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A Fully-Connected Ising Model Embedding Method and Its
Evaluation for CMOS Annealing Machines

Daisuke OKU†a), Kotaro TERADA†∗, Masato HAYASHI††, Masanao YAMAOKA††,
Shu TANAKA†††,††††, Nonmembers, and Nozomu TOGAWA†b), Senior Member

SUMMARY Combinatorial optimization problems with a large solu-
tion space are difficult to solve just using von Neumann computers. Ising
machines or annealing machines have been developed to tackle these prob-
lems as a promising Non-von Neumann computer. In order to use these
annealing machines, every combinatorial optimization problem is mapped
onto the physical Ising model, which consists of spins, interactions between
them, and their external magnetic fields. Then the annealing machines op-
erate so as to search the ground state of the physical Ising model, which cor-
responds to the optimal solution of the original combinatorial optimization
problem. A combinatorial optimization problem can be firstly described
by an ideal fully-connected Ising model but it is very hard to embed it
onto the physical Ising model topology of a particular annealing machine,
which causes one of the largest issues in annealing machines. In this pa-
per, we propose a fully-connected Ising model embedding method targeting
for CMOS annealing machine. The key idea is that the proposed method
replicates every logical spin in a fully-connected Ising model and embeds
each logical spin onto the physical spins with the same chain length. Ex-
perimental results through an actual combinatorial problem show that the
proposed method obtains spin embeddings superior to the conventional de
facto standard method, in terms of the embedding time and the probability
of obtaining a feasible solution.
key words: CMOS annealing, Ising model, Ising computing, graph embed-
ding, combinatorial optimization

1. Introduction

A combinatorial optimization problem is to find an opti-
mal solution from a combinatorial solution space, such as a
graph partitioning problem, a traveling salesperson problem,
a rectangle packing problem, and others. When these prob-
lems have a large solution space, solving them just using
von Neumann computers may become very difficult. Non-
von Neumann computers, such as CMOS annealing ma-
chines [1], [2], Digital Annealer [3], [4], quantum anneal-
ing machines [5]–[8], and coherent Ising machines [9], [10],
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Fig. 1 Ising model and annealing.

have been developed to tackle these problems.
In those studies, a combinatorial optimization problem

is mapped onto an ideal magnetic model in statistical me-
chanics called Ising model [11] and the annealing machines
operate so as to search the ground-state of the Ising model,
which equivalently corresponds to the optimal solution of
the original combinatorial optimization problem.

The overview of the Ising model and the annealing pro-
cess is shown in Fig. 1. The Ising model consists of spins,
interactions between spins, and external magnetic fields of
spins. In Fig. 1, every circle represents a spin. A spin has a
value of (+1) or (−1). The edge between spins shows inter-
action between them. If the interaction has a positive value,
the spins connected to it tend to have the same value. If it
has a negative value, the spins connected to it tend to have
different values. Every spin has an external magnetic field
value. If it is positive, the spin tends to have (+1). If it is
negative, the spin tends to have (−1). Figure 1 (a) shows
an initial state of the Ising model before annealing process,
which is not a ground-state. Figure 1 (b) shows the resultant
ground-state of the Ising model after annealing process.

The overall flow of solving a combinatorial optimiza-
tion problem using annealing machines is shown in Fig. 2.
The flow consists of three phases.

Phase 1: A combinatorial optimization problem to be
solved is mapped onto (formulated as) an Ising model
including the objective function and the constraints.

Phase 2: The Ising model mapped (formulated) in Phase 1
is embedded onto the physical annealing machine
through Ising model embedding. This embedding de-
termines the required spins, interactions between spins,
and external magnetic fields of spins.

Phase 3: An annealing machine operates so as to search the
ground-state (at the point of the minimum energy) of
the spins and the solution of the input combinatorial
optimization problem is equivalently obtained.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Overall flow of solving a combinatorial optimization problem us-
ing annealing machines.

In Phase 1, when a combinatorial optimization prob-
lem is mapped onto (formulated as) a logical Ising model,
the Ising model is assumed to have interactions between
any pairs of spins, i.e., a fully-connected Ising model is as-
sumed. After that, in Phase 2, a fully-connected Ising model
is mapped onto the Ising model topology of a particular an-
nealing machine. Phase 3 can be done by using the anneal-
ing machine targeted in Phase 2.

Phase 1 itself is a very difficult task but there have been
proposed many Ising model mappings for practical combi-
natorial optimization problem [12]–[14]. However, Phase 2
must be effectively solved for every annealing machine ar-
chitecture.

Based on this discussion, this paper proposes a fully-
connected Ising model embedding method targeting for a
newly developed annealing machine, called CMOS anneal-
ing machine [1]. The CMOS annealing machine is one of
the annealing machines and expected to be used to solve
practical problems efficiently.

Several Ising model embedding methods [6], [15]–[19]
have been proposed targeting for the D-Wave quantum an-
nealing machine (or D-Wave machine) [5], [6]. However,
these methods cannot be efficiently applied to the CMOS an-
nealing machine [1], since the Ising model topology of the
D-Wave machine is very different from that of the CMOS
annealing machine. Note that, [15] can be applied to an
annealing machine with any Ising model topology but may
lead to insufficient results (see Sect. 5).

