuity, as well as daily periodicity and weekly
periodicity. For instance, traffic flow is observed to be con-
tinuous during a period. Meanwhile, due to the process of
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Fig. 2 MF-CNN model, consisting of three CNNs and a logistic regression layer to output traffic flow
prediction at time point t.

urban life, the trend of traffic flow in a whole day is usually
recurring in every consecutive workday, the daily distribu-
tion of peaks and valleys of traffic flow could be generally
stable. This situation is also extended to every week. People
are tending to repeat their works on the same day of con-
secutive weeks. Besides, favorable or adverse weather and
holidays will drastically influence traffic flow on the roads.
Therefore, it will cause losses and shifts if only the temporal
continuity is taken into consideration without periodicities
and external factors.

To tackle this problem, the MF-CNN is proposed that
collectively incorporates multiple spatiotemporal features
and external factors to predict traffic flow in continuous
roads. Figure 2 shows a graphical illustration of the MF-
CNN model. First, for representing the different spatiotem-
poral features, the inputs of the traffic flow in the continuous
roads are mapped to three two-dimensional spaces, which
each one is composed of time and space, represented by
two-dimensional matrices. The three spatiotemporal ma-
trices consisting of temporal continuity, daily periodicity,
and weekly periodicity share the same spatial dimension and
different temporal dimension. Then, three CNNs with dif-
ferent structures are applied to extract the latent high-level
spatiotemporal features from the original inputs, capturing
both nearby and distant spatial features, as well as both near
and far temporal features. Finally, a logistic regression layer
connects all the flattened high-dimensional spatiotemporal
features and external features to complete the traffic flow
prediction. The logistic regression structure avoids the com-
plex selection of weights for multiple features fusion, in-
stead, learns the weights by the network itself.

3.2 Traffic Representation

In our cases, as shown in Fig. 3(a), the traffic flow on all
lanes in one direction of p continuous roads {ys

t }
p
s=1 at time

point t is the target to predict. Specifically, traffic flow of the
p roads during {t − n, t − n + 1, · · · t − 2, t − 1} are organized

Fig. 3 Traffic representation: (a) traffic network; (b) traffic flow matrix.

as inputs for prediction of next time point t. Put all the his-
torical data together, a two-dimensional time-space matrix
X is generated:

X =



y1
(t−n) y1

(t−n+1) · · · y1
(t−1)

y2
(t−n) y2

(t−n+1) · · · y2
(t−1)

...
...

. . .
...

yp
(t−n) yp

(t−n+1) · · · yp
(t−1)


(4)

Figure 3(b) shows a graphical representation. The x-
axis represents time, each row stands for a continuous his-
torical time series on a specific spatial location. The y-axis
represents space, each column represents a sequence of dots
of the selected neighboring roads at a specific time point.
The element at time t on road p stands for the value of traffic
flow associated with this specific time point and space loca-
tion. For example, the value 108 at position (t-1, p) means
that there are total 108 vehicles passing over road p during
a fixed time interval (e.g., 5min, 15min) at time point t-1.

To take the different spatiotemporal features of tempo-
ral continuity, daily periodicity, and weekly periodicity as
inputs, the above representation is extended to three spatial
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Fig. 4 The inputs of spatiotemporal features.

and temporal two-dimensional spaces as shown in Fig. 4, in
which t denotes the predicted time point, p represents con-
tinuously forecasted roads, c stands for the number of time
series for continuity simulation, d and w represent the num-
ber of consecutive days and weeks for periodicity simula-
tion. lc is the continuous time interval, ld and lw respectively
denote daily time interval and weekly time interval, which
depend on the lc as following:

ld = Tday/lc (5)

lw = Tweek/lc (6)

where Tday denotes the time unit of a whole day, Tweek de-
notes the time unit of an entire week.

The spatial correlations and temporal correlations of
traffic flow can be both correspondingly reflected in the the
three types of matrices, containing both nearby and distant
spatial features, and both near and far temporal features.

