
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019
1731

PAPER

Dynamic Throughput Allocation among Multiple Servers for
Heterogeneous Storage System

Zhisheng HUO†,††a), Limin XIAO†,††b), Nonmembers, Zhenxue HE†††c), Member, Xiaoling RONG††††d),
and Bing WEI†,††e), Nonmembers

SUMMARY Previous works have studied the throughput allocation of
the heterogeneous storage system consisting of SSD and HDD in the dy-
namic setting where users are not all present in the system simultane-
ously, but those researches make multiple servers as one large resource
pool, and cannot cope with the multi-server environment. We design a dy-
namic throughput allocation mechanism named DAM, which can handle
the throughput allocation of multiple heterogeneous servers in the dynamic
setting, and can provide a number of desirable properties. The experimen-
tal results show that DAM can make one dynamic throughput allocation
of multiple servers for making sure users’ local allocations in each server,
and can provide one efficient and fair throughput allocation in the whole
system.
key words: dynamic throughput allocation, multiple servers, heteroge-
neous storage system, fair, efficient

1. Introduction

The fair and efficient throughput allocation of storage sys-
tem plays a key role on users’ performance. While in reality
users are not all present in the system simultaneously, how
to allocate the throughput of the storage system in dynamic
setting is one of current research hotspots. However, the
following reasons bring new challenges to the throughput
allocation of storage systems in the dynamic setting.

Firstly, SSD is used to improve the performance of stor-
age systems mainly consisting of HDD, which leads to the
heterogeneity of storage medium [1], [2].

Secondly, modern datacenters are likely to be con-
structed from a variety of server classes, with different con-
figurations in term of the throughput capacities of storage
servers, namely, there are different throughput capacities

Manuscript received December 18, 2018.
Manuscript revised April 11, 2019.
Manuscript publicized May 27, 2019.
†The authors are with the State Key Laboratory of Software

Development Environment, Beihang University, Beijing, 100191
China.
††The authors are with the School of Computer Science and En-

gineering, Beihang University, Beijing, 100191 China.
†††The author is with the College of Information Science

and Technology, Hebei Agricultural University, Hebei Baoding,
071001 China.
††††The author is with the School of Communication Science,

Beijing Language and Culture University, Beijing, 100083 China.
a) E-mail: huozhisheng1122@126.com
b) E-mail: xiaolm@buaa.edu.cn
c) E-mail: hezhenxue 2011@163.com
d) E-mail: rong.xiaoling@163.com
e) E-mail: weibing@buaa.edu.cn

DOI: 10.1587/transinf.2018EDP7431

between storage servers [3]. For example, Google’s storage
cluster [4], [5], the same situation has also been observed
in Amazon EC2 and Rackspace [6], [7], Facebook [8]. The
throughput gap between storage servers means that it is in-
feasible to treat multiple storage servers as a resource pool.

Lastly, the number of users is sharply increasing,
that owes to growing popularity of virtualized data centers
hosted on shared physical resources in the storage system,
so users’ workloads present diversity.

The heterogeneity of storage medium, diversity of
users’ workloads and throughput gap between servers are
intertwined to bring more difficulties to the throughput al-
location of multiple heterogeneous servers. There are many
allocating ways for users in each server, how to find out one
allocation way in each server for users’ allocations satisfy-
ing the desirable fair properties in the whole system, that is
difficult. When introducing the dynamic setting, this prob-
lem becomes more complicated, because at each step, after
one user enters into the system, the current allocation need
satisfy the fair properties for users that are present in the
system, the reserved resources need to ensure that the fol-
lowing allocation can meet the desirable fair properties in
the multi-server environment for users, who are going to en-
ter the system.

Currently, most studies are static allocation mecha-
nisms based on the proportional fairness [9]–[14] or the dis-
proportional fairness [1], [15]–[17]. Although very few of
these methods [1] can cope with the throughput allocation
of multiple heterogeneous servers, they cannot adapt to the
dynamic setting.

Fortunately, some researchers have proposed the
throughput allocation methods of heterogeneous server in
the dynamic setting [18], [19]. Although these dynamic
methods have been somewhat effective, they cannot deal
with the throughput allocation of the multi-server environ-
ment. So there are some challenges for the current existing
dynamic methods.

The first challenge is how to make one efficient allo-
cation in the environment of multiple servers. The existing
dynamic allocation method makes all servers as one large re-
source pool, there are infinite allocation ways on each server
in the process of dynamic allocating, but we do not know
which one is efficient.

The second challenge is how to ensure users’ allo-
cations enjoying the fair properties in the whole system.
The existing dynamic methods take no consideration of the

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

1732
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

throughput gap between heterogeneous servers, so it is in-
feasible to treat multiple storage servers as a resource pool.
It is difficult to find out one allocation way in each server,
that can ensure users’ allocations satisfying the desirable
fairness properties in the dynamic setting.

To address the above challenges, we design one dy-
namic throughput allocation method named DAM. Specifi-
cally, DAM has two key characteristics as follows.

(1) DAM can handle the throughput allocation of multi-
ple heterogeneous servers to find out an efficient throughput
allocation way in each server in the dynamic setting.

(2) DAM can achieve one allocation enjoying the fair
properties in the whole system. In the process of dynamic
allocating, DAM has taken consideration of the throughput
gap between heterogeneous servers, and it jointly conducts
the throughput allocation across all heterogeneous servers,
so DAM can make users’ allocations satisfying the fair prop-
erties in the whole system.

The remainder of this paper is organized as follows. In
Sect. 2 we discuss the existing allocation methods. We pro-
pose DAM and define a set of desirable allocation policies in
Sect. 3. In Sect. 4, we introduce the IO requests scheduling
framework of DAM. In Sect. 5, we evaluate the performance
of DAM in both the simulation and the HDFS cluster. We
conclude the paper in Sect. 6.

2. Related Work and Motivation

In this section, we briefly introduce the existing allocation
methods, which can be divided into two categories: the
static allocation method and the dynamic allocation method.