The proposed Ising model embedding method em-
beds a fully-connected Ising model that represents a com-
binatorial optimization problem onto the Ising model on
the CMOS annealing machine. The key idea is that the
proposed method replicates every logical spin in a fully-
connected Ising model and embeds each logic spin onto the
physical spins in the CMOS annealing machine with the
same chain length utilizing the regular structure of physical
spins (see Sect. 3 for the detailed definition of the terminolo-
gies). Hence the number of required physical spins can be
reduced and the annealing performance will be improved.

The main contributions of this paper are summarized
into:

1. We propose a fully-connected Ising model embedding
method targeting the CMOS annealing machine, which
is expected to be one of the most practical annealing
machines, for the first time, where the number of re-
quired physical spins becomes just (n2 + n) theoreti-
cally, when the number of logical spins is n.

2. Experimental results demonstrate that the number of
required physical spins can be smaller in the practical
problem size, compared to the de facto standard con-
ventional method.

3. Experimental results through practical combinatorial
optimization problems also demonstrate that our pro-
posed embedding method can be superior, compared to
the conventional de facto standard method, in terms of
the solution quality and the probability of obtaining a
feasible solution.

The remainder of this paper is organized as follows:
Sect. 2 summarizes conventional spin embedding methods
for annealing machines; Sect. 3 firstly describes the target-
ing Ising model and its spin topology in the CMOS an-
nealing machine. After that, a spin embedding problem is
defined; Sect. 4 proposes a spin embedding method target-
ing the CMOS annealing machine; Sect. 5 shows numerical
simulation results and evaluates the efficiency of the pro-
posed method; Sect. 6 discusses the results and evaluations
of Sect. 5; Sect. 7 gives concluding remarks.

2. Related Works

There have been proposed many researches on solving com-
binatorial optimization problems recently using Ising mod-
els but almost all of them target the D-Wave quantum an-
nealing machine [5], [6]. The D-Wave machine contains su-
perconductor chips which work under very low temperature
of milli-Kelvin order. The latest version of the D-Wave ma-
chine has 2,048-spin (or -qubit) Ising model [20]. The D-
Wave machine has its specific Ising model topology called a
Chimera graph [6], [20].

Fully-connected Ising model embedding methods have
been proposed targeting for the Ising model topology of the
D-Wave machine [6], [16], [18]. For example, in [6], Bunyk
et al. proposed a fully-connected Ising model embedding
method onto the Chimera graph topology. In this method,
the number of required spins on the D-Wave machine be-
comes in proportion to the square of the number of spins in
the input Ising model. Although the methods [6], [16], [18]
can embed a fully-connected Ising model onto the Chimera
graph topology, the methods cannot be used for other an-
nealing machines. Hence, we cannot use these methods for
our targeting CMOS annealing machine.

The target of the embedding method proposed in [15] is
also the D-Wave machine but it can embed any Ising model
onto an arbitrary Ising model topology. Since such an em-
bedding problem is known as NP-hard [21], the method [15]
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is based on heuristic shortest-path search. The method is
currently a de facto standard embedding method for the
D-Wave machine. Since both input Ising model topology
and the targeting annealing machine topology can be de-
fined by a user in this method, it can be also applied to the
CMOS annealing machine. However, embedding results for
the CMOS annealing machine may be inefficient, since the
method [15] does not take into account the regular structure
of the CMOS annealing machine.

3. Problem Formulation

In this section, we define Ising models, the target CMOS
annealing machine, and an Ising model embedding problem.

3.1 Ising Model

An Ising model is a theoretical magnetic model in statistical
mechanics, which consists of microscopic variables called
spins, an interaction between them, and a field on each spin
called an external magnetic field. An Ising model is repre-
sented by an undirected graphM = (V,E) whereV is a set
of vertexes and E is a set of edges describing interactions
between spins. Spin σi is associated with vertex i ∈ V and
has either of the two values +1/−1 (or states up/down). For
each pair of vertexes i, j ∈ V (i � j), (i, j) ∈ E denotes
a connection between i and j. In other words, σi and σ j

are connected. The energy (or Hamiltonian) H of an Ising
model is calculated by

H = −
∑

(i, j)∈E
Ji jσiσ j −

∑

i∈V
hiσi (1)

where Ji j is the weight of connection of vertexes i, j ∈ V, in
other words, the interaction between the spin σi and spin σ j

and hi is the external magnetic field of the spin σi. Ji j and hi

are given by real numbers. |X| represents the number of ele-
ments of the setX. In the Ising model, H is minimized when
the spin states (or values) reach the ground-state. CMOS an-
nealing machines operate so as to search for the ground-state
energy by updating the states (values) of spins.

In this paper, we define two types of Ising models; log-
ical Ising model and physical Ising model.

3.1.1 Logical Ising Model

A logical Ising model ML = (VL, EL) is an Ising model
where interactions can be defined between any pairs of
spins. Any graph topologies can be represented by logical
Ising models. Combinatorial optimization problems are also
mapped onto (formulated as) logical Ising models.

Spins on a logical Ising model are called logical spins.
An interaction between logical spins σi and σ j is denoted
by JLi j , and an external magnetic field on a logical spin σi is
denoted by hLi .

3.1.2 Physical Ising Model

A physical Ising model denoted by MP = (VP, EP) is an

Fig. 3 128× 80× 2-lattice Ising model topology of the CMOS annealing
machine [1].

