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SLLA-Aware and Energy-Efficient VM Consolidation in Cloud Data
Centers Using Host State Binary Decision Tree Prediction Model
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SUMMARY  For cloud data center, Virtual Machine (VM) consolida-
tion is an effective way to save energy and improve efficiency. However,
inappropriate consolidation of VMs, especially aggressive consolidation,
can lead to performance problems, and even more serious Service Level
Agreement (SLA) violations. Therefore, it is very important to solve the
tradeoff between reduction in energy use and reduction of SLA violation
level. In this paper, we propose two Host State Detection algorithms and
an improved VM placement algorithm based on our proposed Host State
Binary Decision Tree Prediction model for SLA-aware and energy-efficient
consolidation of VMs in cloud data centers. We propose two formulas of
conditions for host state estimate, and our model uses them to build a Bi-
nary Decision Tree manually for host state detection. We extend Cloudsim
simulator to evaluate our algorithms by using PlanetLab workload and ran-
dom workload. The experimental results show that our proposed model
can significantly reduce SLA violation rates while keeping energy cost ef-
ficient, it can reduce the metric of SLAV by at most 98.12% and the metric
of Energy by at most 33.96% for real world workload.

key words: VM consolidation, Binary Decision Tree, SLA-aware, energy-
efficient, cloud data centers

1. Introduction

Cloud computing is a pay-per-use model that provides us-
able, convenient and on-demand resource use. Today more
and more enterprises and research institutions choose cloud
computing for reducing the total cost of ownership and im-
proving work efficiency. But cloud data centers are consum-
ing more and more power, so cloud service providers need
to improve resource efficiency to save money, for example,
Google company can save more than a million dollars per
year by reducing just 3% power [1].

Virtual Machine (VM) consolidation technique is an
effective method for saving power by reducing active phys-
ical servers [2]. It has been found that about 30% power is
used by idle servers in cloud data centers which causing un-
necessary carbon dioxide emissions [3]. VM consolidation
technique reassigns VMs to as few physical hosts as possi-
ble. After that the idle servers can be turned into low power
mode, so the overall energy consumption can be effectively
reduced.

However, VM consolidation may cause performance
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problems because all VMs in [aaS environment share the un-
derlying physical resources. Quality of Service (QoS) which
is formalized via Service Level Agreement (SLA) is critical
for both cloud providers and users. So there exists a trade-
off between energy efficiency and performance - minimizing
energy consumption on the premise of meeting SLA. There-
fore, we need to carefully develop a VM migration scheme.
An effective method is to migrate VMs according to the state
of the host at the next moment. If the host is overloaded
at the next moment, some VMs should be migrated out of
the host to avoid performance degradation. If the host is
lightly loaded at the next moment, then the host should be
shut down to save energy. Therefore, all VMs should be
migrated out of the host.

Some studies [4], [5] have found that the energy con-
sumption of servers is linearly related to their CPU utiliza-
tion. So in this paper, a prediction model is proposed to
forecast the future host state based on host CPU utilization
and named Host State Binary Decision Tree Prediction (HS-
BDTP) model. The main objective of HSBDTP model is to
minimize the power consumption and SLA violation level.
Compared to other supervised machine learning methods,
decision tree classifier is a simple and efficient classification
model, which is often used for prediction. The main contri-
butions of this paper are the following.

1. We propose a HSBDTP model to predict the future host
state based on Binary Decision Tree classifier in cloud
data centers.

2. Based on our HSBDTP model, we design two host state
detection algorithms, which can accurately predict the
overloaded and underloaded of the host.

3. We propose two formulas of conditions for host state
estimate. Unlike other researches who use x;,; (x is the
vector of host CPU utilization) at time ¢ + 1 to decide
whether a host is overloaded/underloaded in the next
time, we use the 4 CPU utilization x;, X411, X/42, X;43 at
time f,t+ 1,7+ 2,t+ 3 to build four conditions for host
state estimate.

4. Using our host state detection algorithm, we improve
the VM placement algorithm to avoid invalid VM
placement.

5. We extend the Cloudsim [6] simulator to implement
the proposed algorithms in this paper for performance
evaluation.

The remainder of this paper is organized as follows.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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The related work is discussed in Sect.2. In Sect.3 we in-
troduce our HSBDTP model. Our VM consolidation algo-
rithms based on HSBDTP Model are shown in Sect. 4. We
give the performance evaluation in Sect.5. In Sect.6 we
conclude our paper and discuss some future directions.