2.1 Static Allocation Method

2.1.1 Proportional Fair Allocation Method

The resource allocation methods for CPU and bandwidth
have been studied [20]–[22], these methods are imple-
mented in the IO scheduling and Qos of storage system [10],
[11], [23]–[27]. mClock [28] partitions the resources ac-
cording to its shares. VirtualFence [29] provides predictable
VM performance through space-partitioning of both the
SSD cache and the HDD. Pisces [30] can achieve the
datacenter-wide per-tenant performance isolation and fair-
ness in shared key-value storage. Extensions of WFQ [31]
provide reservations for constant capacity servers. All these
models provide strict proportional allocation for a single re-
source subject to reservation and limit constraints [32]–[35].
However, the above allocation methods is ineffective for
multiple kinds of resources.

DRF [12] provided a fair allocation for multiple re-
sources. The extensions of DRF were implemented to the
packet networks and the case of indivisible tasks [36], [37].
Dolev et al. [38] proposed an alternative to DRF based on
fairly dividing a global system bottleneck resource. Gutman
and Nisan [39] considered generalizations of DRF in a more
general utility model. Jarett [40] proposed extensions of

DRF about the classical bin packing problem. The IO
scheduling for SSDs is examined in [41], [42], the data
placement and scheduling trade offs of hybrid storage sys-
tems were studied in [9]. Reward scheduling making allo-
cations in the ratio of the throughput received by a client is
proposed in the multi-tiered storage systems [43]–[45]. The
above allocation methods is effective for multiple resources,
but due to the constraint of proportional fairness, their re-
source utilizations are low [12].

DRFH [46] extended DRF from one single server to
multiple servers, and provided an allocation of multiple re-
sources with enjoying all fairness properties of DRF [12].
The above method can determine the allocation of client on
each server, but its efficiency is low due to the constraint of
proportional fairness.

2.1.2 Disproportional Fair Allocation Method

BAA [17] provided a disproportional-fairness allocation for
the multi-tiered storage system, and its allocation enjoys
the fairness properties of DRF [12]. The above method re-
laxes the constraint of proportional fairness to improve the
resource utilization, but it makes multiple resources as a
resource pool, which cannot determine users’ local alloca-
tions in each server for the environment of multiple servers.
UAF [1] is one allocation method based on the dispropor-
tional fairness for multiple servers, it can determine users’
local allocations in each server.

2.2 Dynamic Allocation Method

The above researches mainly focus on the static allocation,
they cannot cope with the dynamic setting that users are not
all present in the system simultaneously. In view of this
problem, Kash et al. have proposed a dynamic model of
fair division, which enjoys the desirable axiomatic proper-
ties [18]. Friedman et al. have proposed the optimal recur-
sive mechanism to compute the allocations and provide tight
analytic bounds, which have considered arrivals and depar-
tures of users [19]. Liu et al. have studied the generalized
version of the dynamic multi-resource fair allocation prob-
lem, one user will be satisfied when its all tasks submitted
can be processed [47].

2.3 Motivation

Existing methods described in the above are somewhat ef-
fective for the throughput allocation of the heterogeneous
storage system in the environment of multiple servers. How-
ever, most of them are the static allocating method, and they
assume that all the users are present in the system simultane-
ously, so these methods cannot tackle the dynamic through-
put allocation of heterogeneous storage system in the setting
that users enter the system dynamically.

A few researches focus on the dynamic allocation of
heterogeneous storage, nevertheless, they conduct the dy-
namic allocation based on users’ dominant resource equal-

HUO et al.: DYNAMIC THROUGHPUT ALLOCATION AMONG MULTIPLE SERVERS FOR HETEROGENEOUS STORAGE SYSTEM
1733

ity, which will reduce the utilization of throughput resource.
Meanwhile, they cannot cope with the dynamic allocation
of multiple servers to determine users’ local allocations in
each server, due to that they do not consider a multi-service
environment.

To address these issues, we propose a dynamic alloca-
tion mechanism called DAM in this paper. DAM can make
a dynamic allocation for heterogeneous storage based on
users’ local bottleneck resource equality, and which can im-
prove the utilization of throughput resource in contrast with
the above existing methods. Further, DAM studies the dy-
namic allocation of a multi-server environment, and its al-
location policies can cope with the environment of multiple
servers, so it can get users’ local allocations in each server.
Next, we will give a detailed introduction of DAM.

3. DAM Allocation and Its Properties

In this section, we first model the throughput resources of
heterogeneous storage system. We next formalize a number
of desirable properties for DAM. We last introduce the DAM
allocation model in detail.

3.1 Throughput Resource Model

Assume that users arrive at different times and do not depart,
user 1 arrives first, then user 2, and in general at step k, user
k arrives after users 1, · · · , k − 1. Let S = {1, · · · , s} be the
set of heterogeneous storage servers. Let Cl = {Cl1,Cl2} be
HDD and SSD throughput capacities of storage server l ∈ S .
Let U = {1, · · · , n} be the user set in the system. Let R =
{1, 2} be HDD and SSD throughput resources respectively.
Let Di = {mi, hi} be hit ratios of user i ∈ U to HDD and SSD,
mi + hi = 1. Let Ak

ilr be user i’s SSD or HDD throughput
allocation in server l ∈ S at any step k, r ∈ R.

3.2 Desirable Properties

3.2.1 Preliminaries

The fair properties are widely recognized as the most mea-
sures in both computer systems and economics, then, we
briefly review the preliminaries of sharing incentive (SI),
envy freeness (EF), and pareto optimality (PO).

Sharing Incentive. It ensures that every user’s through-
put allocation is not worse than that obtained by evenly di-
viding the throughput resource.

Envy Freeness. No user prefers the other’s throughput
allocation to its own. This property ensures the fairness of
the throughput allocation.

Pareto Optimality. A user’s throughput allocation can-
not be further improved without decreasing the other’s
throughput allocation, this property is critical to achieve a
high resource utilization.

3.2.2 Dynamic Desirable Properties

Some researchers have modified the relevant fair proper-

ties in order to adapt to the dynamic setting, for example,
DYNAMIC DRF [18] makes the allocation being compati-
ble with EF and PO by relaxing the restriction of EF. How-
ever, these dynamic fair properties take no consideration
of the multi-server environment, so we generalize SI, EF,
and PO from a single server to the environment of multiple
servers in the dynamic setting.