3.3 Traffic Flow Prediction

The inputs of MF-CNN model consist of two parts: three
types of spatiotemporal features and external factors. Sig-
nificantly, the essential difference between a traffic matrix
and a raw RGB image is that a traffic matrix has smaller data
redundancy. Unlike raw RGB images which several pixels
represent the similar feature information, each element in
traffic matrices has real meaning representing traffic flow at
time t on road p. Some studies have shown that subsampling
may bring accuracy loss [17], [31]. To avoid that situation,
we do not adopt pooling layers in MF-CNN, but only suc-
cessive convolutional layers to extract each spatiotemporal
features.

The two-dimensional convolutional layers are naturally
utilized to capture the spatiotemporal features. A set of n
two-dimensional filters {W1,W2, · · · ,Wn} is applied to each
layer of the input matrices via convolution operation (∗) to
get the feature maps:

F= { f1, f2, · · · , fn}=O(X ∗ {W1,W2, · · · ,Wn}) (7)

where O is a nonlinear activation function, which is the rec-
tified linear unit (ReLU) in our case. ReLU is defined as
O(x) = max(0, x), which is the most widely used activation

Fig. 5 The architecture of the fusion and output layer.

function in CNNs. A border-mode is applied to pad each
input outside the border with zero to make the input and
output have the same size in a convolution operation, for the
purpose to retain more feature information.

By convolution operation, the model will get three sets
of high-level features. As shown in Fig. 5, each set of the
extracted features will be flattened to a fixed-dimensional
vector. The external factors including weather conditions,
temperature, wind power, holidays, and weekends are also
transformed into a fixed-dimensional vector. A logistic re-
gression layer is used to merge the three feature vectors with
external factors vector together to derive the final prediction,
avoiding the complex selection of weights for multiple fea-
tures fusion.

During the training process of the MF-CNN model, the
object is to minimize the mean squared error (MSE) be-
tween the predicted value and ground truth, through which
the weights can be learned. The objective function of the
architecture is as following:

min
θ

1
N

N∑
i=1

||Xi − X̂i||22 (8)

where N represents the number of samples, Xi represents
ground truth, X̂i represents predicted value; θ = {w, b}, w
denotes the weights that connect all two adjacent layers, and
b is the biases of each layer.

4. Experiments

4.1 Dataset

Two datasets are used in this study. One dataset is provided
by Jilin Provincial Expressway Administration (JPEA),
China. The continuous roads from Changchun to Yan-
bian are research objects. Another dataset is collected
from Caltrans Performance Measurement System (PeMS),
U.S.A [32]. The continuous road detectors from west to east
on Freeway SR4-W are the targets. Traffic flow is aggre-
gated every 15min according to the suggestion from High-
way Capacity Manual [33]. The datasets and the external
factors are described in Table 1. For each dataset, we se-
lect 90% of the data as training data, the remaining 10% is
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Table 1 Data description.

Dataset JPEA PeMS
Time span 1/1/2017-7/31/2017 1/1/2018-8/5/2018
Time interval 15 minutes 15 minutes
Road sections 18 roads 20 roads
Total samples 20352 20832

External factors
Features Code Values Description
Weather 0-9 10 types of weather con-

ditions
Temperature [-24, 34] the range of temperature
Wind power 0-3 4 types of wind power
Holiday 0,1 0:non-holiday; 1:holiday
Weekend 0,1 0:non-weekend; 1:week-

end

Fig. 6 The temporal features of traffic flow: (a) temporal continuity of
July 1, 2017; (b) daily periodicity of May 15 - 21, 2017; (c) weekly peri-
odicity of Mar. 1 - July 26, 2017.

chosen as the validation set.

4.2 Multi-Features Analysis

Figure 6(a) shows the traffic flow of the road from
Changchun East to Lianhua Mountain aggregated every
15min at 12:00 pm-16:00 pm on July 1, 2017, using JPEA
dataset. It can be seen that the traffic flow in the short-term
time series has similar traffic status. Figure 6(b) depicts traf-
fic flow at all-time intervals of 7 days from May 15 to May
21, 2017. The peaks and valleys of traffic flow on the same
road in different days usually come at similar periods and
keep generally stable. The trend shows the daily periodicity
of the traffic flow. Figure 6(c) describes traffic flow at a cer-
tain time interval (11:45 am-12:00 pm) on Wednesday from
March 2017 to July 2017. The traffic flow on the same day
of different weeks also shows similar trends, indicating the
weekly periodicity. However, the weekly trend is not always
stable. In Fig. 6(c), traffic flow in May reaches a local peak
as the International Workers holiday comes. Moreover, in
June and July, as the climate slowly warms up, the trend of
traffic flow shows fluctuated. In general, the overall trend is
rising. The temporal features exhibit similar trends in each