2. Related Work

VM consolidation technology can be divided into Non-
Predictive VM consolidation method and Predictive VM
consolidation method according to whether or not to pre-
dict the future use of resources. Non-Predictive VM con-
solidation method makes decisions for VM migration just
considering the current server resource utilization. Ahamed
et al.[7] propose a Non-Predictive VM consolidation algo-
rithm. If the current server CPU utilization is greater than
90%, then the server is considered overloaded, and some
VMs should be migrated from the server. Again, If the cur-
rent server CPU utilization is less than 10%, then the server
is considered underloaded, and all VMs should be migrated
from the server, after that, the server can be turned into sleep
mode for power saving. In [8]-[10] authors propose two
Non-Predictive VM consolidation policies: Median Abso-
lute Deviation (MAD) and Inter Quartile Range (IQR). Al-
though threshold can be dynamically adjusted with the re-
sults of the above two statistical methods, but no predictions
are made.

On the contrary, Predictive VM consolidation method
migrates VMs based on prediction of server future resource
utilization. The examples of Predictive VM consolidation
algorithms are [11]-[13]. In [11], If the current server CPU
utilization is greater than the upper threshold, then the server
is considered overloaded, and if the current server CPU uti-
lization is less than the upper threshold, a linear regression
function is trained to estimate the server future CPU utiliza-
tion, and if the estimation of server future CPU utilization
is greater than the upper threshold, the server is considered
overloaded too, and some VMs should be migrated from the
overloaded server to save power. Mohammad et al.[12] pro-
pose an Iterative Weighted Linear Regression (IWLR) host
overloaded algorithm. The authors use IWLR algorithm to
predict host future CPU utilization values at next time and
the time after next. If host future CPU utilization at next
time is bigger than 1(the host total capacity), then the host
is predicted overloaded, and some VMs should be migrated
to other hosts; if host future CPU utilization at time after
next is bigger than 1, then the host is marked as under pres-
sure, and the host will not accept any new VMs. Suhib et
al.[13] propose a host prediction model based on first order
Markov chain. Hosts are divided into three states based on
their CPU utilization, O stands for overloaded load state, N
stands for normal load state, U stands for underloaded load
state. The next time state can be predicted according to a
state transition probability matrix, and if the next state is O,
meaning the host will be overloaded in the next time, some
VMs should be migrated from this host.

Our previous studies have proposed two Predictive VM
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consolidation methods: linear regression method [14] and
Bayesian classifier method [15]. Linear regression method
predicts by training a regression function. Different from
the native simple linear regression, we propose a Robust-
SLR prediction model which uses eight methods to amend
the prediction. Bayesian classifier method classifies and pre-
dicts by calculating class prior probability and class condi-
tional probability. We propose a HSNBP model based on
Bayesian classifier for host overloading detection. We will
compare our HSBDTP model with our previous studies and
some other methods mentioned above in Sect. 5.

Compare to Non-Predictive VM consolidation algo-
rithms, Predictive VM consolidation algorithms will display
lower SLA violations because of migrating VMs out from
predicted overloaded hosts. But inaccurate prediction may
lead to unnecessary VM migration, resulting in performance
degradation. So in this paper, we are committed to find-
ing more effective machine learning prediction algorithm.
We have proposed a novel host state prediction model based
on Binary Decision Tree classifier named Host State Binary
Decision Tree Prediction model. Compared to other super-
vised machine learning methods, decision tree classifier is a
simple and efficient classification model, which is often used
for prediction. Some studies [16], [17] have shown that De-
cision Tree methodology has excellent performance in many
aspects, and it does not require too much tedious work from
developers and end users.

Dabbagh et al.[18] have proposed a random choice
VM placement algorithm. It chooses the destination active
servers randomly for VM migration. And if no available
active server, it turns on a new server to accommodate the
target VMs. Farahnakian et al.[19] discuss a Best Fit VM
placement algorithm. It chooses the active server with the
minimum residual resource for VM migration. A Power
Aware Best Fit Decreasing (PABFD) algorithm has been
proposed for VM placement [8], [20], it chooses the least
power increasing host for a VM migration. The algorithm is
a greedy algorithm, so VMs are often consolidated aggres-
sively.

