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PAPER

Direct Log-Density Gradient Estimation with Gaussian Mixture
Models and Its Application to Clustering

Qi ZHANG†a), Hiroaki SASAKI††b), Nonmembers, and Kazushi IKEDA††c), Senior Member

SUMMARY Estimation of the gradient of the logarithm of a probabil-
ity density function is a versatile tool in statistical data analysis. A recent
method for model-seeking clustering called the least-squares log-density
gradient clustering (LSLDGC) [Sasaki et al., 2014] employs a sophisti-
cated gradient estimator, which directly estimates the log-density gradients
without going through density estimation. However, the typical implemen-
tation of LSLDGC is based on a spherical Gaussian function, which may
not work well when the probability density function for data has highly
correlated local structures. To cope with this problem, we propose a new
gradient estimator for log-density gradients with Gaussian mixture models
(GMMs). Covariance matrices in GMMs enable the new estimator to cap-
ture the highly correlated structures. Through the application of the new
gradient estimator to mode-seeking clustering and hierarchical clustering,
we experimentally demonstrate the usefulness of our clustering methods
over existing methods.
key words: probability density gradient, mixture model, clustering, hier-
archical clustering

1. Introduction

Estimating the gradient of the logarithm of the probabil-
ity density function underlying data is an important prob-
lem. For instance, an unsupervised dimensionality reduction
method requires to estimate the log-density gradient [1]. In
a supervised learning problem, estimating the log-density
gradient enables us to capture multiple functional relation-
ship between output and input variables [2]. Other statistical
topics can be seen in [3]. Thus, log-density gradient estima-
tion offers a certain range of applications in statistical data
analysis.

Among them, an interesting application is mode-
seeking clustering. Mean shift clustering (MS) [4]–[6] it-
eratively updates data samples toward the modes (i.e., lo-
cal maxima) of the estimated probability density function
by gradient ascent, and then assigns a cluster label to the
data samples which converged to the same mode. Com-
pared with k-means and mixture-model-based clustering [7],
MS has two notable points: MS does not make strong as-
sumptions on the probability density function and the num-
ber of clusters in MS is automatically determined by the
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detected modes. Therefore, MS has been applied to a va-
riety of problems such as image segmentation [6], [8], [9]
and object tracking [10], [11] (See also a recent review ar-
ticle [12]). Furthermore, MS and its related methods have
been extended for handling manifold data [13], [14] and to
hierarchical clustering [15].

A native approach is first to estimate the probability
density function (e.g., by kernel density estimation), and
then to compute its log-gradient. However, this approach
can be unreliable because a good density estimator does
not necessarily mean a good gradient estimator. To allevi-
ate this problem, a recent mode-seeking clustering method
called LSLDG clustering employs a sophisticated gradient
estimator, which directly fits a gradient model to the true
log-density gradient without going through density estima-
tion [16]–[18]. LSLDG clustering has been experimentally
demonstrated to significantly improve the performance of
MS particularly for high-dimensional data [17], [18]. How-
ever, the gradient estimator in LSLDG clustering is typically
implemented based on the spherical Gaussian kernel. Thus,
when the probability density function includes clusters with
highly correlated structures, LSLDG may require a huge
number of samples to produce a smooth gradient estimate.
This can be problematic particularly in mode-seeking clus-
tering because an unsmooth estimate may create spurious
modes as we demonstrate later.

To improve the performance of LSLDG clustering to
the highly correlated structures, we propose to use a Gaus-
sian mixture model (GMM) in log-density gradient estima-
tion. Estimating the covariance matrices in GMM makes the
gradient estimator much more adaptive to the local struc-
tures in the probability density function. A challenge is
to satisfy the positive semidefinite constraint of the covari-
ance matrices. To overcome this challenge, we develop
an estimation algorithm combined with manifold optimiza-
tion [19].

Next, we apply the proposed estimator to mode-
seeking clustering. To update data samples during mode-
seeking, we derive an update formula based on the fixed-
point method. A similar formula has been proposed in
MS [20], but as shown later, our formula includes it as a spe-
cial case. Furthermore, we extend the proposed clustering
method to hierarchical clustering, which is a novel exten-
sion of LSLDG clustering. The usefulness of the proposed
clustering methods are experimentally demonstrated.

This paper is organized as follows: Sect. 2 reviews an
existing gradient estimator and MS. In Sect. 3, we propose a
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new estimator for log-density gradients with Gaussian mix-
ture models. Section 4 develops a mode-seeking clustering
method as an application of the proposed gradient estimator.
Then, the developed clustering method is further extended
to hierarchical clustering. The performance of the cluster-
ing methods are experimentally investigated in Sect. 5. Sec-
tion 6 concludes this paper.

2. Background

This section reviews an existing estimator for log-density
gradients and mode-seeking clustering methods.