Ising model where interactions can only be defined between
pairs of spins which are physically connected on the topol-
ogy of a particular annealing machine. If we assume an an-
nealing machine whose topology is fully-connected, we can
directly and easily embed a logical Ising model which has
interactions between any pairs of spins onto the annealing
machine. Typical annealing machines have physical Ising
model topology where only physically adjacent spins are
connected, for example. A physical Ising model is equiva-
lent to the physical annealing machine and it can be directly
embedded onto the target annealing machine.

Spins on a physical Ising model are called physical
spins. An interaction between physical spins σ′i and σ′j is
denoted by JPi j and an external magnetic field on a physical
spin σ′i is denoted by hPi .

3.2 CMOS Annealing Machine

In this paper, our target annealing machine is the CMOS an-
nealing machine [1]. The CMOS annealing machine is im-
plemented by using CMOS technology (65nm technology
node) and works at room temperature. Hence, it does not
need specific cooling equipment or power because CMOS
circuits are used to realize annealing process of Ising model.

Figure 3 shows 128 × 80 × 2-lattice Ising model topol-
ogy of the CMOS annealing machine where every spin is
just connected to its adjacent spins. The axes are defined as
shown in Fig. 3. In this paper, a physical vertex located at
a coordinate (x, y, z) is denoted by sx,y,z. For example, the
bottom-left vertex in Fig. 3 is denoted by s1,1,1. A physical
spin σ′x,y,z exits on a physical vertex sx,y,z.

3.3 Embedding a Logical Ising Model to a Physical Ising
Model

As we described in Sect. 3.1.1, we cannot usually embed
a logical Ising model onto the annealing machine directly,
while we can easily do a physical Ising model. In order to
embed a logical Ising model onto the annealing machine,
we need to convert a logical Ising model into an equivalent
physical Ising model. To achieve this, we replicate a single
logical spin and prepare more than one physical spin corre-
sponding to it. By preparing redundant physical spins and
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embedding a single logical spins to one or more physical
spins, every interaction between logical spins can be defined
on the interactions between physical spins. These physi-
cal spins which represent a single logical spin are called a
spin-chain. We can convert a logical Ising model into an
equivalent physical Ising model using spin-chains. Physi-
cal spins in every spin-chain are connected with the inter-
action of the strong ferromagnetic interactions (JF > 0),
so that all the physical spins in a spin-chain will have the
same value (or state). Additionally, it is known that the uni-
form length of every spin-chain results in good annealing
result, i.e., near-optimal solution, throughout the annealing
process [16], [22]†. The uniform length of spin-chains is
strongly required.

Based on these discussions, we define an embedding
problem of logical Ising models onto physical Ising models
targeting the CMOS annealing machine as follows:

Definition 1. The embedding problem of a logical Ising
model ML = (VL, EL) to a physical Ising model MP =

(VP, EP) is, to define a mapping function ϕ : VL → 2VP

which satisfies the following conditions:

(Condition 1) For any logical vertex i ∈ VL, the physical
vertexes in ϕ(i) are all connected,

(Condition 2) For any pair of logical vertexes i and j ∈
VL(i � j), ϕ(i) ∩ ϕ( j) = ∅,

(Condition 3) If two logical vertexes i and j ∈ VL, are con-
nected on ML, one physical vertex in ϕ(i) and one phys-
ical vertex in ϕ( j) are connected on MP,

(Condition 4) For any pair of logical vertexes i and j ∈
VL(i � j), |ϕ(i)| = |ϕ( j)|.

�

By Definition 1, a logical spin σi (i ∈ VL) is embedded
to physical spins σ′ϕ(i) (ϕ(i) ∈ VP). If two logical spins σi

andσ j (i, j ∈ VL) are connected on ML, one physical spins in
σ′ϕ(i) (ϕ(i) ∈ VP) and one physical spins in σ′ϕ( j) (ϕ( j) ∈ VP)
are connected on MP.

4. Proposed Ising Model Embedding Method

In this section, we propose an embedding method which em-
beds a fully-connected logical Ising models onto the physi-
cal Ising model on the CMOS annealing machine.

†According to [22], the embedding method with uniform
length of spin-chain can lead to better results in annealing than
the embedding method with non-uniform length of spin-chain.

There is no direct comparison of the both embedding methods
(uniform v.s. non-uniform) in [16]. However, in [22], it comes to
the conclusion above based on the many annealing results shown
in [16].

Actually in Fig. 6 and Fig. 7 of Sect. 5, our proposed method
(which is the embedding method with uniform length of spin-
chain) is superior to the embedding method with non-uniform
length of spin-chain [15] in terms of the probabilities of obtaining
feasible solutions and the expected quality of solutions.

In a fully-connected topology, there must be connec-
tions between any pairs of logical spins. To represent these
connections onto the physical Ising model, we introduce the
following ideas:

(Idea i) In the bottom layer (z = 1 in Fig. 3) of the CMOS
annealing machine topology, the physical spins which
correspond to one logical spin are arranged vertically
(x-axis direction) and connected with strong ferromag-
netic interactions (JF) each other to form a spin-chain.

(Idea ii) In the top layer (z = 2 in Fig. 3) of the CMOS
annealing machine topology, the physical spins which
correspond to one logical spin are arranged horizon-
tally (y-axis direction) and connected with strong fer-
romagnetic interactions (JF) each other to form a spin-
chain.