3. Host State Binary Decision Tree Prediction Model

We select Classification And Regression Trees(CART) [21]
for our HSBDTP model in this paper. The CART construc-
tion algorithm generate a binary decision tree by recursive
partitioning of a data set D. CART uses measurement of
“impurity”’[22] for optimal partitioning. For example, a fea-
ture S splits a data set D into subsets D; at left child node
N; and D; at right child node N,. The Gini Impurity at split
S is:

Gini(D,S) = 1Dil x Gini(Ny) + D2 X Gini(N2) (1)

DI DI

where Gini(N;) denotes the Gini Impurity of left child
node Nj, and Gini(N;) denotes the Gini Impurity of right
child node N,.

Then the best split can be calculated by Eq. (2). From
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Eq. (2), we can see that the Gini Impurity of every possible
split is determined, and the split with minimum Gini Impu-
rity is selected as the best split.

split_best = argmin(Gini(D, S;)),¥S; € S 2)

In this paper, we propose a Host State Binary Decision
Tree Prediction model based on a binary decision tree clas-
sifier to predict whether a host is overloaded/underloaded.
According to the decision tree theory, we need to formulate
n+ 1-dimensional feature vector (a;, a, . . ., a,, ¢) firstly. So
choosing the suitable features and their label are the two key
problems. Here we use the historic mean values of host CPU
utilization as the input feature vector. Suppose the observa-
tions CPU utilization x;, X;—1, X;—2, - . . , X;—»+1 from n preced-
ing points at time ¢, — 1,1 -2, ..., —n+ 1, then we get the
vector X = (X;, X;—1, X1—2, - . - » X;—n+1)- The input feature vec-
tor Y can be transformed from vector X using Eq. (3) which
is shown as follows:

Y)Yk = (X + X1+ o+ X))k,
1<k<n

Y=01ny2,...

3)

For host overloading detection method, a host can be
divided into overloaded state and normal state; and for
host underloading detection method, a host can be divided
into underloaded state and normal state. So the domain of
class label ¢ is {1, 0} in our model, the class 1 is the over-
loaded/underloaded state of host, and the class O is the nor-
mal state of host. So how to decide the give input vector Y
is overloaded/underloaded or normal is important. In other
researches, people use x,,; to decide whether a host is over-
loaded/underloaded at next time. But our research finds that
this method is really not accurate and not enough, there
are at least two shortcomings for this single point predic-
tion method which uses only one CPU instantaneous value.
Firstly, the host CPU instantaneous value often becomes too
high or too low due to some sudden situation, but this sit-
uation usually lasts only for a very short time. The single
point prediction method using this abnormal value will lead
to wrong prediction results. Secondly, if the CPU of a host is
high or low in a short period of time, such as the last acquisi-
tion cycle, but it is in normal state for a long time afterwards,
it is also inappropriate to predict that the host is overloaded
or underloaded. Because VM migration has negative impact
on performance, and the cost of migration is likely to be
greater than that of non-migration, so it is not appropriate to
migrate too frequently. Our statistical analysis of the actual
data also confirms this point. It finds that compared with
single value prediction method, the accuracy of prediction
can be improved from 34% to 93% for PlanetLab [20] data
by using the multi value prediction method proposed in this
paper. Our multi value prediction method is a decision tree
predicting method which is shown in Fig. 1. We use the 4
CPU utilization X;, Xs41, X402, X;43 at time £, ¢+ 1,6+ 2, + 3
to build four conditions. The formulas of conditions which
are used on Fig. 1 are as follows:
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Fig.1 A Binary Decision Tree

Cl:x,> 01 A X1 >0
C2: Xpy1 + X2 > 02 V X1 + X143 > O
V Xpy2 + Xp43 > O
C3 X+ Xpg1 + X2 > O3 V Xy 1 + X2 + X3 > O3
VX + X2 + X3 > O3
C4 @ Xy + Xp41 + Xpq0 + X33 > Oy
4)
Cl:x;, <U; Axpq < U
C2: X1 + X2 < U V X1 + X3 < U
V X2+ X3 < Un
C3 X+ X1 + X2 < U3V Xyt + X2 + X3 < Us
V X+ X + X3 < Uz
C4: Xt + Xegp1 + X2 + X3 < Uy