2.1 Review of LSLDG

Here, we review a direct estimator for log-density gradi-
ents which we refer to the least-squares log-density gradi-
ents (LSLDG) [16], [17]. Suppose that n i.i.d. data samples
drawn from a probability distribution with density p(x) are
available as

D := {xi = (x(1)
i , . . . , x(d)

i )}ni=1 ∼ p(x).

The goal of LSLDG is to estimate the gradient of the log-
density fromD:

∇x log p(x) =

(
∂1 p(x)

p(x)
, . . . ,

∂d p(x)
p(x)

)�
,

where ∂ j := ∂
∂x( j) and ∇x denotes the differential operator

with respect to x.
LSLDG directly fits a model g j to the true partial

derivative of the log-density under the squared-loss:

J j(g j) :=
1
2

∫
{g j(x) − ∂ j log p(x)}2 p(x)dx −C j

=
1
2

∫
{g j(x)}2 p(x)dx −

∫
g j(x)

{
∂ j p(x)

}
dx

=
1
2

∫
{g j(x)}2 p(x)dx +

∫ {
∂ jg j(x)

}
p(x)dx,

where C j := 1
2

∫ {∂ j log p(x)}2 p(x)dx, and we applied the
integration by parts to the second term on the right-hand
side under the assumption that |g j(x)p(x)| → 0 as |x j| → ∞.
Then, the empirical risk up to the ignorable constant C j is
obtained as

Ĵ j(g j) :=
1
n

n∑
i=1

[
1
2
g j(xi)

2 + ∂ jg j(xi)

]
. (1)

To estimate g j, LSLDG employs the following model:

g j(x) :=
b∑

i=1

α
( j)
i ϕ

( j)
i (x), (2)

where α( j)
i and ϕ

( j)
i are coefficients and basis functions re-

spectively, and b denotes the number of basis functions. In
[17], the derivative of the Gaussian kernel is used as

ϕ
( j)
i (x) := ∂ j exp

⎛⎜⎜⎜⎜⎜⎝−‖x − ci‖2
2σ2

j

⎞⎟⎟⎟⎟⎟⎠ , (3)

where ci := (c(1)
i , . . . , c(d)

i )� is the kernel centers fixed at a
subset of data samples randomly chosen fromD, and σ j de-
notes the bandwidth parameter. After substituting the model
(2) into Ĵ j, the optimal α( j) := (α( j)

1 , . . . , α
( j)
b )� can be com-

puted analytically by solving the following problem:

α̂( j) := argmin
α( j)

Ĵ j(α
( j)) + λ j‖α( j)‖2

= −(Ĝ j + λ jIb)−1 ĥ j,

where λ j is the regularization parameter, Ib denotes the b by
b identity matrix, and with ϕ( j)(x) := (ϕ( j)

1 (x), . . . , ϕ( j)
b (x))�,

Ĝ j :=
1
n

n∑
i=1

ϕ( j)(xi)ϕ
( j)(xi)

�, ĥ j :=
1
n

n∑
i=1

∂ jϕ
( j)(xi).

The gradient estimator is finally given by

ĝ j(x) =
b∑

i=1

α̂
( j)
i ϕ

( j)
i (x).

2.2 Review of Mode-Seeking Clustering

Mean shift clustering (MS) [4], [6] is a mode-seeking clus-
tering method based on kernel density estimation (KDE).
MS employs KDE to estimate the probability density func-
tion as follows:

p̂KDE(x) :=
1
n

n∑
i=1

K

(‖x − xi‖2
2h2

)
, (4)

where h denotes the bandwidth parameter and K is a smooth
kernel function for KDE (See [6, Eq. (3)] for definition).
Taking the gradient of p̂KDE(x) with respect to x yields

∇x p̂KDE(x)

=
1
n

n∑
i=1

xi − x
h2

H

( ‖x − xi‖2
2h2

)

=
1

nh2

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

xiH

(‖x − xi‖2
2h2

)
− x

n∑
i=1

H

( ‖x − xi‖2
2h2

)⎤⎥⎥⎥⎥⎥⎦
where H(t) := − d

dt K(t). Based on the fixed-point method,
setting ∇x p̂KDE(x) = 0 yields a simple update formula as

x←
∑n

i=1 xiH
( ‖x−xi‖2

2h2

)
∑n

i=1 H
( ‖x−xi‖2

2h2

) .
This update formula is iteratively applied for data samples xi

until they converge to the modes of p̂KDE. MS finally assigns
the same cluster label to the data samples converging to the
same mode.