(Idea iii) Based on the ideas i and ii above, all the combi-
nations of any two logical spins can appear in the con-
nections between the bottom and the top layers by ef-
fectively using the physical spins. Hence interactions
Ji j in a given logical Ising model are set to the corre-
sponding connections between the bottom and the top
layers.

As above, any fully-connected logical Ising models can be
expressed onto the physical Ising models.

Based on our ideas above, our proposed method is de-
scribed below (see also Fig. 4, for example):

Input
A logical Ising model ML = (VL, EL) composed of n
logical vertex spins.

Output
A physical Ising model MP = (VP, EP) on the CMOS
annealing machine as shown in Fig. 3.

Step 1: Spins mapping
For each logical vertex i (1 ≤ i ≤ n = |VL|), the map-
ping function ϕ(i) is defined as follows:

ϕ(i) =
i⋃

x=1

{sx,n−i+1,1} ∪
n−i+1⋃

y=1

{si,y,2}. (2)

Step 2: Interactions setting
Step 2.1

For each logical spin σi (i ∈ VL), the interac-
tions between the adjacent physical spins existed
on ϕ(i) (obtained in Step 1) are set to JF (very
large value).

Step 2.2
For 1 ≤ i, j ≤ n = |VL| (where i < j), if there is a
connection edge between the logical spins σi and
σ j, then the interaction between the two physi-
cal spins σ′i,n− j+1,1 and σ′i,n− j+1,2 is set to be JLi j .
Otherwise, it is set to be zero.

Step 2.3
For all other connections on MP whose interac-
tions have not been set in Step 2.1 nor Step 2.2,
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Fig. 4 Example of our proposed embedding method which embeds (a) Input: Fully-connected logical
Ising model (K5) to (b) Output: Physical Ising model on the CMOS annealing machine.

the interaction is set to be zero.

Step 3: External magnetic field setting
For each logical spin σi, the external magnetic fields of
the physical spins σ′x,y,z existed on sx,y,z ∈ ϕ(i) (i ∈ VL)
are set to be hPi′ = hi/(n + 1) to distribute the external
magnetic field of σi onto the corresponding physical
spins equivalently.

Figure 4 shows our Ising model embedding example
of a fully-connected logical Ising model (n = 5) onto a
physical Ising model on the CMOS annealing machine. In
Fig. 4 (b), the physical spins colored by the same color cor-
respond to one logical spin which has the same color in
Fig. 4 (a). For example, the logical spin σ1 in Fig. 4 (a) (red-
colored) corresponds to the physical spins {σ′1,1,2, σ′1,2,2,
σ′1,3,2, σ′1,4,2, σ′1,5,2, σ′1,5,1} in Fig. 4 (b). The physical spins
colored by gray in Fig. 4 (b) are unused.

We can firstly prove four lemmas according to (Condi-
tion 1)–(Condition 4) in Definition 1.

Lemma 1. Our proposed embedding method satisfies (Con-
dition 1) in Definition 1.

Proof. In Eq. (2) in Step 1, the spins in the first term are
connected along x-axis since it is a set of spins whose x-
coordinate is increased by one from 1 to i. Similarly, the
spins in the second term are connected along y-axis since it
is a set of spins whose y-coordinate is increased by one from
1 to (n − i + 1).

Furthermore, σ′i,n−i+1,1 which is the physical spin where
x = i in the first term and σ′i,n−i+1,2 which is the physical spin
where y = n− i+1 in the second term in Eq. (2) are adjacent
along z-axis.

Thus, by performing Step 2.1, for any logical spin
σi (i ∈ VL), the physical spins σ′x,y,z existed on sx,y,z ∈ ϕ(i)
are connected. �

Lemma 2. Our proposed embedding method satisfies (Con-
dition 2) in Definition 1.

Proof. In Eq. (2) in Step 1, the y-coordinate n − i + 1 of the
physical spins in the first term is a linear function depending

on i. Similarly, the x-coordinate i of the physical spins in
the second term is also a linear function depending on i.
This means that these coordinates must not become the same
value when i is different. z-coordinate is always different
between the first and the second terms of Eq. (2). Hence,
physical spins do not overlap with each other.

Thus, for any pair of logical vertexes i, j ∈ VL (i � j),
ϕ(i) ∩ ϕ( j) = ∅ holds. �

Lemma 3. Our proposed embedding method satisfies (Con-
dition 3) in Definition 1.

Proof. For any pairs of logical vertexes (i, j) where i < j,
these spins are connected in Step 2.2 one time.

Thus, one physical vertex in ϕ(i) and one physical ver-
tex in ϕ( j) are connected on MP. �

Lemma 4. Our proposed embedding method satisfies (Con-
dition 4) in Definition 1.

Proof. In Eq. (2) in Step 1, the number of physical spins in
the first term becomes i and the number of physical spins in
the second term becomes (n − i + 1). The number of total
physical spins which correspond to one logical spin is then
calculated by i + n − i + 1 = n + 1.

For every logical spin, the number of physical spins
which correspond to the logical spin becomes the same
value, which is (n + 1).