S

conditions (4) is for host overloading detection, and
conditions (5) is for host underloading detection. In (4) and
(5), the key thing is to choose the values of Oy, 0,, 03, O4
and Uy, U,, Us, U,. Here we use the statistical analysis and
experiment verification methods to choose the appropriate
range of values firstly. Then we use the Gini Impurity which
is the default splitting criterion used by CART [22] in binary
decision tree to find the exactly values.

split_best_overload =argmin(|Gini(D, S ;) — R,|),

6
NAYTESN ©

split_best_underload =argmin(|Gini(D, S ;) — R,|),

7
VS,‘GS ()

Next we would build a binary decision tree for host
state detection. In this paper, we use an improved splitting
criterion which is shown in Eq. (6) and (7) to build a binary
decision tree manually, the detail is shown on algorithm 1.
In Eq. (6) and (7), we add an adjustment coefficient to the
default equation respectively. The reasons for this modifica-
tion can be explained as follows. In our model, the judgment
conditions of overloaded and underloaded of hosts are sub-
optimal solutions. Therefore, the split based on suboptimal
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Algorithm 1 HSBDTreeBuild(D,E,T)
Input: The train data set D, the feature vector F, and the

tree type T';
Output: the root node of the Host State Binary Decision
Tree, root;
1: if the depth of the tree is 10 then
2: root = createNode();
3: if T=0 then//building HOBDTree
4: root.test_cond = split_best_overload,
5: end if
6: if T=U then//building HUBDTree
7: root.test_cond = split_best_underload,
8: end if
9: leftchild = createNode();
10: leftchild.lable = 1,
11: rightchild = createNode();
12: rightchild.lable = 0;
13: else
14: root = createNode();
15: if T=O then//building HOBDTree
16: root.test_cond = split_best_overload,
17: end if
18: if T=U then//building HUBDTree
19: root.test_cond = split_best_underload,
20: end if
21: leftchild = createNode();
22: leftchild.lable = 1;
23: rightchild = HS BDT reeBuild(D — Do, F, T);
24: end if

25: return root;

solutions will lead to system errors, and the adjustment co-
efficient can be considered as a revise for the system errors
of the model. Because the interval of utilization measure-
ments is 5 minutes in our experiment workload data, the last
50 minutes is enough for predicting the short future state, so
we let n=10 in our experiment. For any input vector Y, we
use the binary decision tree to classify it. If the input vec-
tor Y is assigned to class 1, meaning the host will be over-
loaded/underloaded at next time, otherwise the input vector
Y is assigned to class 0, meaning the host will be normal at
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next time.

On algorithm 1, the inputs are the train data set D, the
feature vector F, and the tree type T. There are two types
of tree in our model, Binary Decision Tree for Host Over-
loading detection (HOBDTree) and Binary Decision Tree
for Host Underloading detection (HUBDTree). The feature
vector F is (y1,¥2, - - .,¥10). Our HSBDTreeBuild algorithm
is for building HOBDTree/HUBDTree, and the depth of
HOBDTree/HUBDTree is 11. On algorithm 1, we firstly use
the split which is shown in Eq. (6) and (7) to split the data set
and create the left and right child nodes(line 13-24). Then
we split the last data set and create the last left and right
child nodes(line 1-12). Finally the HOBDTree/HUBDTree
tree is returned for host state detection (line 25).

4. SLA-Aware and Energy-Efficient VM Consolidation
Based on HSBDTP Model

We split VM consolidation problem into four subproblems:
(1) host overloading detection problem; (2) host underload-
ing detection problem; (3) VM selection problem; and (4)
VM placement problem. Next, we will study the four sub-
problems separately.

4.1 Host Overloading Detection

We use our proposed HSBDTreeBuild algorithm to build a
binary decision tree for detecting when a host is overload-
ing. Algorithm 2 is the pseudo-code of Host Overloading
Detection (HOD) algorithm.

Initially, when the host accumulates less than 10 histor-
ical CPU utilization data, we use a static threshold method to
detect whether a host is overloaded. Here we set the thresh-
old to 90% (line 1-4). Then, we calculate the input vector Y
according to Eq. (3) (line 6-12). After that we build a HOB-
DTree using the HSBDTreeBuild algorithm (line 13). Then
we use the HOBDTree for host overloading detection (line
14). Finally, if the host is overloaded, it will return true,
otherwise it will return false(line 15-19).