LSLDG clustering [17], [18] is another mode-seeking
clustering method. The main difference is that ∇x p̂KDE(x)
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is replaced with the LSLDG estimator ĝ(x) = (̂g1(x), . . . ,
ĝd(x))�. An update formula is derived based on the fixed-
point method in LSLDG clustering as well. It has been ex-
perimentally demonstrated that LSLDG clustering signifi-
cantly outperforms MS for high-dimensional data.

3. LSLDG with Gaussian Mixture Models

To improve the performance of LSLDG to local correlation
structures in the probability density function, instead of the
spherical Gaussian kernel in (3), we use a Gaussian function
with the mean parameter μi and precision matrix Λi (i.e., the
inverse of a covariance matrix) as the basis function:

ψ
( j)
i (x;μi,Λi) := ∂ j exp

{
−1

2
(x − μi)

�Λi(x − μi)

}
= [Λi(μi − x)] jφi(x;μi,Λi), (5)

where [x] j denotes the j-th element in x and

φi(x;μi,Λi) := exp

{
−1

2
(x − μi)

�Λi(x − μi)

}
.

Then, a gradient model based on a Gaussian mixture model†
is given by

gGM
j (x) :=

b∑
i=1

θ
( j)
i ψ

( j)
i (x;μi,Λi), (6)

where θ
( j)
i denote coefficients. Substituting the Gaussian

mixture model (6) into Ĵ j yields the following optimization
problem:

{̂θ( j)}dj=1, {̂μi}bi=1, {Λ̂i}bi=1

:= argmin
{θ( j)}dj=1,{μi}bi=1,{Λi}bi=1

d∑
j=1

Ĵ j(θ
( j), {μi}bi=1, {Λi}bi=1)

subject to Λi = Λ
�
i , Λi 
 O for all i, (7)

where θ( j) := (θ( j)
1 , . . . , θ

( j)
b )�, and Λi 
 O means that Λi is

positive semidefinite.
We next describe our estimation algorithm. Our algo-

rithm is to alternately repeat two steps until
∑d

j=1 Ĵ j con-
verges: (1) Optimization of {θ( j)}dj=1 and (2) of {μi}bi=1 and

{Λi}bi=1. The details of the two steps are given as follows:

(1) Optimization of {θ( j)}dj=1

Given {μi}bi=1 and {Λi}bi=1, the optimal θ( j) for all j can be
computed analytically††:

†This model is different from the standard Gaussian mixture
model in statistics because the Gaussian functions in (6) are not
normalized. Nonetheless, we call it a Gaussian mixture model to
emphasize that the mean parameter μi and precision matrix Λi are
estimated from data samples.
††The analytic solution can be easily derived by solving

∇θ( j) J j(θ( j), {μi}bi=1, {Λi}bi=1) = 0 with respect to θ( j).

θ̂( j) = G−1
j h j, (8)

where with ψ( j)(x) = (ψ( j)
1 (x), . . . , ψ( j)

b (x))�,

G j :=
1
n

n∑
i=1

ψ( j)(xi)ψ
( j)(xi)

�, h j :=
1
n

n∑
i=1

∂ jψ
( j)(xi).

(2) Optimization of {μi}bi=1 and {Λi}bi=1

Given {θ( j)}dj=1, we optimize {μi}bi=1 and {Λi}bi=1. Here, the
challenge is that Λi must be symmetric positive semidefi-
nite. To satisfy the constraint, we employ manifold opti-
mization techniques [19]. In this step, gradient descent on
a manifold is performed by a single step (iteration)†††. Re-
garding μi, the standard gradient descent is applied with a
single step.

After repeating the alternate optimization over the pa-
rameters, we finally obtain the estimator as

ĝGM
j (x) :=

b∑
i=1

θ̂
( j)
i ψ

( j)
i (x; μ̂i, Λ̂i). (9)

We call the estimator the Gaussian mixture LSLDG (GM-
LSLDG).

4. Application to Clustering

This section applies GM-LSLDG to mode-seeking cluster-
ing. Furthermore, the clustering method is extended to hier-
archical clustering.

4.1 Mode-Seeking Clustering

Here, we derive an update formula of data samples to per-
form mode-seeking as done in MS and LSLDG clustering.
Let us denote the estimated gradient vector by GM-LSLDG
as ĝGM(x) := (̂gGM

1 (x), . . . , ĝGM
d (x))�. Then, by expanding

the right-hand side of (9), ĝGM(x) can be expressed as

ĝGM(x) =
b∑

i=1

Θ̂iΛ̂i (̂μi − x)φ̂i(x)

=

b∑
i=1

Θ̂iΛ̂iμ̂iφ̂i(x) −
⎧⎪⎪⎨⎪⎪⎩

b∑
i=1

Θ̂iΛ̂iφ̂i(x)