Thus, for any pair of logical vertexes i, j ∈ VL (i � j),
|ϕ(i)| = |ϕ( j)| holds. �

Then we can prove the following theorem:

Theorem 1. Our proposed embedding methods satisfies
(Condition 1)–(Condition 4) in Definition 1.

Proof. As Lemma 1 to Lemma 4 describes, our proposed
embedding method satisfies (Condition 1)–(Condition 4) in
Definition 1. �

Note that, our proposed embedding method requires
several redundant physical spins to embed logical Ising
models onto physical Ising models. The state (or value) of
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spins in the logical Ising model can be equivalent to the state
(or value) of spins in the physical Ising model since physi-
cal spins in the same spin-chains are connected with strong
ferromagnetic interactions (JF) as we described in Sect. 3.3.

However, all the physical spins in the same spin-chain
do not always have the same value in a practical anneal-
ing process, since the behavior of annealing machines is a
finite-time stochastic process. In this case, we determine the
logical spin value by the majority vote of the corresponding
physical spins to take this problem into account. If the num-
ber of (+1)’s and that of (−1)’s are the same, we can choose
two types of strategy. One is that we randomly determine
the corresponding logical spin value as (+1) or (−1). The
other is that we determine either (+1) or (−1) according to
the local energy which comes from the nearest neighbor in-
teractions and the local magnetic field. In our experiments,
we adopt the first strategy for simplicity.

Let us consider the first strategy. For example, assume
that ϕ(i) = {sa, sb, sc, sd} → {σ′a, σ′b, σ′c, σ′d}. If we obtain
the annealing result of σ′a = σ′b = σ

′
c = σ

′
d = +1, then σi =

+1 is obtained obviously. If we obtain the annealing result
of σ′a = σ′b = +1 and σ′c = σ′d = −1, then we randomly
determine σi = +1 or −1.

The required physical spins when embedding fully-
connected logical Ising model (Kn) by our proposed method
is clearly calculated as (n + 1) · n = n2 + n. The number of
required spins is in proportion to the square of n, i.e., O(n2).

5. Experimental Results

In this section, we evaluate the efficiency of our proposed
embedding method through several experiments.

5.1 Evaluation of Our Embedding Method

To evaluate the quality of our proposed embedding method,
we compare the results of the de facto standard conventional
embedding method [15] and our proposed method targeting
the CMOS annealing machine.

We have implemented the conventional method [15]
and our proposed method in Python language on CentOS
6.8 and Intel Xeon CPU E5–2680 v3 2.50GHz × 40 ma-
chine with 270GB memory.

For every fully-connected logical Ising model which
has 4 to 12 logical spins (n = 4, 5, . . . , 12), we com-
pare the embedding results obtained from the conventional
method [15] and our proposed method targeting the CMOS
annealing machine. Since the method [15] is a heuristic one,
the results may be different every time. Then we ran the
method [15] ten times and picked up the best result. The
criterion to find the best result is minimizing the number
of total physical spins. Table 1 and Fig. 5 summarize the
comparison results. In Table 1, “Min” and “Max” show
the minimum and maximum number of physical spins cor-
responding to a single logical spin, respectively, when us-
ing the method [15]. “Total spin” shows the number of total
physical spins used. Note that, our embedding method al-

Table 1 Comparison of spin embeddings of fully-connected logical
Ising models (Kn) for the CMOS annealing machine.

n
Method [15] Our proposed method

Min Max Total spins Total spins

4 1 3 7 20
5 1 6 13 30
6 1 7 24 42
7 2 11 39 56
8 3 13 67 72
9 2 19 93 90
10 4 27 146 110
11 5 36 182 132
12 — — — † 156

† Computation of [15] does not finish within one hour.

Fig. 5 Comparison of required physical spins.

ways embeds one logical spin onto (n + 1) physical spin.
As seen in the results, we can conclude that our pro-

posed method is superior to the conventional method [15] in
terms of the following three points:

1. The method [15] requires a smaller number of physical
spins when n is small (n ≤ 8). On the other hand, our
proposed embedding method requires a smaller num-
ber of physical spins when n is large (n ≥ 9), while
the method [15] requires more physical spins in these
cases.
In practical problems, an Ising model with eight or less
spins is considered to be too small. We can conclude
that our proposed embedding method requires smaller
physical spins in the practical problem size compared
to the conventional method [15].

2. The method [15] assigns logical spins to different
lengths of physical spins (spin-chains) which may
cause a worse annealing result, while our proposed
method assigns every logical spins to the same lengths
of physical spins (spin-chains), which may affect to a
better annealing result (see Sect. 5.2 in the detailed dis-
cussion).

3. The method [15] did not generate a solution when n ≥
12, while our proposed method can generate a spin em-
bedding when n becomes large. We can obtain a stable
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Fig. 6 Comparison of the probabilities of obtaining feasible solutions between [15] and our proposed
method in the MAX-CUT problem (Graph: SE3). For each α, the simulations were performed 1000
times.

spin embedding easily.

5.2 Evaluation of Our Method Applied to Combinatorial
Optimization

To evaluate our proposed embedding method in more practi-
cal uses, we solve a MAX-CUT problem [23], which is one
of the NP-hard combinatorial optimization problems, using
our proposed embedding method targeting the CMOS an-
nealing machine.