(1) Dynamic sharing incentive in the environment of
multiple heterogeneous servers. A dynamic allocation
mechanism is SI in the environment of multiple servers if∑s

l=1 Ak
ilr∗i
≥ 1

n ×
∑s

l=1 Clr∗i (r∗i ∈ R represents user i’s domi-
nant throughput resource in the remainder of this paper) for
all steps k and all users i ≤ k.

The allocation method based on dominant resources
cannot satisfy EF and PO simultaneously in the dynamic
setting [18], because in order to satisfy PO property, the cur-
rent users at step k (step k means that users 1, . . . , k have
been present in the system) occupy too much throughput re-
sources, which will decrease the following users k+ 1’s, . . .,
n’s allocations to violate EF fair property. So inspired by the
idea [18], we extend EF from one single server to multiple
heterogeneous servers in the dynamic setting.

(2) Dynamic envy freeness in the environment of mul-
tiple heterogeneous servers. A dynamic allocation mech-

anism is EF in the multi-server environment if
∑s

l=1 Ak
ilr∗i∑s

l=1 Clr∗i
≥

∑s
l=1 Ak

jlr∗j∑s
l=1 Clr∗j

, then user i enters into the system before j, when

the inequality is established,
∑s

l=1 Ak
ilr∗i
=
∑s

l=1 Aj−1
ilr∗i

for all
steps k and all users i, j ≤ k.

(3) Dynamic pareto optimality in the environment
of multiple heterogeneous servers. A dynamic allocation
mechanism is PO in the multi-server environment if there
exists one allocation A′k at any step k, for at least one user
i, its dominant resource allocation

∑s
l=1 A′kilr∗i >

∑s
l=1 Ak

ilr∗i
,

and for any one user j (j � i)
∑s

l=1 A′kjlr∗j <
∑s

l=1 Ak
jlr∗j

, that

allocates up to a (k/n)−fraction of at least one throughput
resource. Ak

ilr∗i
is returned by the dynamic allocation mecha-

nism, A′kilr∗i is any other allocation.

3.3 Allocation Policies

In the dynamic setting, the allocation method proposed in
this paper does not withdraw the allocated resources for
users to reallocate, at any step k, it takes out a 1/n share of
each throughput resource, and takes back the throughput re-
sources that users 1, . . . , k−1 cannot use at step k−1. DAM
starts from the current allocation of step k − 1 to allocate
the resource taken out and back for users 1, . . . , k that have
the minimum dominant share at the same rate, just as the
static allocation method DRF does [12]. So we propose the
following allocation policies, which are based on the above
dynamic SI, EF and PO properties generalized from one sin-
gle server to multiple heterogeneous servers.

(1) For any one user i at any step k, user i’s dominant

1734
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

resource allocation
∑s

l=1 Ak
ilr∗i
≥ 1

n ×
∑s

l=1 Clr∗i .

(2) For any one user i at any step k,
∑s

l=1 Ak
ilr∗i
≥

∑s
l=1 Ak−1

ilr∗i
.

(3) For any two users i and j at any step k, if j > i, then∑s
l=1 Ak

ilr∗i∑s
l=1 Clr∗i

≥
∑s

l=1 Ak
jlr∗j∑s

l=1 Clr∗j
.

3.4 DAM Allocation Model

DAM resides inside the heterogeneous storage system, and
make dynamic allocations based on users’ workloads, with
determining users’ local allocations in each server. Mean-
while, when new users enter the system, DAM can get a
fair and efficient allocation for users, who has been present
in the system, and it reserves the throughput resource for
subsequent users who will enter the system. Finally, DAM
can achieve one fair and efficient allocation when all users
have entered into the system. Specifically, at step k, users
1, . . . , k (k ≤ n) are present in the system, the current HDD
and SSD throughput capacities are set to the (k/n) share of
each throughput resource that can be provided by the sys-
tem. According to the above allocation policies, we propose
the following allocation model.

max
∑k

i=1

∑s
l=1 Ak

ilr∗i∑s
l=1 Clr∗i

s.t.

∑s
l=1 Ak

ilr∗i∑s
l=1 Clr∗i

≥
∑s

l=1 Ak
jlr∗j∑s

l=1 Clr∗j
, i < j ≤ k

∑k

i=1

∑s

l=1
Ak

ilr ≤
k
n
×
∑s

l=1
Clr, r ∈ R

∑s

l=1
Ak

ilr∗i
≥ 1

n
×
∑s

l=1
Clr∗i , i ≤ k

∑s

l=1
Ak

ilr∗i
≥
∑s

l=1
Ak−1

ilr∗i
, i ≤ k − 1

Example We make use of one example to demon-
strate the allocating process of DAM. Suppose that there
are two servers in the heterogeneous storage system, and
their throughput capacities are S 1(SD: 300 IOPS, HD: 200
IOPS) and S 2(SD: 1800 IOPS, HD: 1300 IOPS) respec-
tively. Meanwhile, there exists three users accessing the
system. In the following formula, Ai j represents user i’s al-
locations in server j. At step 1, user 1 enters into the system
with its hit ratio h1 = 0.5, according to the allocation model
presented by the above formula, we can get user 1’s alloca-
tions: A11(SD: 71.4 IOPS, HD: 66.7 IOPS), A12(SD: 428.6
IOPS, HD: 433.7 IOPS); at step two, with user 2 entering the
system with hit ratio h2 = 0.9, DAM can get the allocations
of users 1 and 2 through the above model: A11(SD: 134.9
IOPS, HD: 116.5 IOPS), A12(SD: 809.1 IOPS, HD: 757.5
IOPS), A21(SD: 116.6 IOPS, HD: 12 IOPS), A22(SD: 699.4
IOPS, HD: 78 IOPS); at step 3, user 3 goes into the system
with hit ratio h3 = 0.8, we can get three users’ final allo-
cation by making use of the above model: A11(SD: 134.9
IOPS, HD: 116.5 IOPS), A12(SD: 809.1 IOPS, HD: 757.5
IOPS), A21(SD: 116.6 IOPS, HD: 12 IOPS), A22(SD: 699.4

IOPS, HD: 78 IOPS), A31(SD: 100 IOPS, HD: 23.3 IOPS),
A32(SD: 600 IOPS, HD: 151.7 IOPS). From the above allo-
cating process, we can know that DAM can cope with the
dynamic allocation with users entering the system dynami-
cally, and can deal with the environment of multiple hetero-
geneous servers.