⎫⎪⎪⎬⎪⎪⎭ x, (10)

where φ̂( j)
i (x) := φ

( j)
i (x; μ̂i, Λ̂i) and Θi denotes the d by d

diagonal matrix with diagonals θ̂(1)
i , . . . , θ̂(d)

i for a fixed i.
Based on the fixed-point method, setting ĝGM(x) = 0 yields
the following update formula:

x←
⎧⎪⎪⎨⎪⎪⎩

b∑
i=1

Θ̂iΛ̂iφ̂i(x)

⎫⎪⎪⎬⎪⎪⎭
−1 ⎧⎪⎪⎨⎪⎪⎩

b∑
i=1

Θ̂iΛ̂iμ̂iφ̂i(x)

⎫⎪⎪⎬⎪⎪⎭ . (11)

A similar update formula has been derived in MS with a
†††We used a MATLAB function, sympositivedefinitefactory(),

in software called Manopt [21].
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mixture model [20, Eq. (2)] , but it is a special case of our
formula where Θ̂i = θiId with a single parameter θi, while
Θ̂i in our method is also a diagonal matrix yet the diagonal
elements can differ.

It is important to confirm whether the formula (11) up-
dates data samples toward the modes. To this end, we show
a sufficient condition that the update formula (11) performs

gradient ascent. By multiplying
{∑b

i=1 Θ̂iΛ̂iφ̂i(x)
}−1

to the
both-hand sides of (10), (11) can be equivalently expressed
as

x← x +

⎧⎪⎪⎨⎪⎪⎩
b∑

i=1

Θ̂iΛ̂iφ̂i(x)

⎫⎪⎪⎬⎪⎪⎭
−1

ĝGM(x). (12)

From the definition of ascent direction [22, Sect. 9.2] , (12)
shows that the update formula (11) performs gradient ascent
whenever

ĝGM(x)�
⎧⎪⎪⎨⎪⎪⎩

b∑
i=1

Θ̂iΛ̂iφ̂
( j)
i (x)

⎫⎪⎪⎬⎪⎪⎭
−1

ĝGM(x) > 0. (13)

Thus, we need to check (13) or that
{∑b

i=1 Θ̂iΛ̂iφ̂
( j)
i (x)

}
is

a positive definite matrix when the update formula (11) is
used.

Based on this fact, our clustering algorithm consists the
following steps:

Step 1 Perform GM-LSLDG and obtain the optimal param-
eters {̂θ( j)}dj=1, {̂μi}bi=1 and {Λ̂i}bi=1.

Step 2 Repeat the following mode-seeking step to each data
sample xi until convergence: If (13) is satisfied, xi is
updated by the fixed-point method (11). Otherwise,
we perform standard gradient ascent as xi ← xi +

εĝGM(xi) where ε is a fixed step-size parameter.
Step 3 Assign the same cluster label to a set of the data

points from which the converged points are close
enough.

We empirically observed that most of data samples were
monotonically converged to the modes without using stan-
dard gradient ascent. Thus, we conjecture that as in MS [6,
Theorem 1] and LSLDG clustering [18, Theorem 3] , the
update rule (11) has a monotonic hill-climbing property to
the modes. Proving this conjecture is our future work.

Finally, we discuss whether our gradient estimator en-
ables us to accurately find the modes of the true density, not
of the estimated one. Following the analysis in [18], [23],
Appendix A discusses that our gradient estimator with a
sufficiently large number of Gaussians would suffice to ac-
curately capture the modes for a wide-range of the den-
sity functions as the sample size goes to infinity. However,
our experimental results indicate that our clustering method
with a small number of Gaussians often works well. Filling
this gap between theory and practice is also an interesting
challenge, and one of our future works.

4.2 Extension to Hierarchical Clustering

First, we briefly review an existing hierarchical clustering

method based on mode-seeking, and then propose our hi-
erarchical clustering method, which is a novel extension of
LSLDG clustering.

4.2.1 Hierarchical Mode Association Clustering

A hierarchical clustering method called the hierarchical
mode association clustering (HMAC) has been proposed
based on a mode-seeking clustering method [15]. When
kernel density estimation in (4) is employed for HMAC,
the main idea is to perform mode-seeking clustering over
a set of bandwidth parameters h: A smaller (or larger) value
of the bandwidth parameter h produces a less (or more)
smooth density estimate, which tends to have more (or less)
modes (i.e., clusters). Thus, roughly speaking, a hierar-
chy of clusters can be built by organizing the clustering re-
sults from the set of bandwidth parameters. As discussed
in [15], HMAC is substantially different from linkage clus-
tering [24, Sect. 14.3.12] : Clusters in HMAC are merged
globally based on the estimated density, while linkage clus-
tering merges two clusters based on local distance, which
may result in skewed clusters.

