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PAPER

Mapping a Quantum Circuit to 2D Nearest Neighbor Architecture
by Changing the Gate Order

Wakaki HATTORI†a), Nonmember and Shigeru YAMASHITA††b), Senior Member

SUMMARY This paper proposes a new approach to optimize the num-
ber of necessary SWAP gates when we perform a quantum circuit on a
two-dimensional (2D) NNA. Our new idea is to change the order of quan-
tum gates (if possible) so that each sub-circuit has only gates performing
on adjacent qubits. For each sub-circuit, we utilize a SAT solver to find the
best qubit placement such that the sub-circuit has only gates on adjacent
qubits. Each sub-circuit may have a different qubit placement such that we
do not need SWAP gates for the sub-circuit. Thus, we insert SWAP gates
between two sub-circuits to change the qubit placement which is desirable
for the following sub-circuit. To reduce the number of such SWAP gates
between two sub-circuits, we utilize A* algorithm.
key words: Nearest Neighbor Architecture (NNA), gate order

1. Introduction

After the seminal papers by Shor [1] and Grover [2], there
have been intensive researches for quantum computations.
To realize general-purpose quantum computers, one of the
major challenges is to find an efficient method to design
fault-tolerant quantum circuits [3] in order to overcome the
decoherence problem. When we perform an operation be-
tween distant two qubits, the error due to decoherence would
occur frequently. Therefore, it has been considered to per-
form quantum circuits on an NNA (Nearest Neighbor Ar-
chitecture) [4] where operations only on adjacent qubits are
allowed.

To perform arbitrary quantum circuits on an NNA, we
need to insert SWAP gates so that the two qubits related to
each gate become adjacent. (Note that we assume quan-
tum circuits consisting of only two-qubit gates like most
of the previous works.) To reduce the number of inserted
SWAP gates, there have been many optimization methods
proposed; some methods consider the initial qubit place-
ment, whereas other methods consider how SWAP gates are
inserted.

Indeed there have been researches to develop design
methods considering various kinds of NNAs, i.e., for one-
dimensional (1D) [4]–[11], two-dimensional (2D) [12]–
[15] and three-dimensional (3D) [16] architectures. As a
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most general model, some researches consider an arbitrary
graph where each vertex corresponds to a qubit, and al-
low an operation only on the adjacent two vertices in the
graph [17]–[19].

Recently, 2D architectures have been studied the most
intensively because they have more adjacent qubits com-
pared to 1D architectures, and should be much easier to be
implemented than 3D ones. For 2D NNAs, PAQCS (Phys-
ical Design-Aware Fault-Tolerant Quantum Circuit Synthe-
sis) [20] is a good heuristic methodology to reduce the in-
serted SWAP gates. To reduce the necessary inserted SWAP
gates, PAQCS considers mainly two issues. First, it finds
possibly good initial qubit placement based on a graph gen-
erated from a each given quantum circuit. Next it finds pos-
sibly a good way to “move” (the contents of) qubits in order
to make the two qubits related to each gate adjacent.

In the above-mentioned process, PAQCS assumes the
gate order is fixed from a given one; it does not consider
what is a possibly good gate order to reduce the inserted
SWAP gates. Note that almost all previous works for NNAs
do not consider the gate order.

Considering the above situation, this paper seeks a new
approach to optimize the number of necessary SWAP gates
when we map a quantum circuit to a 2D NNA. Our new idea
is to change the order of quantum gates (if possible) so that
we can decrease the number of sub-circuits which has only
gates performing on adjacent qubits. For each sub-circuit,
we utilize a SAT solver to find the best qubit placement such
that the sub-circuit has only gates on adjacent qubits in a 2D
architecture. This contrasts with PAQCS which find a qubit
placement heuristically.

Each sub-circuit may have a different qubit placement
such that we do not need SWAP gates for the sub-circuit.
Thus, we insert SWAP gates between two sub-circuits to
change the qubit placement which is desirable for the fol-
lowing sub-circuit. To reduce the number of such SWAP
gates between two sub-circuits, we utilize A* algorithm.