4. DAM Implementing Framework

As shown in Fig. 1, we use one two-tier scheduling frame-
work to dispatch IO requests to multiple servers. The first
tier scheduler sends the IO requests to the target of storage
server, DAM resides in the first tier scheduler, and recom-
putes the throughput allocations of users in every server pe-
riodically.

The second tier scheduler locates in each server, DAM
can get users’ throughput allocations in each server in
the first scheduling tier, these allocations make up users’
weights to a proportional-share scheduler like WFQ in the
second tier. The second tier scheduler takes over the IO
request scheduling function of linux in each server, and
dispatches IO requests according to users’ weights. Al-
gorithm 1 describes the IO request dispatching process of
DAM.

With users entering the system, the two-tier IO sched-
uler will recompute users’ throughput allocations; mean-
while, as users’ workloads change, it recomputes users’ al-
locations periodically to maintain a higher resource utiliza-
tion. This two-tier scheduler framework includes one mod-
ule, which monitors hit ratios of users over a moving win-
dow of requests in the system.

As the system runs, when one or some users leave, the
number of users has changed; however, DAM will perform
a throughput allocation based on users’ workloads in a fixed
time window, in which, the number of users is fixed. With
users’ departures, the system enters a new state, and the
number of users will be fixed again. DAM will recalculate
the throughput allocation after the number of users is fixed
again.

Fig. 1 DAM implementing framework

Algorithm 1 IO request scheduling using DAM
1: Users statistic their hit ratios periodically.
2: DAM recomputes users’ local allocations in each server.
3: In each server, DAM dispatches IO requests according to the weights

made up from users’ allocations.
4: Repeat the above steps periodically.

HUO et al.: DYNAMIC THROUGHPUT ALLOCATION AMONG MULTIPLE SERVERS FOR HETEROGENEOUS STORAGE SYSTEM
1735

5. Experimental Result

We evaluate DAM in both PFSsim and the HDFS cluster,
and implement DAM into the IO path, so the experiment
includes two parts: simulation experiment, evaluation in the
real environment. The raw IO is performed to eliminate the
the influence of OS buffer caching.

5.1 PFSsim Evaluation

PFSsim is a simulator of file system, it contains SSD and
HDD modules. We ran PFSsim in one Linux machine
with AMD Quad-core processors, 8GB RAM, 1TB Seagate
7200RPM hard drive. We configure three servers in PFSsim,
and the throughput capacities of these servers are described
in Table 1. The synthetic workload set [48] is a file sys-
tem and storage benchmark that allows to generate a variety
of workloads, we choose the webserver as it is the inten-
sive workload, we distribute the trace among three servers
to produce the corresponding workloads in advance.

In this experimental part, we experimentally answer the
following questions: (1) Can DAM cope with the through-
put allocation of the multi-server environment in the dy-
namic setting? (2) Does DAM satisfy SI, PO and EF proper-
ties for the multi-server environment in the dynamic setting?

First, user 1 enters the system with hit ratio h1 = 0.5.
Figure 2 (a) shows user 1’s allocation among three servers.
Next, user 2 comes into the system, its hit ratio is h2 = 0.9,
users 1’s and 2’s allocations are as shown in Fig. 2 (b). At
last, user 3 gets into the system with hit ratio h3 = 0.8. Fig-
ure 2 (c) shows three users’ allocations among servers. As
shown in Fig. 2 (a)–(c), as users enter into the system at each
step, DAM can determine users’ local allocations in each
server, so DAM can cope with the throughput allocation of
multiple heterogeneous servers in the dynamic setting.

From Fig. 2 (a)–(c), we can get that at step 1, user 1’s

dominant throughput allocation is
∑3

l=1 A1
1l1 =

∑3
l=1 Cl2

3 = 500
IOPS. At step 2, the dominant throughput allocations of

users 1, 2 satisfy
∑3

l=1 A2
1l1 = 1166 >

∑3
l=1 Cl1

3 = 500

IOPS,
∑3

l=1 A2
2l2 = 1633 >

∑3
l=1 Cl2

3 = 1400 IOPS respec-
tively. At step 3, the dominant throughput allocations of

three users are
∑3

l=1 A3
1l1 = 1166 >

∑3
l=1 Cl1

3 = 500 IOPS,
∑3

l=1 A3
2l2 = 1633 >

∑3
l=1 Cl2

3 = 1400 IOPS, and
∑3

l=1 A3
3l2 =∑3

l=1 Cl2

3 = 1400 IOPS respectively. So we can get one con-
clusion that DAM satisfies SI at each step in the dynamic
setting.

Figure 2 (a)–(c) show that for any two users i and j, if

i < j, then
∑3

l=1 Ak
ilr∗i∑3

l=1 Clr∗i
≥
∑3

l=1 Ak
jlr∗j∑3

l=1 Clr∗j
at any step k, we can get that

DAM satisfies EF for the environment of multiple heteroge-
neous servers in the dynamic setting.

As shown in Fig. 2 (a)–(c), at any step k, DAM allocates
up to a (k/n)−fraction of at least one throughput resource, so
DAM satisfies PO.

Table 1 Configurations of servers

Server HDD (IOPS) SSD (IOPS)
Server1 1000 2000
Server2 500 600
Server3 1500 1600

Fig. 2 Users’ allocations using DAM

5.2 HDFS Experiment

We evaluate DAM in HDFS, and compare its behavior
with DYNAMIC DRF and DRFH. This part of experiments
run on Linux servers with AMD Quad-core processors,
8GB RAM, 1TB Seagate 7200RPM hard drive, and 120GB
SAMSUNG 840 Pro Series SSDs, SSD is used as the main
storage in the system. In order to simulate the through-
put gap between server, the number of SSD and HDD is

1736
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

different between servers. The evaluation workloads are
from Umass Trace [49] and Microsoft Exchange server [50].
These traces are for a homogeneous server, and do not dis-
tinguish between HDD and SSD in the heterogeneous stor-
age server, so we reform them to distribute on both SSD and
HDD in different storage servers to produce the correspond-
ing workloads.