The MAX-CUT problem is described as follows: Let
G = (V, E) be an undirected graph where V and E are sets
of vertexes and edges of G, respectively. We partition the
graph G into disjoint two sub-graphs S = (V ′, E′) and T =
(V ′′, E′′) under the constraints of |V ′| = |V ′′| (when |V | is
even) or |V ′| = |V ′′| ± 1 (when |V | is odd). The objective is
to maximize the number of cut-edges between S and T .

This problem can be mapped onto (formulated as) a
logical Ising model. As in [12], we prepare |V | logical spins
which corresponds to each vertex in V . Now, σi shows a
logical spin for i ∈ V . The Ising model of this problem is
mapped onto (formulated as) follows:

H = −
∑

(i, j)∈E

1 − σiσ j

2
+
α

2

⎛⎜⎜⎜⎜⎜⎝
∑

i∈V
σi

⎞⎟⎟⎟⎟⎟⎠
2

(3)

where α is a weight parameter and should be positive†.
When the solution is optimal, Eq. (3) becomes minimum
(ground-state). The first term of Eq. (3) represents the ob-
jective function. For every edge, the first term becomes −1
(if the edge is a cut-edge, i.e., σi � σ j) or 0 (if the edge is
not a cut-edge, i.e., σi = σ j = ±1) from H. This means
that when the number of cut-edges is the largest, the en-
ergy H is minimized. In the second term of Eq. (3), when
|S | = |T |, it becomes zero. As the difference between |S | and
|T | increases, the second term becomes large and it will be a
penalty increasing the energy H. Here, we introduce a pos-
itive value α which is a weight parameter of the constraint
term. Equation (3) can be written as:

†In order to simplify the Ji j value in Eq. (5), we give α/2 to the
second term in Eq. (3).

Table 2 Simulation parameters.

Parameter Value

Initial spin value Random
Spin flipping probability (at the beginning) 0.75
Spin flipping probability (at the end) 0.001
Annealing steps 100,000††

†† It takes 10×8 msec on a real machine (100MHz) which
inverts a 1/8 part of total spins in one step [1]. Thus the
execution time would be 80msec when total annealing
steps become 100,000.

H =
1
2

∑

(i, j)∈E
σiσ j +

α

2

∑

i∈V, j∈V,i� j

σiσ j + const (4)

where const shows a constant value which dose not depend
on σi. Comparing Eq. (4) to the energy of Ising model
shown in Eq. (1), the interactions and the external magnetic
fields of the Ising model are:

Ji j =

⎧⎪⎪⎨⎪⎪⎩
−α − 1

2
if (i, j) ∈ E

−α otherwise
(5)

hi = 0 ∀i ∈ V .

5.2.1 Comparison between [15] and Our Method

We solved several MAX-CUT problems using spin embed-
dings obtained from [15] and our proposed method target-
ing the CMOS annealing machine. In order to compare and
evaluate these spin embeddings, we used CMOS annealing
machine simulator [1].

The benchmark graph SE3 (|V | = 8) is picked up
from Graph Collection [24]. The parameters are set to be
α ∈ {1, 10, 100, 1000, 10000, 100000} and JF ∈ {0.1, 1, 10}.
For each parameter, the simulation was performed 1000
times. According to [1], the simulation setting parameters
are shown in Table 2.

Figure 6 and Fig. 7 show the results. Figure 6 shows
the probability of feasible solutions (solutions which satisfy
the constraint of equally partitioning a given graph) when
varying the JF value. As seen in Fig. 6, we can see that
our proposed method has higher probabilities of obtaining
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Fig. 7 Comparison of the qualities of solutions (i.e. the numbers of cut-edges) between [15] and our
proposed method in the MAX-CUT problem (Graph: SE3). The white markers represent the best
solutions, the colors markers and lines represent the average solutions, and the error bars represent the
standard deviations. For each α, the simulations were performed 1000 times.

Table 3 Results of our method applied to MAX-CUT problem on the CMOS annealing machine.

Graph α
#cut-edges†††

JF = 0.1 JF = 1 JF = 10

SE3
(|V | = 8, |E| = 10)

1 6.20 / 8 / 2 (44.1%) 5.41 / 8 / 2 (47.5%) 4.26 / 6 / 2 (44.2%)
10 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%) 5.41 / 8 / 2 (47.5%)

100 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%)
1000 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%)

10000 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%)
100000 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%)

1000000 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%) 6.20 / 8 / 2 (44.1%)

BFLY3
(|V | = 24, |E| = 48)

1 25.34 / 34 / 18 (23.7%) 15.01 / 28 / 8 (31.0%) 10.44 / 16 / 8 (53.8%)
10 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%) 15.01 / 28 / 8 (31.0%)

100 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%)
1000 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%)

10000 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%)
100000 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%)

1000000 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%) 25.34 / 34 / 18 (23.7%)

bcsstk01
(|V | = 48, |E| = 176)

1 90.05 / 108 / 74 (18.7%) 69.98 / 94 / 44 (20.6%) 60.63 / 70 / 58 (55.8%)
10 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%) 69.98 / 94 / 44 (20.6%)

100 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%)
1000 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%)

10000 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%)
100000 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%)

1000000 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%) 90.05 / 108 / 74 (18.7%)

Grid8x8
(|V | = 64, |E| = 112)