We follow the approach in HMAC, but the extension is
not straightforward because we need to prepare for a set of
precision matrices in the Gaussian mixture model to obtain
a variety of cluster presentations, which seems much more
challenging than selecting a set of the bandwidth parame-
ters. Below, we describe how to select a set of the precision
matrices and then propose a practical algorithm of our hier-
archical clustering method.

4.2.2 Selecting a Set of Precision Matrices

To systematically select a set of precision matrices, we op-
timize {Λi}bi=1 twice from different initializations and store
{Λi}bi=1 at each iteration to build a hierarchy of clusters. The
initialization of {Λi}bi=1 is an important problem, and we ini-
tialize Λi = ηId for all i where η is some parameter. Intu-
itively, when η is a small (or large) value, a set of precision
matrices obtained over iterations in the optimization would
produce a large (or small) to smaller (or larger) number of
clusters. Due to this reason, we optimize Λi twice from dif-
ferent initializations with a small and large value of η, and
unify a set of {Λi}bi=1 obtained at each iteration.

However, the difficulty in this approach is that the op-
timization problem (7) is nonconvex. Thus, the final solu-
tions from two different initializations may not converge to
the same solution. To cope with this problem, we first per-
form GM-LSLDG and obtain {̂θ( j)}dj=1, {̂μi}bi=1 and {Λ̂i}bi=1 in
(7). Then, given these parameters, we solve the following
optimization problem with an additional term:

min
{Λi}bi=1

d∑
j=1

Ĵ j({Λi}bi=1) + β
b∑

i=1

‖Λi − Λ̂i‖2F, (14)

where Ĵ j({Λi}bi=1) := Ĵ j (̂θ( j), {̂μi}bi=1, {Λi}bi=1), β is a non-
negative parameter, and ‖ · ‖F denotes the Frobenius norm.
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The second term in (14) ensures that the final solution is
close to Λ̂i by appropriately choosing β. Thus, we use a
set of precision matrices obtained by solving (14) for hier-
archical clustering. We choose β as follows: We begin with
a small value of β and compute the Frobenius distance be-
tween the final solution and Λ̂i as in the second term of (14).
If the Frobenius norm is sufficiently small, then we choose
a sequence of precision matrices until the final solution and
use it for hierarchical clustering. Otherwise, we slightly in-
crease the value of β, and repeat the same procedure until
the Frobenius distance gets sufficiently small.

4.2.3 Practical Algorithm

Before going to the details of the practical algorithm, let us
define some notations. We denote byMl a set of the mode
points obtained at the hierarchical level l. A label partition
function of x at the hierarchical level l assigns a cluster label
to x and is defined by Pl(x) ∈ {1, 2, . . . ,Kl}where Kl denotes
the number of cluster at the level l.

Our algorithm takes the following steps:

Step 1 Perform GM-LSLDG and obtain the optimal param-
eters {̂θ( j)}dj=1, {̂μi}bi=1 and {Λ̂i}bi=1.

Step 2 Given {̂θ( j)}dj=1, {̂μi}bi=1, solve (14) with a small value
of η (e.g., η = 0.001) for the initialization Λi =

ηId, and obtain a sequence of precision matrices as
{Λ̃(1)

i , Λ̃(2)
i , . . . , Λ̃(T )

i }bi=1 where Λ̃(t)
i denotes the pre-

cision matrix at the t-th iteration and T is the total
number of iterations†.

Step 3 With a large value of η (e.g., η = 1000), solve
(14) and obtain a sequence of precision matrices as
{Λ̌(1)

i , Λ̌(2)
i , . . . , Λ̌(T )

i }bi=1.
Step 4 We unify the two sequences of all precision matri-

ces as {Λ̃(1)
i , . . . , Λ̃(T )

i , Λ̂i, Λ̌
(T )
i , . . . , Λ̌(1)

i }bi=1, and re-
express it by {Λ̃(1)

i , . . . , Λ̃(L)
i }bi=1 where L = 2T + 1

and Λ̃(L)
i = Λ̌

(1)
i . Then, we repeatedly perform GM-

LSLDGC with {̂θ( j)}dj=1, {̂μi}bi=1 and {Λ̃(l)
i }bi=1 from

l = 1 to l = L as follows:

(a) Perform GM-LSLDGC with {Λ̃(l)
i }bi=1 to the

points in Ml−1 and obtain Ml where M0 corre-
sponds to the set of data samples.

(b) If Pl−1(xi) = k and the k-th mode point inMl−1

converged to the k′-th element inMl after mode-
seeking, then Pl(xi) = k′.

Step 4 essentially follows HMAC [15] and ensures that this
hierarchical clustering algorithm produces a nested cluster-
ing representation, i.e., the following mapping holds: xi →
M1(xi) → M2(M1(xi)) → . . . where Ml(x) maps x to a
mode point inMl.