We confirmed that the above-mentioned new approach
has a potential to reduce the number of necessary SWAP
gates compared with the approach used in PAQCS. Note that
we consider a regular 2D architecture in this paper, but our
framework can be easily extended to any architecture.

This paper is organized as follows. We review previ-
ous design methods for 2D NNAs in Sect. 2. After that,
in Sect. 3 we propose our design method, and explain how
we can construct a sub-circuit for 2D NNAs, and how we
can find a good sequence of inserting SWAP gates in our
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Fig. 1 An example of qubit placement on a 2D grid architecture.

Fig. 2 qubit placement after an operation S (q1, q4) is performed on qubit
placement in Fig. 1.

method. We provide some preliminary experimental results
in Sect. 4 to show the potential of our idea, i.e., to change
the order of gates. Finally, Sect. 5 concludes the paper with
our future works.

2. Nearest Neighbor Architectures

In a 2D grid architecture, qubits are placed on a 2D grid
as shown in Fig. 1. A qubit has four neighboring qubits at
most. For example, in Fig. 1, a qubit q4 has four neighboring
qubits which are q1,q3,q5 and q7.

When an operation is performed on distant qubits such
as q0 and q4 in Fig. 1, the decoherence error is more likely
to occur. On the other hand, it is expected to reduce the
decoherence error by performing a quantum circuit on an
NNA. Therefore, to perform a quantum circuit on an NNA,
SWAP gates are inserted to swap quantum states, so that a
control bit and a target bit are adjacent with each other when
we perform an operation on distant qubits. In this paper,
S (qi, q j) means a SWAP gate between qi and q j. C(qi, q j)
means a CNOT gate between qi and q j. qi and q j of C(qi, q j)
mean a control bit and a target bit of C(qi, q j) respectively.

When an operation S (q1, q4) is performed on the
qubit placement as shown in Fig. 1, the qubit placement is
changed to one as shown in Fig. 2. Since q0 and q4 are adja-
cent on the qubit placement in Fig. 2, C(q0, q4) is performed
on adjacent qubits. Note that we do not change the qubit
placement physically when we perform SWAP gates; only
the quantum states of two qubits are swapped when we ap-
ply a SWAP gate.

When the initial qubit placement of a quantum circuit
in Fig. 3 is one as shown in Fig. 1, for example, we can get
circuits as shown in Fig. 4 and Fig. 5 after SWAP gates are
inserted. The quantum states of qubits change by inserting
SWAP gates, so the output of the quantum circuit will be
different from the original one. Thus SWAP gates need to
be inserted again to restore the output after all operations.
The number of SWAP gates is 10 in Fig. 4, and the num-
ber of SWAP gates is 6 in Fig. 5. As these examples show,

Fig. 3 An example of quantum circuit for explaining insertion of SWAP
gates.

Fig. 4 An example of a quantum circuit on an NNA that 10 SWAP gates
are inserted into a quantum circuit in Fig. 3.

Fig. 5 An example of a quantum circuit on an NNA that 6 SWAP gates
are inserted into a quantum circuit in Fig. 3.

the way of inserting SWAP gates affects the total number of
necessary SWAP gates in order to map a quantum circuit to
one on an NNA.

3. The Proposed Method

We divide a given quantum circuit into sub-circuits such that
all operations in the sub-circuits can be performed without
inserting SWAP gates in consideration of changing the gate
order. In our proposed method, a SAT solver is used to de-
termine if there exists such sub-circuits, and to construct
sub-circuits. While constructing sub-circuits, the gate or-
der is considered to construct sub-circuits so that they in-
clude more gates. After dividing a given quantum circuit
into several sub-circuits, SWAP gates are inserted between
two sub-circuit to change the qubit placement to the appro-
priate qubit placement for each sub-circuit. We employ A*
algorithm to find how to insert SWAP gates to change the
qubit placement. A* algorithm is a major searching method
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Fig. 6 An outline of the generated circuit by the proposed method.

and it is also used to map a quantum circuit to an NNA [17].
The overall flow of the proposed method is as shown in

Algorithm1 and Fig. 6 illustrates an outline of the generated
circuits by the proposed method. Details are explained in
the following sections.