Fig. 7 Impacts of external factors on traffic flow: (a) weather condition;
(b) holiday.

link of the whole traffic network, validating the existence of
traffic self-features in temporal continuity, daily periodicity,
and weekly periodicity. They provide meaningful informa-
tion for traffic flow prediction.

Figure 7(a) shows the differences in traffic flow trends
between July 13 (stormy rain) and July 25 (sunny day). The
stormy rain sharply affects the traffic flow, the peak declines
significantly. Figure 7(b) depicts traffic flow on holiday (In-
ternational Workers Day) and ordinary day (May 15). Traf-
fic flow on holidays increases extremely compared to the
ordinary days. These phenomena illustrate that the weather
conditions and holidays both have strong impacts on traffic
flow.

4.3 Experimental Setup

The proposed model is built on Theano and Keras sup-
ported by python libraries. For the input, to improve the
convergence speed of the model, Min-Max normalization
method is used to scale the data into the range [0, 1]. The
sigmoid activation function is applied at the output layer,
whose range is also [0, 1]. Then, the results are processed
by anti-normalization to ground truth. For each one of the
three spatiotemporal features consisting of temporal conti-
nuity, daily periodicity, and weekly periodicity, a structure
with three convolutional layers is employed. In this case, the
convolutions of temporal continuity and daily periodicity re-
spectively use 64, 32, and 16 filters of size 3×3; weekly peri-
odicity uses 64, 32, and 16 filters of size 2×2. For each con-
volutional layer, the activation function is ReLU. The batch
size is 512. Early stopping is applied to prevent the model
from overfitting. The loss function is the mean squared er-
ror (MSE). For the external factors, we transform weather
conditions, wind power, holidays and weekends into binary
vectors by one-hot coding, and use Min-Max normalization
to scale temperature into the range [0, 1]. We continue to
train the model on the full training data for a fixed number
of epochs (e.g., 100 epochs).

For the extra hyperparameters in the proposed model,
the time interval lc is set to 15min, the lengths of daily and
weekly periodicity ld and lw are fixed to 96 (one day) and
672 (one week), respectively. For the temporal dimension
of continuity, consecutive days and consecutive weeks in in-
put matrices, we choose c from {4, 8, 12, 16, 20, 24, 28, 32},
d from {5, 6, 7}, and w from {1, 2, 3}. After performing the
hyperparameters of each set individually, the best structures
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Table 2 Comparison among different models in traffic flow prediction.

Dataset JPEA PeMS
Model MAE MAPE(%) RMSE MAE MAPE(%) RMSE
ANN 0.0118 15.03 0.0160 0.0323 8.98 0.0447
SAE 0.0111 14.34 0.0155 0.0292 8.65 0.0411
CNN 0.0107 14.11 0.0159 0.0280 8.61 0.0417

LSTM 0.0121 14.67 0.0165 0.0374 11.64 0.0524
CLSTM 0.0101 13.31 0.0148 0.0249 8.15 0.0389

MF-CNN 0.0096 13.27 0.0145 0.0254 8.23 0.0392

are obtained, which c is set to 8 (8 adjacent time intervals),
d is set to 7 (7 consecutive days), and w is set to 2 (2 con-
secutive weeks). All parameters of our model are set by trial
and error to yield an optimal structure.

4.4 Model Comparisons

To demonstrate the effectiveness of the proposed model, the
following baseline models that include five popular intelli-
gent computational models are compared with the MF-CNN
model:

(1) ANN, represents traditional neural network prediction
analysis. Eight previous time intervals and 4 nearby
roads are extracted as spatiotemporal features. The
ANN contains three hidden layers with 400 hidden units
in each layer training by gradient descent.