Compared with HMAC, the proposed method has an
advantage in terms of selection of precision matrices: A

†To promote the interpretability of the results, when T is large,
we only use precision matrices at the 0.7T -th, 0.8T -th and 0.9T -th
iterations.

set of bandwidth parameters in HMAC is manually selected,
while a set of precision matrices in our method is obtained
through the optimization, and the parameter manually cho-
sen is only η. Therefore, it should be easier to select a set
of precision matrices in our method. In addition, thanks to
the precision matrices, our hierarchical clustering method
would be more useful than HMAC when the data density
includes highly correlated local structures.

5. Experiments

This section performs numerical experiments both for
mode-seeking clustering and hierarchical clustering to
demonstrate how the proposed methods work and to com-
pare them with existing methods.

5.1 Mode-Seeking Clustering

Here, we illustrate the performance of the proposed method
for mode-seeking clustering both on artificial and bench-
mark datasets.

5.1.1 Artificial Data

(1) Clustering performance and computational efficiency

We first generated artificial data from the following mixture
of three Gaussians:

pdata(x) =
3∑

k=1

αkN(x|μk,Ck),

where N(x|μk,Ck) denotes the Gaussian density with mean
μk and covariance matrix Ck. The mixing coefficients were
α1 = 0.3, α2 = 0.4, and α3 = 0.3, respectively. After gener-
ating data samples, we applied the following three methods:

• GM-LSLDGC: Proposed mode-seeking clustering
method based on GM-LSLDG. We performed the ten-
fold cross-validation for choosing b from the candi-
dates {2, 3, . . . , 8, 9} with respect to

∑d
j=1 Ĵ j. We ini-

tialized Λi for all i as a diagonal matrix whose diag-
onals were sampled from the uniform distribution on
[0.1, 1.0]. For μi, the j-th element was initialized by
the uniform distribution on [mini x( j)

i ,maxi x( j)
i ].

• LSLDGC [18]: Mode-seeking clustering based on
LSLDG††. All the hyper-parameters were determined
by the five-hold cross validation.

• MS [4]–[6]: Mean shift clustering method. We em-
ployed kernel density estimation with a bandwidth ma-
trix H as

pH(x) :=
1

nZ

n∑
i=1

exp

{
1
2

(x − xi)
�H−1(x − xi)

}

††Software is available at https://sites.google.com/site/
hworksites/home/software/lsldg.
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Fig. 1 Examples of mode-seeking clustering results.

Fig. 2 Clustering performance on artificial data against (left) correlation
and (right) data dimension. The markers and error bars denote the means
and standard deviations over 30 runs, respectively.

where Z = (2π)d/2|H|1/2. Based on the well-known nor-
mal reference rule [25], H was fixed at 4Ĉn−2/(d+6)/(d+
4) with the sample covariance matrix Ĉ, which is opti-
mal in terms of the asymptotic mean integrated squared
error for the density derivatives [26, Eq. (4) in r = 1] .

We measured the clustering performance by adjusted Rand
index (ARI) [27]: ARI takes a value less than or equal to
one, a larger value indicates a better clustering result, and
when a clustering result is perfect, the ARI value equals to
one.

First, to investigate how GM-LSLDGC works to den-
sities with highly correlated structures, we set μk and Ck in
pdata as follows: μ1 = (1.5,−3.5)�, μ2 = (0.0, 0.0)� and
μ3 = (−1.5, 3.5)�, and

C1 =

(
6 c
c 1.8

)
, C2 =

(
6 −c
−c 1.5

)
and C3 =

(
6 c
c 1.6

)
,

where c is a non-negative parameter related to the strength
for correlations. Here, we generated n = 300 samples. Fig-
ure 1 illustrates that GM-LSLDGC well-captures the clus-
ters with highly correlated structures. On the other hand,
LSLDGC produces many clusters, which implies that it
is not easy to obtain a smooth gradient estimate by the
spherical Gaussian kernel. The left plot in Fig. 2 quanti-
tatively shows that GM-LSLDGC and MS perform well to

Fig. 3 Comparison in term of CPU time in seconds against (left) data
dimension in n = 200 and (right) sample size in d = 2. The markers
and error bars denote the means and standard deviations over 30 runs, re-
spectively. GM-LSLDGC (no CV) denotes GM-LSLDGC without cross-
validation where the number of Gaussians is fixed at 4.

the highly correlated structures because these methods em-
ploy non-spherical Gaussian functions, while LSLDGC gets
worse as the correlation parameter c becomes larger.