Algorithm 1 Algorithm to divide a given quantum circuit
into sub-circuits and to insert SWAP gates between two sub-
circuits
1: while there exists a quantum gate that is not added to a sub-circuit do
2: Construct a gate dependency graph of quantum gates that are not

added to sub-circuits
3: Use a SAT solver for a sub-circuit that includes all quantum gates

in the gate dependency graph
4: if UNSAT then
5: Fail⇐ the number of quantum gates that are not added to sub-

circuits
6: S uccess⇐ 0
7: while S uccess − Fail > 1 do
8: while there exists a sub-circuit that contains ⌈(S uccess +

Fail)/2⌉ quantum gates which is not used for SAT solver do
9: Use a SAT solver for sub-circuits that contain
⌈(S uccess + Fail)/2⌉ quantum gates which is not used for SAT solver

10: if SAT then
11: S uccess⇐ ⌈(S uccess + Fail)/2⌉
12: break
13: else
14: if we have already checked all the possible sub-

circuits having ⌈(S uccess + Fail)/2⌉ quantum gates by a SAT solver
then

15: Fail⇐ ⌈(S uccess + Fail)/2⌉
16: end if
17: end if
18: end while
19: end while
20: end if
21: end while
22: Insert SWAP gates between two sub-circuit by using A* algorithm

3.1 Constructing Sub-Circuits in Consideration of Chang-
ing the Gate Order

A gate dependency graph is used to construct sub-circuits
of a quantum circuit in consideration of changing the gate
order. A gate dependency graph is a directed graph that
shows the dependency of quantum gates in a quantum cir-
cuit. When quantum gates are not commutative, we define
that there is dependency between those quantum gates.

A gate dependency graph of a quantum circuit in Fig. 7
is as shown in Fig. 8. In the quantum circuit in Fig. 7, a tar-
get bit of C1 is the same as a control bit of C2. Thus these
quantum gates are not commutative, and C2 must be per-
formed after performing C1. In the gate dependency graph

Fig. 7 A quantum circuit that has dependency between quantum gates.

Fig. 8 A gate dependency graph of Fig. 7.

as shown in Fig. 8, there is a directed edge from node C1 to
node C2. This means that C1 and C2 are not commutative,
and C2 must be performed after performing C1. There is no
path from C2 to C3 (or vice versa) in Fig. 8, and thus we
can change the gate order of C2 and C3. While constructing
sub-circuits, we consider the gate order by using a gate de-
pendency graph to construct sub-circuits that includes more
gates.

Let us show an example by using a circuit as shown in
Fig. 9 and its gate dependency graph as shown in Fig. 10.
In the following, a sub-circuit is denoted by S i, and S i

is a set of quantum gates. We first consider S 1 =

{C1,C2,C3,C4,C5,C6,C7,C8} as a target sub-circuit of the
quantum circuit in Fig. 9 that includes the largest number of
quantum gates. When a SAT solver is used for S 1 to find a
qubit placement such that all the operations in S 1 can be per-
formed on an NNA architecture, the SAT solver returns that
such a qubit placement does not exist. Accordingly, we try a
new sub-circuit, S 2, which includes half number of quantum
gates as S 1; S 2 includes 4 quantum gates.

When constructing S 2, it is necessary to select quantum
gates from the root of the gate dependency graph in Fig. 10
in order to keep the dependency of quantum gates. Consid-
ering the above, we consider S 2 = {C1,C2,C3,C4}. When a
SAT solver is used for S 2 to find a qubit placement that all
operations can be performed on an NNA architecture, this
time the SAT solver returns that there exists such a qubit
placement. Because we want to find a sub-circuit that in-
cludes more quantum gates (if there is), we try another new
sub-circuit, S 3, which contains (|S 1| + |S 2|)/2 = 6 quantum
gates. This is because we already know that there is a desir-
able sub-circuit having |S 2| gates, and also there is no such a
sub-circuit having |S 1| gates, and thus we try to find a circuit
having the average number of |S 1| and |S 2| quantum gates;
this is a standard binary-search technique.