4.2 Host Underloading Detection

We use our proposed HSBDTreeBuild algorithm to build a
binary decision tree for detecting when a host is Underload-
ing. Algorithm 3 is the pseudo-code of Host Underloading
Detection (HUD) algorithm.

Initially, when the host accumulates less than 10 histor-
ical CPU utilization data, we use a static threshold method to
detect whether a host is underloaded. Here we set the thresh-
old to 10% (line 1-4). Then, we calculate the input vector Y
according to Eq. (3) (line 6-12). After that we build a HUB-
DTree using the HSBDTreeBuild algorithm (line 13). Then
we use the HUBDTree for host underloading detection (line
14). Finally, if the host is underloaded, it will return true,
otherwise it will return false(line 15-19).
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Algorithm 2 Host Overloading Detection(HOD)

Algorithm 3 Host Underloading Detection(HUD)

Input: host;
Output: boolean;
1: n=10;
2: utilizationHistory = host.getutilizationHistory();
3: if utilizationHistory.lenth < n then
4: return host.getTotalRequestedMips() > 0.90 x
host.getT otalMips();
5: else
6: for i=0ton—1 do
7: x[i] = utilizationHistory[n — i — 1];
8: end for
9: for i=0ton—-1 do
10: y[i] = A0l
11: end for
12: Y = ([OLy[ll,...,yln—1]);
13: HOBDTree = HS BDT reeBuild(D, F, O);
14: class = HOBDTree(Y),

15: if class == 1 then

16: return true;
17: else

18: return false;
19: end if

20: end if

Input: host;
Output: boolean;
1: n=10;
2: utilizationHistory = host.getutilizationHistory();
3: if utilizationHistory.lenth < n then
4: return host.getTotalRequestedMips() < 0.10 x
host.getT otalMips();
5: else
6: for i=0ton—1 do
7: x[i] = utilizationHistory[n — i — 1];
8: end for
9: for i=0ton—-1 do
10: y[i] = A0kl el
11: end for
12: Y = ([OLy[ll,...,yln—1]);
13: HUBDTree = HS BDTreeBuild(D, F, U);
14: class = HUBDT ree(Y);

15: if class ==1 then
16: return true;

17: else

18: return false;

19: end if

20: end if

4.3 VM Selection

VM selection strategy is not the focus of this paper, so here
is just a brief introduction to the strategy used in this pa-
per.In this paper we choose the most commonly used Mini-
mum Migration Time (MMT) strategy [8] as the VM selec-
tion policy. The MMT strategy chooses a VM with the min-
imum migration time. One or more VMs should be selected
from the overloaded host, and the overloaded host applies
the MMT strategy iteratively until it is not overloaded.

4.4 VM Placement

The PABFD [8], [20] VM placement algorithm, which
chooses the least power increasing host for VM migration,
is usually an efficient algorithm. But it is a greedy algo-
rithm, and VMs are often consolidated aggressively. In this
paper we propose a more efficient algorithm which is called

HSBDTP Power Aware Best Fit Decreasing (HPABFD) al-
gorithm by improving the PABFD algorithm. Algorithm 4 is
the pseudo-code of our HPABFD algorithm. If a host is go-
ing to be overloaded or underloaded, then it is obviously not
an ideal target host for VM placement, because soon some or
all of its VM will be migrated to other hosts. Therefore, our
algorithm first detects whether a host is overloaded or under-
loaded using the HOD/HUD algorithm proposed above. If
the host is overloaded or underloaded, the host will be di-
rectly excluded from the list of candidate hosts.

5. Performance Evaluation

5.1 Experiment Setup

We have simulated a heterogeneous data center with 800
nodes using the Cloudsim toolkit. There are two types of

machines: HP ProLiant ML 110 G4 servers and HP ProLiant
ML110 GS5 servers, each of which accounts for half. Table
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Algorithm 4 HSBDTP Power Aware Best Fit Decreasing

(HPABFD)

Input: hostS et, vmList;

Output: the allocation of hosts for vms;

1: sort vmList in descending order according to CPU uti-

lization;
2: for vim in vimList do
3: minPower = MAX;
4: allocatedHost = NULL;

5: for host in hostS et do
6: if HU D(host) return true then
7: continue;
8: end if
9: if HOD(host) return true then
10: continue;
11: end if
12: if host has enough resources for vm then
13: newPower = getPower(host,vm);
14: if newPower < minPower then
15: allocatedHost = host;
16: minPower = newPower;
17: end if
18: end if
19: if allocatedHost is not NULL then
20: allocation.add(vm, allocatedHost);
21: end if
22: end for
23: end for

24: return allocation;

Table 1  Configuration of hosts

Hosts CPU type  Frequency(GHz)CoresRAM(GB)
HP Proliant G41Intel Xeon 3040 1.86 2 4
HP Proliant G51Intel Xeon 3075 2.86 2 4

1 shows the configuration of hosts, Table 2 shows the power
consumption characteristics of the servers, and Table 3 lists

the characteristics of the VM types.