(2) SAE [12], is a neural network created by stacking au-
toencoders, which the output of the autoencoder on the
previous layer is the input of the next layer. SAE is
formed up by three autoencoder layers with 400 hidden
units in each layer.

(3) CNN [18], is set to three convolutional layers with 64,
32, and 16 filters of size 3 × 3 with the consideration of
only temporal continuity.

(4) LSTM [14], is an improvement of the recurrent neural
network (RNN), which is suitable for processing and
forecasting time series related problems. The structure
of LSTM is set to one hidden layer with 500 hidden
units.

(5) CLSTM [19], is the combination of CNN and LSTM.
The structure of CNN is set to three convolutional layers
with 64 filters of size 3 × 3, and the LSTM is set to one
hidden layer with 100 hidden units.

Three performance indexes are used to evaluate the ef-
fectiveness of the proposed model, which are mean absolute
error (MAE), root mean square error (RMSE), mean abso-
lute percentage error (MAPE). They are defined as follow-
ing:

MAE =
1
N

N∑
i=1

∣∣∣Xi − X̂i

∣∣∣ (9)

RMS E =

√√√
1
N

N∑
i=1

(Xi − X̂i)
2

(10)

MAPE =
1
N

N∑
i=1

∣∣∣Xi − X̂i

∣∣∣
Xi

× 100% (11)

where Xi and X̂i respectively denote the ground truth and
predicted value. Each model is iterated 10 times and we
count the average performance indexes of each model.

Table 2 shows the predictive performance of the MF-
CNN model and baseline models. It can be observed that
the MF-CNN model on the JPEA dataset outperforms the
five baseline models in the three measurements of predic-
tive performance. The maximum reductions of the MF-
CNN model observed in MAE, MAPE, and RMSE are re-
spectively 20.66%, 11.71%, and 12.12%, while the mini-
mum are 4.95%, 0.30%, and 2.03%. On the PeMS dataset,
CLSTM performs more prominently. The MF-CNN model
is slightly inferior to CLSTM ranking the second with the
differences of the three measurements to be respectively
1.97%, 0.97%, and 0.77%. On the both datasets, the MF-
CNN model considering network-scale traffic achieves bet-
ter performance than single road prediction models ANN,
SAE, and LSTM. Compared with network-scale traffic pre-
diction models CNN and CLSTM, MF-CNN is superior to
CNN with the reduction observed in MAE, MAPE, and
RMSE respectively to be 10.28%, 5.95%, and 8.81% on
JPEA dataset, and 9.29%, 4.41%, and 6.00% on PeMS
dataset. It validates the advantage of taking multi-features
into consideration than one single feature, and prevents the
model from the shifts brought by complex factors. In the
comparison of CLSTM, MF-CNN is not always ranking the
best, but superior to other four models. It indicates that the
proposed model considering more potential spatiotemporal
features and external factors of traffic flow is beneficial to
improve predictive performance.

Figure 8 depicts the predictive performance on one
road in a whole day on July 31, 2017 of JPEA dataset and
Aug.4, 2018 of PeMS dataset. Each subgraph consists of
two parts: the prediction curve and the error. The error is
obtained from the difference between the ground truth and
the predicted value. The closer the error is to the midline, the
better the predictive performance is. It can be seen that the
predicted value curves of the MF-CNN model and CLSTM
model represent significant advantages over other four base-
line models on both datasets, showing the similar predictive
performance and effectiveness.

The execution efficiency of the models is measured in
terms of running time. Figure 9 shows that, the MF-CNN
model does not achieve an apparent advantage due to the



YANG et al.: MF-CNN: TRAFFIC FLOW PREDICTION USING CONVOLUTIONAL NEURAL NETWORK AND MULTI-FEATURES FUSION
1533

Fig. 8 Performance comparison among different models: (a)on JPEA dataset; (b)on PeMS dataset.

Fig. 9 Comparison of different models in execution efficiency.

computational complexity, but its running time is still in
an acceptable range. The MF-CNN model spends almost
half as much time as CLSTM. That is because, the MF-
CNN model only depends on the feature extraction ability
of CNNs, while the CLSTM model combining LSTM and
CNN increases the computational complexity in training

data, and with the increase of depth, the training gets much
harder. It indicates that the MF-CNN model achieves the
trade-off between the prediction accuracy and efficiency.