Thus, by considering the dependency of quantum
gates, we try S 3 = {C1,C2,C3,C4,C5,C6} after S 2. When
a SAT solver is used for S 3 to find a qubit placement that
all operations can be performed on a NNA architecture, the
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Fig. 9 An example of a quantum circuit to explain the constructing
method of sub-circuits.

Fig. 10 A gate dependency graph of a quantum circuit in Fig. 9.

SAT solver returns that there does not exist such a qubit
placement. Then, for the next trial, we use a SAT solver for
S 4 = {C1,C2,C3,C4,C6,C8} that also has 6 quantum gates,
and then the SAT solver returns that there exists such a qubit
placement.

Accordingly, in the same way as constructing S 3,
we construct another new sub-circuit, S 5, which includes
(|S 1| + |S 4|)/2 = 7 quantum gates. Thus, by consider-
ing the dependency of quantum gates, we consider S 5 =

{C1,C2,C3,C4,C5,C6,C8} next. When a SAT solver is used
for S 5, the SAT solver returns that there does not exist such
a qubit placement. When a SAT solver is used for another
sub-circuit that also has 7 quantum gates, the SAT solver
returns that there does not exist such a qubit placement.

In conclusion, S 4 in Fig. 11 is a sub-circuit that has the
largest number of quantum gates for our purpose. We can
find a sub-circuit including the largest number of quantum
gates by the above-mentioned binary search-based method.

Usually a sub-circuit containing the largest number of
gates seems to be a good choice. However, sometimes such
a sub-circuit needs too many SWAP gates to get the qubit
placement for the sub-circuit. If we select such a sub-circuit,
the final result may become worse. So, we try to select pos-
sibly the best sub-circuits as follows. We check how many
SWAP gates are needed to get the qubit placement for all the
possible sub-circuits to be performed on an NNA architec-
ture. Then we select one sub-circuit such that the number
of gates in the sub-circuit divided by that of inserted SWAP
gates is the largest.

3.2 Qubit Placement with a SAT Solver

In the following, we consider qubits are placed on a 2D grid
as shown in Fig. 13. If we choose the qubit placement as
shown in Fig. 13, the control and the target bits are adja-
cent for all CNOT gates in the quantum circuit as shown
in Fig. 12. Thus all operations in Fig. 12 can be performed

Fig. 11 sub-circuit S 4 = {C1,C2,C3,C4,C6,C8}.

Fig. 12 A quantum circuit in which all operations can be performed on
NNA without inserting SWAP gates.

Fig. 13 A qubit placement that allows the quantum circuit in Fig. 12 to
be performed on an NNA without inserting any SWAP gate.

without inserting SWAP gates on this qubit placement.
In the following, we propose a method to find such a

good 2D placement based on a Boolean satisfiability prob-
lem (SAT). Namely, we formulate a qubit placement prob-
lem as a Boolean function (i.e., a SAT problem instance) as
follows: the derived Boolean function is satisfiable if and
only if there exists a qubit placement for a given quantum
circuit to be performed on an NNA without inserting SWAP
gates. A SAT solver as explained below is used to figure out
that such a qubit placement exists, and if it exists, the solver
also finds how qubits are placed.

A SAT solver determines the satisfiability of a given
Boolean function, and it can also provide a satisfying as-
signment when the problem is satisfiable. In our proposed
method, one variable is used to express whether or not each
qubit is placed on each cell on a 2D grid, and all the nec-
essary conditions are expressed by Boolean formulas with
such variables as we will explain in the following.

The following three conditions are needed to assign
qubits on a 2D grid such that all operations in a sub-circuit
can be performed without inserting SWAP gates.

Condition 1 A control bit and a target bit of all gates are
adjacent.

Condition 2 Each qubit is assigned to only one cell on a 2D
grid.

Condition 3 At most one qubit is assigned to each cell on
a 2D grid.