In reality, the storage system contains a huge number
of servers, and there are a large number of users accessing
the system. In our experiment, we set up three servers and
three users with the following considerations. First, our ex-
perimental goal is that whether DAM can cope with the en-
vironment of multiple heterogeneous servers in the process
of dynamic allocation, this has nothing to do with the num-
ber of servers and users. Three servers and three uses are
enough to to verify the effectiveness of our method, namely,
DAM can handle the dynamic allocation in the environment
of multiple servers. Second, our experimental goal also test
and verify that whether DAM can handle the allocation in
the dynamic setting, where users enter the system dynami-
cally, this is not related to the number of users and servers.

5.2.1 Compare DAM with DYNAMIC DRF

For the simplicity of the experiment, we configurate two
data servers in the HDFS cluster, there are three users with
their hit ratios h1 = 0.4, h2 = 0.5, h3 = 0.9 respectively.
Users 1 and 2 run two financial workloads from Umass
Trace; user 3 runs one exchange workload from Microsoft
Exchange server workload. These workloads have a mix
of read and write requests and request sizes range from
512 bytes to 8MB.

When running the above workloads, the throughput ca-
pacity of HDD is around 700 ∼ 1000 IOPS, and the SSD
is 1000 ∼ 2000 IOPS. As shown in Fig. 3 (a)–(b), both of
DAM and DYNAMIC DRF can deal with the throughput
allocation of the dynamic setting. Figure 3 (a) shows the al-
location of DYNAMIC DRF, it makes three servers as one
resource pool, and cannot cope with the throughput alloca-
tion of the environment of multiple heterogeneous servers.
As shown in Fig. 3 (b), compared with DYNAMIC DRF,
DAM can determine users’ local allocations in each server,
because it considers the throughput gap between heteroge-
neous servers, and jointly allocates the throughput across
multiple servers.

As shown in Fig. 3 (a)–(b), at step 1, the HDD and SSD

throughput utilizations of DYNAMIC DRF are
A1

11
1
3×
∑2

l=1 Cl1
=

600
600 = 100%,

A1
12

1
3×
∑2

l=1 Cl2
= 400

1167 = 34% respectively, that

of DAM are
∑2

l=1 A1
1l1

1
3×
∑2

l=1 Cl1
= 600

600 = 100%,
∑2

l=1 A1
1l2

1
3×
∑2

l=1 Cl2
= 400

1167 =

34% respectively; at step 2, the resource utilizations of

DYNAMIC DRF are
∑2

i=1 A2
i1

2
3×
∑2

l=1 Cl1
= 1200

1200 = 100%,
∑2

i=1 A2
i2

2
3×
∑2

l=1 Cl2
=

1000
2333 = 43% respectively, that of DAM have the same

resource utilizations:
∑2

i=1
∑2

l=1 A2
il1

2
3×
∑2

l=1 Cl1
= 267+333+267+333

1200 = 100%,

Fig. 3 Evaluate DYNAMIC DRF and DAM

∑2
i=1
∑2

l=1 A2
il2

2
3×
∑2

l=1 Cl2
= 171+229+257+343

2333 = 43%; at step 3, the resource

utilizations of DYNAMIC DRF are
∑3

i=1 A3
i1∑2

l=1 Cl1
= 812+812+176

1800 =

100%,
∑3

i=1 A3
i2∑2

l=1 Cl2
= 541+812+1579

3500 = 84% respectively, that of

DAM are
∑3

i=1
∑2

l=1 A3
il1∑2

l=1 Cl1
= 361+451++361+451+78+98

1800 = 100%,
∑3

i=1
∑2

l=1 A3
il2∑2

l=1 Cl2
= 232+309+348+464+677+902

3500 = 84% respectively.

So we can get that DAM has the same resource uti-
lization with DYNAMIC DRF, but DAM can handle the
throughput allocation of multiple heterogeneous servers
compared with DYNAMIC DRF that cannot.

5.2.2 Compare DAM with DRFH

In this experimental part, we configurate two data servers in
the system. There are two uses with their hit ratios h1 = 0.4
and h2 = 0.9 respectively. User 1 runs one financial work-
load from Umass Trace, user 2 runs one exchange workload
from Microsoft Exchange server. When running these work-
loads, these two servers can provide HDD and SSD through-
put capacities of 760 ∼ 1000 IOPS and 1400 ∼ 2000 IOPS
respectively.

Figure 4 (a)–(b) show the allocations of users using
DRFH and DAM. As shown in Fig. 4, we can know that
although both of methods can cope with the throughput
allocation of the environment of multiple heterogeneous
servers, DRFH cannot adapt to the throughput allocation
of the dynamic setting. Figure 4 (a) shows that when using

HUO et al.: DYNAMIC THROUGHPUT ALLOCATION AMONG MULTIPLE SERVERS FOR HETEROGENEOUS STORAGE SYSTEM
1737

Fig. 4 Evaluate DAM and DRFH

DRFH, after user 1 enters the system, the HDD through-
put achieves 100% utilization, when user 2 getting into the
system, DRFH revokes user 1’s allocation to reallocate the
throughput resource for users 1 and 2, then, user 1’s HDD
allocation is reduced from 1800 IOPS to 1340 IOPS, its
SSD is reduced from 1200 IOPS to 894 IOPS, and the re-
allocating process will suspend user 1 accessing the system
until finishing the reallocation. However, Fig. 4 (b) shows
that compared with DRFH, DAM can handle the through-
put allocation of the dynamic setting, it first allocates some
throughput to user 1, after user 2 entering the system, DAM
will allocate the remaining throughput to users 1and 2 with-
out interrupting user 1’s operation.