5.2 Workload Data

We evaluate our prediction model using random workload
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and real world workload:

o Random Workload: Fifty VMs are running on fifty het-

erogeneous servers in the data center. Each VM runs
an application with 300 bytes of input and 300 bytes
of output. The CPU utilization of VMs are generated
using random variables. The simulation experiment is
running for 24 hours.

Real Workload (PlanetLab data): PlanetLab is the
monitoring part of the CoMon project. Every five min-
utes, It collectes the CPU utilization data from thou-
sands of servers which are located at more than 500
places around the world [20]. We choose three different
days of the workload traces in our simulations. Table 4
shows the characteristics of each workload.

5.3 Performance Metrics

We have used several metrics to evaluate the performance of
the algorithms. The main metrics are described below.

e Energy: The mode of energy consumption is based

on the real data from the SPECpower benchmark [23].
The mode of energy consumption of the servers that we
used in this paper is shown in Table 2. We can see that
the energy consumption of the server in sleep state is
much less than the sever in active state.

SLA Violation(SLAV): When a cloud provider fails
to provide service to customers in accordance with
service level agreement, a SLA violation will occur.
SLAV [8] is an independent metric that can be mea-
sured by SLA violation time per active host (SLATAH)
and performance degradation due to migration(PDM).
The two metrics are independent and have the same ef-
fect on SLAV. So the SLAV metirc can be calculated as
following:

SLAV = SLATAH x PDM ®)

We are going to introduce SLATAH and PDM below.
SLATAH: When host is experiencing 100% utilization,
it can not provide service, so SLATAH can be calcu-
lated as follows:

N
SLATAH = 1 Toi )
NS Tai
where N is the number of hosts; 7,; is the total time
during which the host i is experiencing the 100% uti-
lization; the total time of the host { which in active state
is Ta i
PDM: Live migration of VMs has negative impact on
application performance. The PDM can be calculated
as follows:

N
pom = + 3 Cai

N G

(10)

where N is the number of VMs; Cy; is the performance
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Table2  Power consumption by the selected servers at different load levels in Watts
Server sleep 0% 10% 20% 30% 40% 50% 60% T70% 80% 90%  100%
HP Proliant G4 10 86 894 926 96 99.5 102 106 108 112 114 117

HP Proliant G5 10 93.7 97 101 105

110 116 121 125 129 133 135

Table3  Characteristics of the VM types

VM type CPUMIPS) RAM(GB)
High-CPU medium instance 2500 0.85
Large instance 2000 1.70
Small instance 1000 1.70
Micro instance 500 0.61

Table4  Workload data characteristics (CPU utilization)
Date Hosts VMs Mean St.dev.
03/03/2011 800 1052 12.31% 17.09%
22/03/2011 800 1516 9.26% 12.78%
20/04/2011 800 1033 10.43% 15.21%
random 50 50 — —

degradation of the VM i due to migrations, Here it is
set to 10% of the CPU utilization [24]; C,; is the total
CPU capacity requested by the VM i.

5.4 Simulation Results and Analysis

In this section, we first use the two kinds of workload
introduced above to do some simulation experiments on
Cloudsim simulator, then we choose eight algorithms which
are used in Cloudsim as benchmarks for comparative experi-
ments, and finally we choose five state-of-the-art algorithms
in recent years for comparative analysis.