As shown in Fig. 14, a cell of row i and column j on a
2D grid is expressed as (i, j). Logical variable xi, j,k expresses
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Fig. 14 An example of expressing cells on a 2D grid as coordinates.

whether qubit qk is assigned to (i, j) or not. Namely, when
qubit qk is assigned to (i, j), xi, j,k becomes 1. Otherwise xi, j,k

becomes 0. For example, if q1 is assigned to (2, 0), x2,0,1

becomes 1. If q1 is not assigned to (2, 0), x2,0,1 becomes 0.
First we consider the expression for Condition 1. For

example, when there is a CNOT gate that has q2 as a control
bit and q4 as a target bit, q2 and q4 have to be assigned adja-
cently. Thus, if q2 is assigned to (1, 1), q4 has to be assigned
to either one of (0, 1), (1, 0), (1, 2) or (2, 1). Accordingly,
when x1,1,2 is 1, either of x0,1,4, x1,0,4, x1,2,4 or x2,1,4 has to be
1. This condition can be expressed as Eq. (1).

(¬x1,1,2) ∨ (x0,1,4 ∨ x1,0,4 ∨ x1,2,4 ∨ x2,1,4) (1)

We consider such conditions of assigning q2 and q4

to adjacent qubits for each cell. Then, by ORing all the
Boolean formulas for such conditions, we get a formula
for the condition such that q2 and q4 should be placed ad-
jacently. We consider such formulas for each pair of control
and target bits for all gates, and we get the formula for Con-
dition 1 by ANDing them.

Next we consider the expression for Condition 2. For
example, q0 has to be assigned to only one of cells on a 2D
grid. This can be realized by considering the following two
conditions: The first one is that q0 is assigned to at least one
cell, and the second one is that q0 is assigned to at most one
cell on a 2D grid.

The former condition can be expressed as at least one
of xi, j,0 has to be 1. Thus, as shown in Eq. (2), sum of
xi, j,0 needs to be 1. The condition also can be expressed
as Eq. (3).∑

i, j

xi, j,0 = 1 (2)

x0,0,0 ∨ x0,1,0 ∨ x0,2,0 ∨ · · · · · · ∨ xi, j,0 (3)

The latter condition can be expressed as follows: For exam-
ple, if we do not want x0,0,0 and x0,1,0 to be 1 at the same
time, we have Eq. (4) which means x0,0,0 and x0,1,0 cannot
be 1 at the same time. That is, when Eq. (4) holds, q0 cannot
be assigned to both of (0, 0) and (0, 1) at the same time.

¬x0,0,0 + ¬x0,1,0 = 1 (4)

We consider similar formulas for all pairs of cells on a
2D grid as shown in Eq. (5). By ANDing these formulas, we
have formulas for Condition 2 only for q0.

¬xi, j,0 + ¬xk,l,0 = 1 ((i, j) , (k, l)) (5)

If Eq. (3) and Eq. (5) hold, q0 is assigned to at least one of

cells on a 2D grid, and q0 is assigned to at most one cell on
a 2D grid. We can consider similar formulas for all qubits,
and by ANDing them, we have a formulas for Condition 2.

To express Condition 3 as Boolean formulas, we use a
similar method used to derive the formulas for Condition 2.
At this time, no more than one qubit needs to be assigned
to each cell. For example, Eq. (6) expresses a condition that
prohibits assigning q0 and q1 to (0, 0) at the same time.

¬x0,0,0 + ¬x0,0,1 = 1 (6)

We consider similar formulas for all pairs of qi and q j as
shown in Eq. (7). By ANDing these formulas, we get a for-
mulas of the condition that only one qubit is assigned to
(0, 0). We consider similar formulas for each cell, and we
get the expression for Condtion 3 by ANDing them.

¬x0,0,i + ¬x0,0, j = 1 (i , j) (7)

By ANDing the above expressions for Conditions 1, 2
and 3 all together, we finally obtain a SAT formula for our
purpose. Thus, by using a SAT solver, we can determine if
there exists a good qubit placement that allow us to perform
a given circuit on an NNA without inserting SWAP gates. If
such a qubit placement exists, a SAT solver find an satisfy-
ing variable assignment as well.

There may be a case when several qubit placements
can satisfy the conditions. To get another satisfying variable
assignment, we use a SAT solver repeatedly with adding the
negated conditions obtained before. In such a case, we adopt
a qubit placement with the smallest values of h∗(n) which
is a cost function to measure the quality of an intermediate
solution in A* algorithm, which will be explained in detail
in the next section.