Next, we compare the resource utilization of DAM
with DRFH. Because DRFH is one kind of static al-
location methods, when two users have entered into
the system, we compare resource utilizations of these
two methods. As shown in Fig. 4 (a)–(b), HDD and
SSD throughput utilizations of DAM are same with that
of DRFH: DAMHD=DRFHHD=

596+744+129+161
1800 = 91%,

DAMS D=DRFHS D=
383+511+1117+1489

3500 = 100%. So we can
get one conclusion that DAM not only can achieve the same
utilization with DRFH, but also it can handle the throughput
allocation of the dynamic setting compared with DRFH that
cannot.

6. Conclusion

We have introduced one allocation model named DAM,

which can handle the throughput allocation of the environ-
ment of multiple heterogeneous servers in dynamic setting.
DAM satisfies SI, PO and EF properties. We have evalu-
ated the performance of DAM using implementation in both
the simulator and the HDFS cluster. The experimental re-
sults show that DAM is fair and efficient allocation method
compared with the existing method.

DAM is based on users’ dominant resources to conduct
one dynamic allocation, which will prevent the throughput
resource utilization from going any higher. Our future work
studies the dynamic allocation method based on users’ local
bottleneck resources to improve the resource utilization.

Acknowledgments

This version has benefited greatly from the anonymous
reviewers. The authors gratefully acknowledge these
comments and suggestions. This work is supported
by the National Key Research and Development Pro-
gram of China under Grant (NO. 2018YFB0203901,
NO. 2018YFB0203900), the China Postdoctoral Science
Foundation under Grant No. 2018M641154, the Introduc-
ing Talent Research Project of Agricultural University of
Hebei under Grant No. YJ201829, the National Natural Sci-
ence Foundation of China (No.61370059, No.61772053),
the fund of the State Key Laboratory of Software Develop-
ment Environment under Grant No. SKLSDE-2017ZX-10.

References

[1] Z. Huo, L. Xiao, Q. Zhong, S. Li, A. Li, R. Li, K. Liu, Y. Zang,
P. Wang, and Z. Lu, “Hybrid storage throughput allocation among
multiple clients in heterogeneous data center,” IEEE International
Conference on High PERFORMANCE Computing and Communi-
cations, 2015 IEEE International Symposium on Cyberspace Safety
and Security, and 2015 IEEE International Conf on Embedded Soft-
ware and Systems, pp.140–147, 2015.

[2] Z. Huo, L. Xiao, Q. Zhong, S. Li, A. Li, R. Li, S. Wang, and L. Fu,
A Metadata Cooperative Caching Architecture Based on SSD and
DRAM for File Systems, Springer International Publishing, 2015.

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A View of Cloud Computing,” Commun. ACM, vol.53,
no.4, pp.50–58, April 2010.

[4] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, and M.A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” Proc. Third ACM Symposium on Cloud Computing,
SoCC ’12, New York, NY, USA, pp.7:1–7:13, ACM, 2012.

[5] C. Reiss, J. Wilkes, and J.L. Hellerstein, “Google cluster-usage
traces: format+ schema,” White Paper, Google Inc., 2011.

[6] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K.D. Bowers, and
M.M. Swift, “More for your money: exploiting performance hetero-
geneity in public clouds,” Proc. Third ACM Symposium on Cloud
Computing, p.20, ACM, 2012.

[7] Z. Ou, H. Zhuang, A. Lukyanenko, J. Nurminen, P. Hui, V. Mazalov,
and A. Yla-Jaaski, “Is the same instance type created equal? Exploit-
ing heterogeneity of public clouds,” 2013.

[8] T. Harter, D. Borthakur, S. Dong, A.S. Aiyer, L. Tang, A.C. Arpaci-
Dusseau, and R.H. Arpaci-Dusseau, “Analysis of HDFS under
hbase: a facebook messages case study,” FAST, pp.199–212, 2014.

[9] X. Wu and A.L.N. Reddy, “Exploiting concurrency to improve la-
tency and throughput in a hybrid storage system,” 2010 IEEE Inter-

http://dx.doi.org/10.1109/hpcc-css-icess.2015.49
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/2391229.2391236
http://dx.doi.org/10.1145/2391229.2391249
http://dx.doi.org/10.1109/mascots.2010.11

1738
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.9 SEPTEMBER 2019

national Symposium on Modeling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pp.14–23,
IEEE, 2010.

[10] Y. Wang and A. Merchant, “Proportional-share scheduling for dis-
tributed storage systems,” FAST, p.4, 2007.

[11] A. Gulati, A. Merchant, and P.J. Varman, “pclock: an arrival
curve based approach for qos guarantees in shared storage systems,”
ACM SIGMETRICS Performance Evaluation Review, vol.35, no.1,
pp.13–24, 2007.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” NSDI, p.24, 2011.

[13] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource al-
location: fairness-efficiency tradeoffs in a unifying framework,”
IEEE/ACM Trans. Netw., vol.21, no.6, pp.1785–1798, 2013.

[14] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in het-
erogeneous cloud computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol.26, no.10, pp.2822–2835, 2015.

[15] J. Li and J. Xue, “Egalitarian division under leontief preferences,”
Economic Theory, vol.54, no.3, pp.597–622, 2013.

[16] A.D. Procaccia, “Cake cutting: not just child’s play,” Commun.
ACM, vol.56, no.7, pp.78–87, 2013.

[17] H. Wang and P.J. Varman, “Balancing fairness and efficiency in
tiered storage systems with bottleneck-aware allocation,” FAST,
pp.229–242, 2014.

[18] I. Kash, A.D. Procaccia, and N. Shah, “No agent left behind: dy-
namic fair division of multiple resources,” International Confer-
ence on Autonomous Agents and Multi-Agent Systems, pp.351–
358, 2013.

[19] E. Friedman, C.-A. Psomas, and S. Vardi, “Dynamic fair division
with minimal disruptions,” Sixteenth ACM Conference on Eco-
nomics and Computation, pp.697–713, 2015.

[20] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm,” ACM SIGCOMM Computer Communi-
cation Review, pp.1–12, ACM, 1989.

[21] P. Goyal, H.M. Vin, and H. Chen, “Start-time fair queueing:
a scheduling algorithm for integrated services packet switching
networks,” ACM SIGCOMM Computer Communication Review,
pp.157–168, ACM, 1996.