The benchamrk algorithms are NPA(None Power
Aware) [6], DVFS[25], THR-MMT-1.0[8], THR-MMT-
0.8[8], IQR-MMT-1.5[8], MAD-MMT-2.5[8], LR-MMT-
1.2[8], and LRR-MMT-1.2[8]. The hosts which use the NPA
policy consume their maximum power all the time. The
THR-MMT-1.0 algorithm uses the fixed threshold of 100%.
Figures 2—4 illustrate the Energy Consumption, SLAV, num-
ber of VM migrations for the main algorithms respectively
with the PlanetLab data sets of 720110303, 220110322,
and 720110420”. Because compare to the dynamic algo-
rithms, the NPA, DVFS, and THR-MMT-1.0 are obviously
not at the same level, so we don’t show their results on
Figs.3-5. But we can find the results of all the algorithms
and all the metrics in Table 5. Table 5 shows the de-
tails of experimental results with the PlanetLab data set of
”20110303”.

From the simulation results, we have got the follow-
ing conclusions: (1) VM consolidation technique signifi-
cantly surpasses NPA and DVFS; (2) because of reducing
the level of SLA violations observably, dynamic heuris-
tics algorithms considerably outperform the static heuris-
tics algorithm(THR-MMT-1.0) ; (3) our proposed HSBDTP
algorithm can significantly outperforms the benchmarks of

HOST C
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three Non-Predictive VM consolidation algorithms and two
Predictive VM consolidation algorithms. (4) Figs. 3—5 show
that our proposed HSBDTP algorithm can reduce the metric
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of Energy by at most 33.96%, average 25.96%, it can reduce
the metric of SLAV by at most 98.12%, average 97.09%, and
it can reduce the metric of number of VM migrations by at
most 86.53%, average 83.56%. (5) We can get some other
detail metrics from Table 5, it shows that our proposed HSB-
DTP algorithm can reduce the metric of SLATAH by at most
82.11%, average 80.23%, it can reduce the metric of PDM
by at most 87.5%, average 86.49%, it can reduce the metric
of Overall SLAV by at most 93.33%, average 90.74%, and
it can reduce the metric of number of host shutdowns by at
most 75.04%, average 73.32%.

We also do some simulation experiments with random
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workload, and get similar results with the real workload
experiments. Table 6 illustrates the Energy Consumption,
SLAYV, number of VM migrations and the other detail met-
rics using the random workload for the benchmark algo-
rithms and our proposed algorithm. From the observed sim-
ulation results, we can see that our proposed HSBDTP algo-
rithm can reduce the metric of Energy by at most 28.28%),
average 16.70%, it can reduce the metric of SLAV by at
most 96.10%, average 94.43%, and it can reduce the metric
of number of VM migrations by at most 84.70%, average
80.28%.

In order to compare with the researches in recent years,
we choose ACS-VM [11], PCM [12], MadMCHD [13], and
our two previous studies HSNBP [14], RobustSLR [15] as
the benchmark algorithms, and calculate the Energy, SLAYV,
and number of VM migrations improvement percentages
comparing to LR-MMT-1.2[8] policy using the PlanetLab
data set of ”20110322”. For the RobustSLR model, we
choose the MAE(10) strategy with the best overall perfor-
mance [15]. The results are shown in Table 7. From the
results, we can see that although our HSBDTP algorithm
is about 10% improvement less than PCM in the metric of
Energy, but it reduces the metric of SLAV by about 80%
compared with PCM. Compared with MadMCHD, our HS-
BDTP algorithm has almost the same improvement in the
metrics of SLAV and number of VM migrations, but it re-
duces the metric of Energy by about 40%. Compared with
ACS-VM, our HSBDTP algorithm performs much better in

Fig.5 VM Migrations for the main algorithms all the three metrics. For our previous studies, HSBDTP
Table 5  Simulation results of the HSBDTP algorithm and benchmark algorithms (PlanetLab data)
Police (EI‘;%{% ()S(%(‘i‘_\g) VM migr. SLATAH PDM Average SLAV Overall SLAV Host shutd.
NPA 2410.8 0 0 0% 0% 0% 0% 466
DVES 787.84 0 0 0% 0% 0% 0% 466
THR-MMT-1.0 | 173.24 3088 48335 16.43% 0.19% 9.19% 0.58% 6491
THR-MMT-0.8 | 205.97 354 28843 497%  0.07% 10.11% 0.08% 6395
IQR-MMT-1.5 201.92 340 28350 491% 0.07% 10.1% 0.08% 6301
MAD-MMT-2.5 | 198.16 345 28162 493%  0.07% 10.13% 0.08% 6232
LR-MMT-1.2 176.15 478 28615 5.87%  0.08% 9.67% 0.15% 5483
LRR-MMT-1.2 | 176.15 478 28615 5.87%  0.08% 9.67% 0.15% 5483
HSBDTP 145.59 9 3885 1.05% 0.01% 9.90% 0.01% 1596
Table 6  Simulation results of the HSBDTP algorithm and benchmark algorithms (random workload)