3.3 Inserting SWAP Gates by A* Algorithm

After dividing a given quantum circuit into sub-circuits each
of which can be performed without inserting SWAP gates,
our remaining task is to insert SWAP gates between each
pair of two sub-circuits to change the qubit placement so that
each sub-circuit can be performed without inserting SWAP
gates. We utilize A* algorithm to decide the way of inserting
SWAP gates as we will explain in the following.

A* algorithm searches a graph to find a way from the
start node S to the goal node G based on a cost function
f ∗(n) which is the sum of g∗(n) and h∗(n) as shown in Eq. (8)
where n means a node found during the search of a way in
the graph. g∗(n) is a cumulative cost from the start node
to the current node, n, and h∗(n) is a heuristic function that
estimates the cost from the current node, n, to the goal node.

f ∗(n) = g∗(n) + h∗(n) (8)

Algorithm 3 shows our A* algorithm which inserts
SWAP gates to change the qubit placement. We add a
searched node to the open list. We sort the nodes in the open
list based on f ∗(n). A node with the least f ∗(n) in the open
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list is popped from the open list, and added to the closed
list. This means that we select the node with the least f ∗(n)
as promising to search first, and so we add all the nodes
connected to it (i.e., the nodes we can reach by one move
from the selected node) into the open list. These processes
are repeated until we get to the goal, i.e., the objective qubit
placement.

Each node in a graph used for our A* algorithm corre-
sponds to a qubit placement. If two nodes are connected in
the graph, a single SWAP gate can change the qubit place-
ments between the two placements corresponding to the two
nodes. In the following, S is the qubit placement of one sub-
circuit and G is the one of the following (next) sub-circuit;
we find a way of inserting SWAP gates between two sub-
circuits by searching a shortest path from S to G in the graph
for the A* algorithm.
g∗(n) is the number of moves to reach n from S . That

is, the number of necessary inserted SWAP gates to get to
the qubit placement corresponding to n. h∗(n) is the sum of
manhattan distance between the locations of qubit qi in the
qubit placement corresponding to n and the objective qubit
placement. When the qubit placement corresponding to n
and G are as shown in Fig. 15 and Fig. 16, respectively, h∗(n)
is calculated as follows. q0 is located on (1, 1) in n. On the
other hand, it is located on (0, 0) in G. Thus, the manhattan
distance of q0 in these qubit placements is 2. The manhattan
distance for other qubits is calculated in the same way, and
the sum of the manhattan distance is as shown in Eq. (9).

Algorithm 3 A* algorithm inserting SWAP gates to change
the qubit placement
1: Initialize the open list and the closed list
2: Add the starting node to the open list
3: while the open list is not empty do
4: m← openlist.pop()
5: Add m to the closed list
6: for each ḿ such that ḿ is a qubit placement obtained from m by

inserting a single SWAP gate do
7: if the qubit placement ḿ is equivalent to the one corresponding

to G then
8: break
9: end if

10: Calculate f ∗(ḿ) and add ḿ to the open list
11: end for
12: Sort nodes in the open list based on f ∗()
13: end while

h∗(n) = 2 + 1 + 2 + 1 = 6 (9)

We show an example of inserting SWAP gates by A*
algorithm as follows. In the example, we consider insert-
ing SWAP gates to change the qubit placement from the one
corresponding to S as shown in Fig. 15 to the one corre-
sponding to G as shown in Fig. 16.

OL and CL stand for the open list and the closed list,
respectively. At first, OL is {S } and CL is {} since S is
the start node. Therefore, S is popped from OL and added

Fig. 15 An example of qubit placement.

Fig. 16 The qubit placement corresponding to G after inserting SWAP
gates.

Fig. 17 An example of A* algorithm (Step1).

Fig. 18 An example of A* algorithm (Step2).

to CL. As shown in Fig. 17, there are four ways to in-
sert a SWAP gate to the qubit placement S and they are
S (q2, q3), S (q1, q3), S (q0, q1) and S (q0, q2). These nodes are
added to OL and then, OL is {A1(5), A3(5), A4(5), A2(9)} af-
ter it is sorted based on f ∗(n) which are in the parenthesis.