Next, we demonstrate the performance of GM-
LSLDGC to higher-dimensional data. Here, we set Ck in
pdata as follows: the diagonals in all Ck are all one and
the (1, 2)-th and (2, 1)-th in C1, (1, 3)-th and (3, 1)-th in C2

and (2, 3)-th and (3, 2)-th elements in C3 are 0.75, while the
other elements in all Ck are zeros. Regarding μk, we ap-
pended zeros to the mean parameters in the previous exper-
iment. n = 200 samples were generated. The right plot
in Fig. 2 shows the superior performance of GM-LSLDGC
to higher-dimensional data. LSLDGC fairly works, but the
performance of MS rapidly decreases as previously demon-
strated in [17], [18]. A possible reason is that combined with
the direct fitting, our model (6) is more adaptive by precision
matrices Λi as well as coefficient parameters θ( j)

i .
Finally, we investigate the computational efficiency of

GM-LSLDGC. To this end, we performed the same exper-
iment as the right plot in Fig. 2. Figure 3 shows that the
computationally most efficient method is mean shift and
LSLDGC is also fairly efficient. On the other hand, GM-
LSLDGC is the most computationally demanding method.
This is due to the fact that unlike mean shift and LSLDGC,
an iterative optimization procedure is adopted to estimate
the Gaussian mixture model together with cross-validation
for the number of Gaussians in the mixture model. The
computational cost of GM-LSLDGC can be alleviated with-
out performing cross-validation (Fig. 3). This approach is
promising because as will be shown in Fig. 4, the good clus-
tering performance is retained as long as we use an enough
number of Gaussians.

In short, GM-LSLDGC can be advantageous when data
is high-dimensional and includes highly correlated local
structures, while the superior clustering performance comes
at the price of increasing the computational cost. As a rem-
edy, the computational cost could be alleviated by fixing the
number of Gaussians in advance.

(2) Influence of the number of Gaussians

Here, we show how the number of Gaussians affects the
clustering performance of GM-LSLDGC. In this experi-
ment, we fixed the number of Gaussians and performed
GM-LSLDGC without cross-validation. The same two-
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Fig. 5 (Left) A cluster-merging process and (Right) dendrogram. The levels in the dendrogram cor-
respond to the cluster representations of the left plots.

Fig. 4 Clustering performance against the number of Gaussians. The
same two-dimensional data as Fig. 1 was used. The markers and error bars
denote the means and standard deviations over 30 runs, respectively.

dimensional data as Fig. 1 was used.
Figure 4 indicates that accurate clustering is possible

as long as an enough number of Gaussians is used. This
would be for the reason that a larger number of Gaussians
can potentially approximate a wider-range of functions, and
thus a better gradient estimate was obtained with an enough
number of Gaussians. This property of GM-LSLDGC is
stark contrast with standard mixture-model-based clustering
where the number of clusters corresponds to the number of
mixtures [7]. Therefore, GM-LSLDGC would be easier to
determine the number of Gaussians.

5.1.2 Benchmark Data

Here, we investigate the clustering performance on bench-
mark datasets available at the UCI machine learning repos-
itory†. Since we used classification datasets, we regarded
the class labels as the true cluster labels. In addition to the
three methods in the previous experiments, we applied the k-
means clustering method where the number of clusters was
fixed at the true cluster number. Before applying the cluster-
ing methods, data samples were standardized by subtracting
the sample mean and normalizing with the sample variance.

Table 1 shows that GM-LSLDGC performs better than
MS and k-means, and compares favorably with LSLDGC

†https://archive.ics.uci.edu/ml/index.php

Table 1 The average and standard deviation of ARI values over 20 runs.
Numbers in the parentheses are standard deviations. The best and compa-
rable methods judged by the unpaired t-test at the significance level 5% are
described in boldface. k denotes the true number of clusters.

GM-LSLDGC LSLDGC Mean shift k-means
Electricity (d = 2, n = 400, k = 4)

0.493(0.083) 0.367(0.035) 0.379(0.014) 0.365(0.055)
Yeast (d = 8, n = 250, k = 5)

0.662(0.029) 0.651(0.044) 0.118(0.003) 0.643(0.041)
Anuran Calls (d = 18, n = 150, k = 3)

0.298(0.072) 0.255(0.048) 0.000(0.000) 0.237(0.029)
Sports articles (d = 59, n = 200, k = 2)

0.224(0.068) 0.323(0.116) 0.000(0.000) 0.000(0.000)

on benchmark datasets.

5.2 Hierarchical Clustering

Finally, we perform the experiments for hierarchical clus-
tering. To first visualize the cluster-merging process in our
method, artificial data were generated as in Fig. 1. The left
plot in Fig. 5 shows the cluster-merging process. Initially,
all the data points are regarded as individual clusters, but as
the hierarchy level becomes higher, the clusters are merged.
This merging process can be summarized in the dendrogram
of Fig. 5.