Police 1(511(13;% (i%(‘;“_\g) VM migr. SLATAH PDM Average SLAV Overall SLAV Host shutd.
NPA 150.68 0 0 0% 0% 0% 0% 29
DVFS 52.98 0 0 0% 0% 0% 0% 29
THR-MMT-1.0 | 33.78 6927 4437 2495% 0.28% 17.72% 8.68% 1117
THR-MMT-0.8 41.81 3048 4839 12.99% 0.24% 12.81% 3.25% 1424
IQR-MMT-1.5 47.85 1770 5502 7.82%  0.23% 10.44% 1.05% 1549
MAD-MMT-2.5 | 45.61 1967 5265 8.61% 0.23% 10.91% 1.32% 1528
LR-MMT-1.2 35.37 1912 2872 1431% 0.13% 12.89% 3.16% 806
LRR-MMT-1.2 35.37 1912 2872 1431% 0.13% 12.89% 3.16% 806
HSBDTP 34.32 119 842 394%  0.03% 9.94% 0.63% 391
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Table 7  Improvement percentages for benchmark algorithms compared
to LR-MMT-1.2
. ImprovementImprovement, Improvement
Algorithms | | gnergy(%) in I;LAV(%) in VII)\/I migr.(%)
ACS-VM 17 30 22
PCM 26 85 84
MadMCHD -20 96 90
HSNBP 11 55 26
RobustSLR 13 96 85
HSBDTP 18 98 87

algorithm is much better than HSNBP, and Compared with
RobustSLR, HSBDTP algorithm reduces the metric of En-
ergy by about 6%, it reduces the metric of SLAV by about
50%, and it reduces the metric of number of VM migrations
by about 13%.

The reasons for the performance improvement can be
summarized as follows: Firstly, the most important reason
is that we have established an effective decision tree pre-
diction model. The multi value prediction method proposed
in our model is more accurate than the single value predic-
tion method, and the prediction accuracy of the PlanetLab
data can be greatly improved from 34% to 93%. And we in-
troduce adjustment coefficient to improve the default split-
ting criterion to eliminate system errors. We also choose
the appropriate input for the model. All these optimiza-
tion measures enable us to establish a more accurate predic-
tion model. Secondly, based on the above prediction model,
we construct two effective host state prediction algorithms.
They can predict host overloaded and underloaded more ac-
curately, so that we can choose when to migrate VMs more
accurately. Thirdly, our improved VM placement algorithm
excludes overloaded and underloaded hosts from the target
hosts, which greatly avoids the invalid migration of VMs.
We will illustrate this point with an example. As shown in
Fig. 2, it is obvious that the host B is the most suitable target
host for VM v, because if VM v is migrated to host A or host
C, then the host A and C will likely be detected overloaded
or underloaded at the next moment, then the newly migrated
VM v will probably face a second migration.

6. Conclusion and Future Directions

In this paper, we have proposed a HSBDTP model to pre-
dict the future host state based on host CPU utilization. We
propose two formulas of conditions for host state estimate,
and our model uses them to build a Binary Decision Tree
manually for host state detection. We have proposed two
Host Overloading/Underloading Detection algorithms based
on our proposed HSBDTP model in order to minimize the
power consumption and SLA violation. We have also pro-
posed an improved VM placement algorithm which is called
HSBDTP Power Aware Best Fit Decreasing algorithm based
on our model.

We have extended the Cloudsim simulator for perfor-
mance evaluation of our proposed algorithms using Plan-
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etLab workload and random workload. The experimental
results have shown that our proposed algorithms can signif-
icantly outperform the benchmark algorithms. It can reduce
the metric of Energy by at most 33.96% and reduce the met-
ric of SLAV by at most 98.12% for real workload, and for
random workload it can reduce the metric of Energy by at
most 28.28% and reduce the metric of SLAV by at most
96.10%. As a future work, we plan to optimize our model
to further improve energy efficiency and reduce SLA vio-
lations by considering a variety of resource types, such as
CPU, RAM, and NET.
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