A1 is popped from OL and added to CL because
A1 is one of the nodes whose f ∗(n) is the small-
est. Therefore, CL becomes as {S , A1(5)}. There
are four ways to insert a SWAP gate to the qubit
placement A1 and they are S (q2, q3), S (q1, q2), S (q0, q1)
and S (q0, q3) as shown in Fig. 18. Since OL be-
comes as {B3(4), A3(5), A4(5), B2(6), B4(6), B1(8), A2(9)}, B3

is popped from OL and added to CL. Then, CL becomes as
{S , A1(5), B3(4)}.

Similarly, there are four ways to insert a SWAP gate
in the qubit placement B3 as shown in Fig. 19 and they are
S (q2, q3), S (q0, q2), S (q0, q1) and S (q0, q3). Now C2 is the
same qubit placement as the one corresponding to G, and so
A* algorithm finishes.

The above example shows that it is possible to
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Fig. 19 An example of A* algorithm (Step3).

Table 1 The comparison between PAQCS and our proposed method.

Quantum circuits SWAP gates
Qubits Two qubit gates PAQCS Proposed Improvement(%)

16 50 110 49 55.45
16 100 221 91 58.82
16 200 445 187 57.98
25 50 162 76 53.09
25 100 331 139 58.01
25 200 665 287 56.84
36 50 208 103 50.48
36 100 443 194 56.21
36 200 895 428 52.18
49 50 272 138 49.26
49 100 562 264 53.02
49 200 1137 548 51.80

change the qubit placements corresponding to the change
from S to G by inserting SWAP gates in the order of
S (q2, q3), S (q0, q1), S (q0, q2). Thus, by using the above A*
algorithm, it is able to find a way of inserting SWAP gates
to change the qubit placement for the following sub-circuit.

4. Experimental Results

We implemented the proposed method and PAQCS [20] in
C++ to evaluate the performance of the proposed method.
We generated 300 random benchmark quantum circuits con-
sisting of only two-qubit gates whose control and target
bits are chosen randomly. Then, we applied the proposed
method and PAQCS to them in order to compare the aver-
age number of inserted SWAP gates. In the experiment, we
utilized GlueMiniSat 2.2.8 for a SAT solver and a 4.20 GHz
i7-7700K CPU with 16 GB RAM.

Each row of Table 1 reports the average number of
inserted SWAP gates of 300 different random circuits by
our method and PAQCS. Our proposed method can reduce
the number of inserted SWAP gates by 54.43% on average
compared to PAQCS. Even for larger quantum circuits, our
method can find the solution within 10 minutes; On the other
hand, PAQCS takes less than a minute. We confirmed that
changing the order of quantum gates makes it possible to
perform more gates on the same qubit placement (without
inserting SWAP gates). We consider that this would be one
reason why our method can reduce the inserted SWAP gates.

Our method inserts SWAP gates between each sub-
circuit, and thus the number of sub-circuits affects the num-

ber of inserted SWAP gates in our method. In an extreme
case, there is sometimes only one sub-circuit in our method
when there are few quantum gates. In such a case, a SAT
solver finds a qubit placement by which we can perform
all the gates without inserting any SWAP gate. However,
PAQCS may need to insert SWAP gates even in the same
case because PAQCS determines the initial qubit placement
heuristically unlike our method.

Note that both the SAT solver and the A* search used
in our method need exponential time to the problem size.
However, our experimental results show that our method can
treat quantum circuits that are available currently like IBM-
Q or in the near future. If much larger quantum circuits
are available in the future, we may need to divide a large
circuit into sub-circuits so that our method can treat each
sub-circuit.

5. Conclusion

In this paper, we proposed a new idea to map a quantum
circuit so that we can perform on an NNA; we proposed to
change the order of quantum gates to decrease the number
of inserted SWAP gates. By means of changing the order of
quantum gates, we can indeed decrease the number of sub-
circuits in which all the gates perform on adjacent qubits.