[22] C.A. Waldspurger and W.E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” Proc. 1st USENIX Con-
ference on Operating Systems Design and Implementation, p.1,
USENIX Association, 1994.

[23] A. Gulati, I. Ahmad, C.A. Waldspurger, et al., “Parda: Proportional
allocation of resources for distributed storage access,” FAST, pp.85–
98, 2009.

[24] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar, “Basil: Automated
io load balancing across storage devices,” FAST, p.13, 2010.

[25] C.R. Lumb, A. Merchant, and G.A. Alvarez, “Façade: Virtual
storage devices with performance guarantees,” FAST, pp.131–144,
2003.

[26] W. Jin, J.S. Chase, and J. Kaur, “Interposed proportional sharing for
a storage service utility,” ACM SIGMETRICS Performance Evalua-
tion Review, pp.37–48, ACM, 2004.

[27] C.R. Lumb, J. Schindler, G.R. Ganger, D.F. Nagle, and E. Riedel,
“Towards higher disk head utilization: extracting free bandwidth
from busy disk drives,” Proc. 4th Conference on Symposium on
Operating System Design & Implementation, vol.4, p.7, USENIX
Association, 2000.

[28] A. Gulati, A. Merchant, and P.J. Varman, “mclock: Han-
dling throughput variability for hypervisor io scheduling,” Proc.
9th USENIX Conference on Operating Systems Design and
Implementation, pp.1–7, 2013.

[29] C. Li, Í. Goiri, A. Bhattacharjee, R. Bianchini, and T.D. Nguyen,
“Quantifying and improving i/o predictability in virtualized sys-
tems,” Ieee/acm International Symposium on Quality of Service,
pp.1–6, 2013.

[30] D. Shue, M.J. Freedman, and A. Shaikh, “Performance isolation and
fairness for multi-tenant cloud storage,” Usenix Conference on Op-
erating Systems Design and Implementation, pp.349–362, 2012.

[31] I. Stoica, H. Abdel-Wahab, and K. Jeffay, “Duality between resource
reservation and proportional share resource allocation,” Electronic
Imaging’97, pp.207–214, International Society for Optics and Pho-
tonics, 1997.

[32] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance
differentiation for storage systems using adaptive control,” ACM
Transactions on Storage (TOS), vol.1, no.4, pp.457–480, 2005.

[33] T.M. Wong, R.A. Golding, C. Lin, and R.A. Becker-Szendy,
“Zygaria: Storage performance as a managed resource,” Proc. 12th
IEEE Real-Time and Embedded Technology and Applications Sym-
posium, 2006, pp.125–134, IEEE, 2006.

[34] A. Gulati, A. Merchant, and P.J. Varman, “mclock: handling
throughput variability for hypervisor io scheduling,” Proc. 9th
USENIX Conference on Operating Systems Design and Implemen-
tation, pp.1–7, USENIX Association, 2010.

[35] A. Gulati, G. Shanmuganathan, X. Zhang, and P.J. Varman, “De-
mand based hierarchical qos using storage resource pools,” USENIX
Annual Technical Conference, pp.1–13, 2012.

[36] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” ACM SIGCOMM Computer Com-
munication Review, vol.42, no.4, pp.1–12, 2012.

[37] D.C. Parkes, A.D. Procaccia, and N. Shah, “Beyond dominant re-
source fairness: extensions, limitations, and indivisibilities,” Proc.
13th ACM Conference on Electronic Commerce, pp.808–825,
ACM, 2012.

[38] D. Dolev, D.G. Feitelson, J.Y. Halpern, R. Kupferman, and N. Linial,
“No justified complaints: On fair sharing of multiple resources,”
Proc. 3rd Innovations in Theoretical Computer Science Conference,
pp.68–75, ACM, 2012.

[39] A. Gutman and N. Nisan, “Fair allocation without trade,” Proc.
11th International Conference on Autonomous Agents and Multi-
agent Systems, vol.2, pp.719–728, International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012.

[40] C.A. Psomas and J. Schwartz, “Beyond beyond dominant resource
fairness: Indivisible resource allocation in clusters,” Tech. Report
Berkeley, 2013.

[41] S. Park and K. Shen, “Fios: A fair, efficient flash i/o scheduler,”
FAST, p.13, 2012.

[42] K. Shen and S. Park, “Flashfq: A fair queueing i/o scheduler for
flash-based ssds,” USENIX Annual Technical Conference, pp.67–
78, 2013.

[43] A. Elnably, K. Du, and P. Varman, “Reward scheduling for qos
in cloud applications,” 2012 12th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), pp.98–106,
IEEE, 2012.

[44] A. Elnably and P. Varman, “Application-sensitive qos scheduling
in storage servers,” ACM Symposium on Parallelism in Algorithms
and Architecture, 2012.

[45] A. Elnably, H. Wang, A. Gulati, and P. Varman, “Efficient qos for
multi-tiered storage systems,” 4th USENIX Workshop on Hot Topics
in Storage and File Systems, 2012.

[46] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in
heterogeneous cloud computing systems,”

[47] X. Liu, X. Zhang, X. Zhang, and W. Li, “Dynamic fair division of
multiple resources with satiable agents in cloud computing systems,”
IEEE Fifth International Conference on Big Data and Cloud Com-
puting, pp.131–136, 2015.

[48] R. McDougall and J. Mauro, “Filebench,” URL: http://www.
nfsv4bat.org/Documents/nasconf/2004/filebench.pdf (cited on page
56), 2005.