1 58.13 / 79 / 43 (16.2%) 13.04 / 28 / 8 (21.5%) 9.19 / 12 / 8 (50.3%)
10 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%) 13.04 / 28 / 8 (21.5%)

100 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%)
1000 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%)

10000 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%)
100000 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%)

1000000 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%) 58.13 / 79 / 43 (16.2%)

FFT4
(|V | = 80, |E| = 128)

1 65.26 / 78 / 56 (13.6%) 19.23 / 44 / 16 (30.8%) 17.52 / 24 / 16 (48.9%)
10 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%) 19.23 / 44 / 16 (30.8%)

100 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%)
1000 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%)

10000 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%)
100000 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%)

1000000 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%) 65.26 / 78 / 56 (13.6%)

††† In the “#cut-edges” column, each cell shows the number of cut-edges of feasible solutions in a format of “average /
best / worst (probability of feasible solutions).”

feasible solutions in the evaluation cases. The main reason
is that we embed every logical spin to the same length of
physical spins by our embedding method (i.e., we satisfy

the Condition 4 in Definition 1).
Figure 7 shows the quality of solution (the number of

cut-edges) in feasible solutions when varying the JF values.
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5.2.2 Evaluation of Our Method Using Other Graphs

We solved several MAX-CUT problems using our proposed
embedding method also using the annealing machine simu-
lator [1] for other benchmarks. The four benchmark graphs
are picked up from Graph Collection [24]. The parame-
ters are set to be α ∈ {1, 10, 100, 1000, 10000, 100000} and
JF ∈ {0.1, 1, 10}. For each parameter, the simulation was
performed 1000 times. The simulation setting parameters
are the same as in Table 2.

Table 3 shows the results. For most benchmark graphs
in α = 1 or α = 10, when JF becomes larger, the probability
of obtaining feasible solutions tends to be increased while
the quality of solutions tends to be decreased. For JF =

1, 10, when α becomes larger, the probability of obtaining
feasible solutions tends to be decreased while the quality
of solutions tends to be increased. Consideration on these
parameter setting is one of the important future works.

6. Discussion

6.1 Updating a Spin and Its Effect to α and JF in CMOS
Annealing Machine

The performance of CMOS annealing may be independent
of JF and α expect for the α value being close to JF in Fig. 6,
both in [15] and our proposed method. As we mentioned in
Sect. 5.1, we use the CMOS annealing simulator [1], where
physical spins are updated by Algorithm 1†. In Algorithm 1,
N refers to a spin to be updated, and Nx (x = U, L,R,D, F)
refers to each spin adjacent to N, as depicted in Fig. 8 (a).
Each spin has a value of (+1) or (−1). Ix (x = U, L,R,D, F)
refers to an interaction between the spins N and Nx, and S
refers to external magnetic field of the spin N.

Algorithm 1 The algorithm of updating a spin N
S UM = 0;
X = {U, L,R,D, F};
for x in X do

S UM = S UM + Nx × Ix;
end for
S UM = S UM + S ;
if S UM > 0 then

N = 1;
else if S UM < 0 then

N = −1;
else

Randomly
N = +1 or −1;

end if

In Algorithm 1, the value of spin N is determined to
be (+1) or (−1) depending on the values of Nx, interactions
Ix, and external magnetic field S of spin N. Note that, after
Algorithm 1 is over, the value of the spin N may be inverted
randomly to avoid falling into local minimum values [1].

†In [1], there is no explicit algorithm description but we sum-
marize the CMOS annealing behavior as in Algorithm 1.

Fig. 8 An example of updating spin N.

The example of updating the spin N is shown in Fig. 8.
Figure 8 represents a part of Fig. 4 (b), where one logical
spin is embedded onto the three physical spins NL,N,NR.
In Fig. 8 (a), the interactions between N and ND and be-
tween N and NU are set to be zero according to Step 2 of
the our proposed method (See Sect. 4 in detail). In Fig. 8,
according to Algorithm 1, S UM is calculated as follows:

S UM = JF + JF − α − 1
2
+ 0 + 0

= 2JF − α − 1
2

In the case of Fig. 8 (b), i.e., α+1/2 < 2JF holds, the spin N
becomes (+1) since S UM becomes a positive value. On the
other hand, in the case of Fig. 8 (c), i.e., 2JF < α+1/2 holds,
the spin N becomes (−1) since S UM becomes a negative
value.

Here, for example, assume that JF = 1. When α > 3/2,
2JF < α + 1/2 always holds and hence the spin N becomes
(−1). Of course, if α (> 3/2) increases, the result does not
change. Therefore, it is considered that there is almost no
difference in the result, when the value of α is 10 × JF and
when the value of α is 106 × JF. This result is almost the
same even when JF = 0.1 and JF = 10.

For this reason, the parameters JF and α seem to be
independent of the performance of the CMOS annealing re-
sults of Fig. 6.

6.2 Expected Quality of Solutions

The goal of combinatorial optimization is to find the opti-
mum solution. The performances of the proposed method
and the method [15] seem to be equivalent since the best so-
lutions in the MAX-CUT problem (Graph: SE3) using the
CMOS annealing simulator between the both methods are
the same.