We utilize a SAT solver to find a good qubit placement
such that the sub-circuit has only quantum gates performing
on adjacent qubits in 2D architecture. Moreover, we utilize
A* algorithm to insert SWAP gates for changing the qubit
placement between two sub-circuits. As a result, we can
reduce the number of inserted SWAP gates compared to the
state-of-the-art heuristic, PAQCS.

In our proposed method, the performance of A* algo-
rithm get worse when the target quantum circuit become
larger. Thus, our future work is to find a way to insert SWAP
gates to change the qubit placement more efficiently than our
current A* algorithm. Also, as our future work, we should
evaluate our framework by using benchmark circuits which
are used in the research community of quantum circuit de-
sign.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 15H01677 and 18K19790, and by the Asahi Glass Foun-
dation.

References

[1] P.W. Shor, “Polynomial-time algorithms for prime factorization and
discrete log- arithms on a quantum computer,” SIAM J. Comput.,
vol.26, no.5, pp.1484–1509, 1997.

[2] L.K. Grover, “A fast quantum mechanical algorithm for database
search,” Proc. Twenty-Eighth Annual ACM Symposium on Theory
of Computing, pp.212–219, 1996.

[3] H. Goudarzi, M.J. Dousti, A. Shafaei, and M. Pedram, “Design of
a universal logic block for fault-tolerant realization of any logic op-
eration in trapped-ion quantum circuits,” Quantum Information Pro-
cessing, vol.13, no.5, pp.1267–1299, May 2014.

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/doi.org/10.1007/s11128-013-0725-3
http://dx.doi.org/doi.org/10.1007/s11128-013-0725-3
http://dx.doi.org/doi.org/10.1007/s11128-013-0725-3
http://dx.doi.org/doi.org/10.1007/s11128-013-0725-3


2134
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.11 NOVEMBER 2019

[4] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An Effi-
cient Conversion of Quantum Circuits to a Linear Nearest Neighbor
Architecture,” Quantum Info. Comput., vol.11, no.1, pp.142–166,
Jan. 2011.

[5] R. Wille, M. Saeedi, and R. Drechsler, “Synthesis of Reversible
Functions Beyond Gate Count and Quantum Cost,” arXiv preprint
arXiv:1004.4609, 2010.

[6] R. Wille, A. Lye, and R. Drechsler, “Optimal SWAP gate insertion
for nearest neighbor quantum circuits,” 2014 19th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.489–494,
IEEE, 2014.

[7] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum cir-
cuits for linear nearest neighbor architectures,” Quantum Informa-
tion Processing, vol.10, no.3, pp.355–377, June 2011.

[8] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum
circuits for interaction distance in linear nearest neighbor architec-
tures,” Proc. 50th Annual Design Automation Conference, Article
No. 41, ACM, 2013.

[9] M.M. Rahman and G.W. Dueck, “Synthesis of linear nearest neigh-
bor quantum circuits,” arXiv preprint arXiv:1508.05430, 2015.

[10] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear near-
est neighbor synthesis of reversible circuits by graph partitioning,”
arXiv preprint arXiv:1112.0564, 2011.

[11] A. Matsuo and S. Yamashita, “Changing the gate order for optimal
LNN conversion,” International Workshop on Reversible Computa-
tion, LNCS, vol.7165, pp.89–101, Springer, 2011.

[12] A. Shafaei, M. Saeedi, and M. Pedram, “Qubit placement to min-
imize communication overhead in 2D quantum architectures,”2014
19th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp.495–500, IEEE, 2014.

[13] D. Ruffinelli and B. Barán, “Linear nearest neighbor optimization in
quantum circuits: a multiobjective perspective,” Quantum Informa-
tion Processing, vol.16, no.9, p.220, 2017.

[14] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimiza-
tion of 1D and 2D quantum circuits,” 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.292–297,
IEEE, 2016.

[15] A. Farghadan and N. Mohammadzadeh, “Quantum circuit physical
design flow for 2D nearest-neighbor architectures,” Int. J. Circuit
Theory and Applications, vol.45, no.7, pp.989–1000, July 2017.
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