[49] S.P. Council, “Spc i/o traces,” 2009.
[50] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Char-

acterization of storage workload traces from production windows
servers,” IEEE International Symposium on Workload Characteri-

http://dx.doi.org/10.1109/mascots.2010.11
http://dx.doi.org/10.1145/1269899.1254885
http://dx.doi.org/10.1109/tnet.2012.2233213
http://dx.doi.org/10.1109/tpds.2014.2362139
http://dx.doi.org/10.1007/s00199-012-0724-0
http://dx.doi.org/10.1145/2483852.2483870
http://dx.doi.org/10.1145/2764468.2764495
http://dx.doi.org/10.1109/iwqos.2013.6550269
http://dx.doi.org/10.1145/1111609.1111612
http://dx.doi.org/10.1109/rtas.2006.46
http://dx.doi.org/10.1145/2377677.2377679
http://dx.doi.org/10.1145/2229012.2229075
http://dx.doi.org/10.1145/2090236.2090243
http://dx.doi.org/10.1109/ccgrid.2012.120
http://dx.doi.org/10.1109/bdcloud.2015.71
http://dx.doi.org/10.1109/iiswc.2008.4636097

HUO et al.: DYNAMIC THROUGHPUT ALLOCATION AMONG MULTIPLE SERVERS FOR HETEROGENEOUS STORAGE SYSTEM
1739

zation, 2008, IISWC 2008, pp.119–128, IEEE, 2008.

Appendix: Desirable properties proof

Now we proof that DAM satisfies SI, EF and PO properties
for the environment of multiple heterogeneous servers in the
dynamic setting.

Lemma 1: The DAM allocation is sharing incentive.

Proof 1: If DAM enjoys SI, for any one user i at any
step k, its dominant resource allocation

∑s
l=1 Ak

ilr∗i
≥ 1

n ×∑s
l=1 Clr∗i . When k = 1, use 1’s dominant resource alloca-

tion
∑s

l=1 A1
1lr∗1
= 1

n ×
∑s

l=1 Clr∗1 . For the case k = 2, af-
ter user 2 enters the system, user 2 will be allocated the
throughput resource until its dominant resource allocation∑s

l=1 A2
2lr∗2∑s

l=1 Clr∗2
=

∑s
l=1 A1

1lr∗1∑s
l=1 Clr∗1

, then, if there are free SSD and HDD

throughput, users 1 and 2 will be given the throughput re-
source at the same rate, until that up to a (2/n)−fraction of
at least one resource, so their dominant resource allocations
are higher than 1

n ×
∑s

l=1 Clr∗1 and 1
n ×
∑s

l=1 Clr∗2 respectively.
Assume that this is true at step k − 1, for any one user

i,
∑s

l=1 Ak−1
ilr∗i
≥ 1

n ×
∑s

l=1 Clr∗i . At step k, the worst case is that

when user k’s dominant resource is given 1
n ×
∑s

l=1 Clr∗k , the
allocation of throughput resource r∗k (r∗k ∈ R) is up to k

n ×∑s
l=1 Clr∗k , we can get one feasible solution, for any one user

i (i < k),
∑s

l=1 Ak
ilr∗i
=
∑s

l=1 Ak−1
ilr∗i
≥ 1

n ×
∑s

l=1 Clr∗i , for user k,
∑s

l=1 Ak
klr∗k
= 1

n×
∑s

l=1 Clr∗k . So we can get that for any one user

i (i ≤ k), its dominant resource allocation
∑s

l=1 Ak
ilr∗i
≥ 1

n ×∑s
l=1 Clr∗i at any step k. DAM satisfies SI for the environment

of multiple heterogeneous servers in the dynamic setting.

Lemma 2: The DAM allocation is pareto optimality.

Proof 2: In order to maximize the utilization of through-
put resource, at each step k, for users 1, . . . , k, their alloca-
tions are up to a (k/n)−fraction of at least one throughput
resource: k

n ×
∑s

l=1 Clr (r ∈ R); otherwise, they can improve
their allocations, which contradicts the objective function
of LP. So this means that DAM satisfies PO for the envi-
ronment of multiple heterogeneous servers in the dynamic
setting.

Lemma 3: The DAM allocation is envy freeness.

Proof 3: For any two users i, j ∈ U such that i < j at any
step k. When i ≤ k < j, user j’s dominant resource alloca-
tion
∑s

l=1 Ak
jlr∗j
= 0, so

∑s
l=1 Ak

ilr∗i
>
∑s

l=1 Ak
jlr∗j

. For the case

i < j ≤ k, according to the first constraint of the LP, we can

know that
∑s

l=1 Ak
ilr∗i∑s

l=1 Clr∗i
>

∑s
l=1 Ak

jlr∗j∑s
l=1 Clr∗j

.

Assume that if
∑s

l=1 Ak
ilr∗i∑s

l=1 Clr∗i
>

∑s
l=1 Ak

jlr∗j∑s
l=1 Clr∗j

, then i < j

and
∑s

l=1 Ak
ilr∗i
=
∑s

l=1 Aj−1
ilr∗i

. Suppose for contradiction
∑s

l=1 Ak
ilr∗i
>
∑s

l=1 Aj−1
ilr∗i

, this means that these exits one step

t,
∑s

l=1 At
ilr∗i
>
∑s

l=1 At−1
ilr∗i

. When t ≤ j,
∑s

l=1 At
ilr∗i∑s

l=1 Clr∗i
=

∑s
l=1 At

jlr∗j∑s
l=1 Clr∗j

.

Extend step t to k,
∑s

l=1 Ak
ilr∗i∑s

l=1 Clr∗i
=

∑s
l=1 Ak

jlr∗j∑s
l=1 Clr∗j

, this contradicts our

assumption. So DAM satisfies EF for the environment of
multiple heterogeneous servers in the dynamic setting.

Zhisheng Huo is a Post-doctoral candidate
of School of Computer Science and Technology,
Beihang University. His research interests in-
clude big data storage and distributed storage
system.

Limin Xiao is a professor of School of Com-
puter Science and Engineering, Beihang Uni-
versity. His research interests include computer
architecture, high performance computing and
computer system software.

Zhenxue He is an associate professor of
Hebei Agricultural University. His research in-
terests include low power integrated circuit de-
sign and optimization, multiple-valued logic cir-
cuits and computer aided design. He is a mem-
ber of ACM and China Computer Federation.

Xiaoling Rong is currently working to-
ward the master’s degree in School of Commu-
nication Science, Beijing Language and Culture
University. Her research interests include chil-
dren language processing and children language
disorder.

Bing Wei is currently pursuing a Ph.D. de-
gree in computer science at Beihang University.
His main research interests include distributed
file systems, high performance computing, soft-
ware engineering, and clusters.

http://dx.doi.org/10.1109/iiswc.2008.4636097