Figure 7 represents the results of 1000 times simula-
tion. However, it is unknown whether an optimal solution is
always obtained when the number of simulation times or the
annealing time is limited. If the average quality of solutions
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is better, it can be expected that the solution obtained by just
one trial or several times trial will be better. As a result,
it can be expected that the results obtained by the limited
number of trials or limited annealing times become better.
Hence, we believe that evaluating the average quality must
be reasonable enough. Actually, [25] also uses the average
quality of solutions to evaluate the annealing methods. Our
proposed method is superior to the method [15] in terms of
the average quality of solutions.

In addition to the above, the method [15] dose not guar-
antee that graph embedding always succeeds and has the
worst case complexity O(n9) (the average case complex-
ity O(n3)) when a logical Ising model with the number n
of nodes is embedded onto the physical Ising model [26].
This means that the method [15] itself may become a bot-
tleneck against total annealing time. On the other hand,
our proposed method can always embed the logical Ising
model with number n of nodes into the CMOS annealing
machine using O(n2) spins, and can embed the graphs in Ta-
ble 3 onto the CMOS annealing machine with around one
second, which must be short enough.

7. Conclusion

In this paper, we proposed a fully-connected Ising model
embedding method for the CMOS annealing machine.
Experimental results effectively show that our proposed
method embeds Ising models using less physical spins com-
pared to the conventional de facto standard method in the
practical problem size, and that our method is efficient when
solving practical combinatorial optimization problems.

Considerations and optimizations of the annealing pa-
rameter setting, and applying our method to other combina-
torial optimization problems are important future works.
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P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky,
T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J.
Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky,
M.W. Johnson, J. Hilton, and M.H. Amin, “Observation of topolog-
ical phenomena in a programmable lattice of 1,800 qubits,” Nature,
vol.560, no.7719, pp.456–460, Aug. 2018.

[21] D. Eppstein, “Finding Large Clique Minors is Hard,” Journal of
Graph Algorithms and Applications, vol.13, no.2, pp.197–204,
2009.

[22] T. Boothby, A.D. King, and A. Roy, “Fast clique minor generation
in Chimera qubit connectivity graphs,” Quantum Information Pro-
cessing, vol.15, no.1, pp.495–508, Jan. 2016.

[23] R.M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of computer computations, pp.85–103, Springer, 1972.

[24] T.S.M. Collection, “Ag-monien graph collection.”
https://sparse.tamu.edu/AG-Monien

[25] R. Marton̆ák, G.E. Santoro, and E. Tosatti, “Quantum annealing of
the traveling-salesman problem,” Physical Review E, vol.70, no.5,
pp.1–4, 2004.

[26] K.E. Hamilton and T.S. Humble, “Identifying the minor set cover of
dense connected bipartite graphs via random matching edge sets,”
Quantum Information Processing, vol.16, no.4, pp.1–17, 2017.

Daisuke Oku received the B. Eng., and M.
Eng. degrees from Waseda University in 2016
and 2017, respectively, all in Computer Sci-
ence and Communications Engineering. He is
presently working towards D. Eng. degree there.
His research interests are LSI design, cryptogra-
phy architecture, and Ising computer. He is a
student member of IPSJ.

Kotaro Terada received the B. Eng., M.
Eng., and Dr. Eng. degrees from Waseda Uni-
versity in 2014, 2015, and 2018, respectively,
all in Computer Engineering. He is presently
a software engineer at Yahoo Japan Corpora-
tion. His research interests are combinatorial
optimization and high-level synthesis.

Masato Hayashi received the B.S., and
M.S. degrees in computer science from Waseda
University, Tokyo, Japan, in 2008 and 2010, re-
spectively. In 2010, he joined the Central Re-
search Laboratory, Hitachi Ltd., Tokyo, Japan.
He has been engaged in the research of acceler-
ator architecture.

Masanao Yamaoka received the B.E.,
M.E., and Ph.D. degrees in electronics and com-
munication engineering from Kyoto University,
Kyoto, Japan, in 1996, 1998, and 2007, re-
spectively. In 1998, he joined the Central Re-
search Laboratory, Hitachi Ltd., Tokyo, Japan,
where he was engaged in the research and de-
velopment of low-power embedded SRAM and
CMOS circuits. Since 2012, he has been en-
gaged in the research of new-paradigm comput-
ing using CMOS circuits.

Shu Tanaka received the B. Sci. degree
from Tokyo Institute of Technology in 2003
and the M. Sci. and Dr. Sci. degrees from The
University of Tokyo in 2005 and 2008, respec-
tively. He is presently an associate profes-
sor in Green Computing Systems Research Or-
ganization, Waseda University and a PRESTO
researcher in Japan Science and Technology
Agency. His research interests are quantum an-
nealing, Ising machine, statistical mechanics,
and materials science. He is a member of JPS.

Nozomu Togawa received the B. Eng., M.
Eng., and Dr. Eng. degrees from Waseda Uni-
versity in 1992, 1994, and 1997, respectively, all
in electrical engineering. He is presently a Pro-
fessor in the Department of Computer Science
and Communications Engineering, Waseda Uni-
versity. His research interests are VLSI design,
graph theory, and computational geometry. He
is a member of IEEE and IPSJ.

http://dx.doi.org/10.1038/s41586-018-0410-x
http://dx.doi.org/10.7155/jgaa.00183
http://dx.doi.org/10.1007/s11128-015-1150-6
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1103/physreve.70.057701
http://dx.doi.org/10.1007/s11128-016-1513-7

