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SUMMARY Many users are exposed to threats of drive-by download
attacks through the Web. Attackers compromise vulnerable websites dis-
covered by search engines and redirect clients to malicious websites created
with exploit kits. Security researchers and vendors have tried to prevent the
attacks by detecting malicious data, i.e., malicious URLs, web content, and
redirections. However, attackers conceal parts of malicious data with eva-
sion techniques to circumvent detection systems. In this paper, we propose
a system for detecting malicious websites without collecting all malicious
data. Even if we cannot observe parts of malicious data, we can always ob-
serve compromised websites. Since vulnerable websites are discovered by
search engines, compromised websites have similar traits. Therefore, we
built a classifier by leveraging not only malicious but also compromised
websites. More precisely, we convert all websites observed at the time of
access into a redirection graph and classify it by integrating similarities
between its subgraphs and redirection subgraphs shared across malicious,
benign, and compromised websites. As a result of evaluating our system
with crawling data of 455,860 websites, we found that the system achieved
a 91.7% true positive rate for malicious websites containing exploit URLs
at a low false positive rate of 0.1%. Moreover, it detected 143 more evasive
malicious websites than the conventional content-based system.
key words: drive-by download attack, browser fingerprinting, graph min-
ing, clustering

1. Introduction

Attackers have distributed malware through the Web by
drive-by download attacks. When a client accesses a landing
URL that is a starting point of attacks, the client is redirected
to an exploit URL via multiple redirection URLs. At the
exploit URL, vulnerabilities in browsers and/or their plug-
ins are exploited, and the client is finally infected with mal-
ware [2]. This infected client suffers from damage, such as
sensitive data leakage and illegal money transfer, and/or is
integrated into distributed denial-of-service attacks. To ex-
pose more users to threats of drive-by downloads, attackers
compromise benign websites and inject redirection code to
malicious websites such as redirection and exploit URLs.
Attackers compromise benign websites and create malicious
websites automatically. Since websites built using the old
version of content management systems (CMSs) are vul-
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nerable, attackers automatically discover them with search
engines by using specific search queries, typically called
“search engine dorking” [3], [4], and compromise them to
turn them into landing URLs. Malicious websites are auto-
matically created with exploit kits [5].

To prevent drive-by download attacks, security re-
searchers and vendors analyze malicious data, e.g., mali-
cious URLs, web content, and redirections. They can cre-
ate signatures of anti-virus software and build classifiers
on the basis of malicious web content [6]–[8], redirection
chains [9]–[11], and exploit kits [12]. All the above sys-
tems require malicious data to be collected by accessing
malicious websites with a honeyclient, which is a decoy
browser [13], [14]. Unfortunately, collecting all malicious
data from malicious websites is not easy because attackers
conceal the data with evasion techniques. To increase the
exploitation success rate, attackers check clients by browser
fingerprinting and change the destination URL depending
on the fingerprint, e.g., IP address and client environments
(the family/version of a browser on a real operating sys-
tem (OS)/virtual machine/emulator) [15], [16]. In addition,
if a client environment differs from the environment of at-
tackers’ targets, the attackers thwart the client’s accesses by
changing the server responses of malicious websites, which
is called “cloaking” [17]. In other words, collecting all ma-
licious data requires correct access by the clients of attack-
ers’ targets. Although multiple accesses to malicious web-
sites by various clients improves the coverage of collected
malicious data, preparing or emulating all the clients (i.e.,
OSs, browsers, and plugins) is not a realistic solution due
to the requirement of a large amount of computational re-
sources [16].