Next, we compare our hierarchical clustering method
with HMAC on artificial and benchmark datasets. As a per-
formance measure for hierarchical clustering, we used FS-
core [28], which takes a value between zero and one and
whose larger value means better hierarchical clustering. For
HMAC, we downloaded the software at http://personal.psu.
edu/jol2/hmac/ and used it as the default setting.

Table 2 shows FScores on artificial and benchmark
datasets downloaded from the UCI machine learning repos-
itory. Our hierarchical clustering method gets higher values
of FScore than HMAC. This could be due to the fact that our
method employs a set of precision matrices, while HMAC
uses a set of bandwidth parameters. Thus, our method could
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Table 2 The average and standard deviation of FScores over 20 runs.
Numbers in the parentheses are standard deviations. The best and compa-
rable methods judged by the unpaired t-test at the significance level 5% are
described in boldface. h-GM-LSLDGC indicates the proposed hierarchical
clustering method. k denotes the true number of clusters.

h-GM-LSLDGC HMAC
Artificial Data (d = 2, n = 350, k = 3)

0.889(0.163) 0.651(0.217)
Electricity (d = 2, n = 400, k = 4)

0.467(0.294) 0.230(0.091)
Iris (d = 4, n = 90, k = 3)

0.595(0.174) 0.547(0.036)

better-capture locally correlated structures than HMAC.

6. Conclusion

In this paper, we proposed a new estimator of the gradient
of a logarithmic probability density function. In contrast
with an existing estimator, we propose to use Gaussian mix-
ture models, which enable the new estimator to flexibly cap-
ture the highly correlated structures in the probability den-
sity function. We applied the proposed estimator to mode-
seeking clustering, and developed a fixed-point algorithm
for mode-seeking. Our experimental results showed that
our mode-seeking clustering method is advantageous par-
ticularly when the dimensionality of data is relatively high
and clusters have highly correlated structures, although the
good performance comes at a cost of making our cluster-
ing method computationally more demanding. A promis-
ing remedy is to use an enough number of Gaussians with-
out performing cross-validation, which could decrease the
computational cost without sacrificing the clustering perfor-
mance. Finally, we extended our clustering method to hier-
archical clustering, and demonstrated its usefulness.

This paper focused only on mode-seeking clustering
and hierarchical clustering as applications of the new gra-
dient estimator. However, the proposed estimator is poten-
tially applicable to other problems such as unsupervised di-
mensionality reduction [1], modal regression [2] and so on.
In the future, we explore new applications of the proposed
estimator.
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Appendix A: Accuracy of Mode Estimation

Let us define the mode mj of the true logarithmic probability
density function as a point satisfying

g(mj) = 0 and ∇xg(mj)  O, (A· 1)

where g(x) := ∇x log p(x), ∇xg(x) := ∇x∇x log p(x), and
∇xg(mj)  O means that the Hessian matrix ∇xg(x) is neg-
ative definite at x = mj. Here, we follow the analysis in
[18], [23]. First of all, let us make two assumptions: (1)
The matrix ∇xĝ

GM(mj) is invertible, and (2) each mode mj

is uniquely approximated by an estimated mode m̂j which
is defined as a point satisfying

ĝGM(m̂j) = 0 and ∇xĝ
GM(m̂j)  O, (A· 2)

With the definition (A· 2), the Taylor expansion yields

ĝGM(mj) = ĝ
GM(mj) − ĝGM(m̂j)

= ∇xĝ
GM(mj)(m̂j − mj) + o(‖m̂j − mj‖).

(A· 3)

On the other hand, by the definition (A· 1), we have

ĝGM(mj) = ĝ
GM(mj) − g(mj) (A· 4)

Combining (A· 3) with (A· 4) yields

‖m̂j − mj‖ ≤ O(‖̂gGM(mj) − g(mj)‖). (A· 5)

Thus, a mode mj can be well-approximated by a mode esti-
mate m̂j if ĝGM is an accurate estimate of g around mj.

Since we directly fit a model gGM to g under the
squared-loss, gGM converges to g as the samples size n
goes to infinity if gGM and g belong to the same function
set (See Proposition 3 in [29] for a more rigorous analy-
sis based on the same squared loss). Thus, we next need
to confirm whether a function set of gGM is large enough.
The Gaussian mixture model in (6) includes radial basis
function (RBF) networks with Gaussian functions as a spe-
cial case, and RBF networks with a sufficiently large num-
ber of Gaussians have the universal approximation capa-
bility under some conditions [30]. Since gGM is the gradi-
ent of the Gaussian mixture model, gGM with a sufficiently
large number of Gaussians could well-approximate a wide-
range of continuous g as the samples size n approaches
infinity. To make a more rigorous statement, we need to
establish the consistency of ĝGM under the uniform norm
max j supx |̂gGM

j (x) − g j(x)|, but this is beyond the scope of

this paper. Therefore, we leave this challenge for our future
work.
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