4.5 Multi-Features Impact Analysis

To analyze the impact of different features to the traffic flow
prediction, combinations of various features, namely, tem-
poral continuity (C), daily periodicity (D), weekly periodic-
ity (W), and external factor (E), are fixed. They are fitted
into the MF-CNN model with the same network structure.
The experimental results are presented in Table 3, and vi-
sual perspective in Fig. 10.

The findings can be summarized as follows:

(1) Each type of properties helps to build better predic-
tion results. As the number of the properties increases,
the error rate decreases, showing that the model taking
multi-features into account is superior to that consider-
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Fig. 10 Predictions of different features: (a)on JPEA dataset; (b)on PeMS dataset.

Table 3 Comparison among different features of the MF-CNN model.

Dataset JPEA PeMS
Features Fusion MAE MAPE(%) RMSE MAE MAPE(%) RMSE

C 0.0107 14.11 0.0159 0.0280 8.61 0.0417
C+D 0.0100 13.51 0.0152 0.0264 8.52 0.0409
C+W 0.0102 13.58 0.0157 0.0267 8.63 0.0415

C+D+W 0.0098 13.42 0.0149 0.0257 8.28 0.0401
C+D+W+E 0.0096 13.27 0.0145 0.0254 8.23 0.0392

ing single-feature.

(2) The combinations of properties C and D, properties
C and W, yield improvements over single property C,
demonstrating the consideration of different temporal
periodicities is both beneficial to improve traffic flow
prediction.

(3) The model with properties C and D has lower errors
than the model with properties C and W. The results

indicate that traffic flow prediction is more sensitive to
short-term periodicity than long-term periodicity.

(4) Compared with the model with properties C, D and W,
the model with properties C, D, W and E not only yields
a better prediction result but also discovers the relation
between traffic and external factors including weather
conditions and holiday events.
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5. Conclusions

In this paper, we estimate traffic flow by multi-features fu-
sion, and propose a novel deep learning model, named MF-
CNN, to predict network-scale traffic flow. This study aims
to overcome the problem of complex factors shifts to the
robustness of prediction models, and fully utilize the avail-
able traffic features to improve the prediction accuracy. In
MF-CNN model, the traffic self-features are classified into
temporal continuity as short-term feature, daily periodicity
and weekly periodicity as long-term features. Each one is
represented by two-dimensional time-space matrices with
different time lags as one of the inputs. Then the three differ-
ent spatiotemporal matrices are learned by CNNs to obtain
the high-dimensional features with both spatial and tempo-
ral correlations. The extracted features are further combined
with external factors to fit into a logistic regression layer to
complete the final prediction.

The proposed model is evaluated on real traffic data
from JPEA dataset and PeMS dataset. The results show
that the MF-CNN model on JPEA dataset outperforms the
five baseline models with the maximum reduction observed
in MAE, MAPE, and RMSE to be 20.66%, 11.71%, and
12.12%, and the minimum to be 4.95%, 0.30%, and 2.03%.
On the PeMS datasets, the MF-CNN model is slightly in-
ferior to CLSTM with the differences of MAE, MAPE, and
RMSE to be 1.97%, 0.97%, and 0.77%. The execution ef-
ficiency of the MF-CNN model measured in terms of run-
ning time is in an acceptable range. The running time of the
MF-CNN model is not the optimum, but superior to LSTM
and CLSTM. The results of impacts of different features on
the traffic flow prediction show that the spatiotemporal fea-
ture of temporal continuity is essential, daily periodicity is
more influential in prediction accuracy than weekly period-
icity, and the model with consideration of external factors
yields more accurate prediction results than the model with
only spatiotemporal correlations. These findings extend and
complement the study of traffic flow features.

Consequently, the MF-CNN model considering mul-
tiple spatiotemporal features and external factors can pre-
vent the model from complex factors’ shifts. It achieves
the trade-off between the prediction accuracy and efficiency,
showing potential and promising capacity in traffic flow pre-
diction.
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