In this paper, we propose a system for detecting mali-
cious websites without collecting all malicious data. Even
if we cannot observe parts of malicious data, e.g., exploit
code and malware, we can always observe compromised
websites, into which attackers inject redirection code to ma-
licious data. Since vulnerable websites are automatically
discovered with search engines by attackers, compromised
websites have similar traits. Therefore, we built a classi-
fier by leveraging not only malicious but also compromised
websites. More precisely, we convert all websites observed
at the time of access into a redirection graph, whose vertices
are URLs and edges are redirections between two URLs,
and classify it with a graph mining approach. To perform
classification, we integrate similarities between the redi-
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rection graph’s subgraphs and redirection subgraphs shared
across malicious, benign, and compromised websites. As
a result of evaluating our system with crawling data of
455,860 websites, we found that it achieved a 91.7% true
positive rate (TPR) for malicious websites containing ex-
ploit URLs at a low false positive rate (FPR) of 0.1%. More-
over, it detected 143 more malicious websites that use eva-
sion techniques than conventional systems. These detected
evasive websites were, for example, built by compromising
a vulnerable CMS. These results show that our system suc-
cessfully captures redirection subgraphs of not only mali-
cious but also compromised websites.

Our contributions are summarized as follows.

• We propose a system that detects malicious websites by
leveraging all websites observed at the time of access
even if all malicious data cannot be collected due to
evasion techniques.
• We show that leveraging the redirection subgraphs

of benign, compromised, and malicious websites en-
hances the classification performance; the benign sub-
graphs contribute to reducing false positives such as
subgraphs of web advertisements and the compromised
and malicious subgraphs contribute to improving true
positives such as subgraphs of compromised CMSs and
exploit kits.

2. Motivating Example

We use simplified websites to demonstrate the effective-
ness of our approach. Figure 1 shows a redirection graph.
When a client accesses the URL of a compromised web-
site, i.e., http://a.example/, the server responds with
web content such as Fig. 2, and the client additionally re-
quests the web content of the URLs specified in HTML
tags. The iframe tag at line 13 in Fig. 2 is injected by
an attacker, and the client is redirected to the next URL,
http://redirect.example/, without being aware of it
because this iframe tag is written in an invisible state and
is outside the display. When the client accesses the URL
specified by the iframe tag, it loads web content that con-
tains the JavaScript code shown in Fig. 3. Lines 2–6 in
Fig. 3 are evasion code that checks whether the client is a
browser emulator or an actual browser. A browser emula-
tor is usually designed to never raise exceptions regarding

Fig. 1 Redirection graph of a motivating example.

ActiveXObject [13]. However, since the code in Fig. 3 in-
tentionally throws an ActiveXObject error, only browsers
with correct exception handlers can execute browser fin-
gerprinting code at line 5. The code at line 5 stores the
UserAgent strings of the client in a variable ua. The vari-
able ua, i.e., navigator.userAgent strings, is used for
the following conditional branches at lines 7 and 10, and
the redirection code at line 8 or 11 is executed if the vari-
able contains “msie 6” or “msie 8” strings, respectively.
In other words, Internet Explorer (IE) 6 is redirected to
http://exploit.example/IE6/, and IE8 is redirected to
http://exploit.example/IE8/. However, when clients
other than IE6 and IE8 are used, no redirection occurs.
Browser emulators also cannot execute browser fingerprint-
ing code due to exception handling, so no redirection occurs.
Therefore, this example illustrates a website where only IE6
and IE8 can access exploit URLs and collect exploit code.

Conventional systems cannot detect this example for
several reasons. A high-interaction honeyclient that uses
an actual browser fails to collect exploit code and malware
when the browser is not IE6 or IE8 due to browser fin-
gerprinting. Similarly, a low-interaction honeyclient, i.e.,
a browser emulator, also fails to execute redirection code
due to evasion code even if it emulates IE6 or IE8. Con-
sequently, systems detecting malicious websites on the ba-
sis of URLs, redirections, and web content do not work ef-
fectively when these honeyclients cannot collect malicious
data.

Our system can detect malicious websites that use eva-
sion techniques by utilizing the redirection graphs of all

Fig. 2 Iframe injection at http://a.example/.

Fig. 3 Evasion and browser fingerprinting at
http://redirect.example/.
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Fig. 4 System framework.

websites observed at the time of access without being lim-
ited to those of malicious websites created with exploit kits.
In the above example, we can certainly observe the redirec-
tion of the invisible iframe tag and redirections to benign
URLs to which the compromised website originally refers,
i.e., http://a.example/js/lib.js specified by the
script tag and http://a.example/img/header.jpg
specified by the img tag in Fig. 1. In other words, we can de-
tect malicious websites by building our classifier with fea-
tures representing redirection subgraphs of easily compro-
mised websites even if we fail to observe parts of malicious
redirections and web content due to evasion techniques. As
shown in Sect. 5, our system detected 143 more evasive ma-
licious websites than the conventional content-based sys-
tem.

3. Proposed System

We describe the design and implementation of our proposed
system, which detects malicious websites on the basis of the
redirection graphs of all websites.

3.1 System Design

Websites consist of multiple URLs and redirections between
them. Their structure is represented as redirection graphs
whose vertices are URLs and edges are redirections. To take
advantage of their structure, we utilize a graph mining ap-
proach. One common approach is to perform classification
by leveraging similarities of graphs. More precisely, sub-
graphs are extracted from each graph, and the similarities of
many pairs of graphs are calculated on the basis of the num-
ber of subgraphs shared by the graphs. This approach leads
to high classification accuracy but also has a drawback: a

high computational cost. To achieve both high classifica-
tion accuracy and low computational cost, we reduce the
computational cost of subgraph extraction and the number
of similarity calculations. In Sect. 3.2, we describe how to
reduce the computational cost of subgraph extraction. Here,
we discuss the number of similarity calculations. The classi-
fication is performed on the basis of similarities between test
and training data. A large number of training data improves
classification accuracy but results in a large number of sim-
ilarity calculations, i.e., O (NM), where N and M represent
the number of training and test data, respectively. Our sys-
tem constructs a comparatively small number of templates,
which are subgraphs shared across training data, and per-
forms classification on the basis of similarities between test
data and templates. The number of similarity calculations is
reduced to O (M). Note that a graph mining approach also
has another drawback: a large memory requirement. Be-
cause a large memory has become easier to obtain, we focus
on only computational cost in this paper.

Figure 4 illustrates the framework of our system. In the
training phase, we collect labeled redirection graphs (ma-
licious or benign) with the honeyclient [14]. The redirec-
tion graphs are decomposed into their subgraphs. Then,
templates are constructed from redirection subgraphs shared
across them. Their feature vectors are extracted on the basis
of the similarities between their subgraphs and templates.
The classifier of random forest is trained with their feature
vectors. In the test phase, we collect unlabeled redirection
graphs with the honeyclient. Their feature vectors are ex-
tracted in the same manner as in the training phase and clas-
sified using the trained classifier. We explain details of our
system in the next subsection.
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Table 1 Features for calculating maliciousness of web content.

No. Type Feature

1 HTTP 3xx redirections to different domain
2 Redirection to Flash file
3 Redirection Redirection to PDF file
4 Redirection to Java Applet File
5 Redirection without referer
6 Suspicious DOM position
7 HTML Invisible content
8 Exploitable classid
9 # of Element object functions

10 # of String object functions
11 # of Node object functions
12 # of ActiveXObject functions
13 # of Document object functions
14 # of Navigator object functions
15 JavaScript # of object-encoding functions
16 # of Time object functions
17 # of eval functions
18 # of fingerprinting functions
19 # of obfuscated content
20 # of content containing shellcode
21 # of long parameters
22 Entropy

3.2 Implementation

Subgraph Extraction. We collect web content at each URL
and the methods used for redirections by analyzing websites
with a honeyclient. The websites are represented as redirec-
tion graphs, i.e., directed graphs whose vertices are URLs
and edges are redirections. The most important structure
of redirection graphs for detecting malicious websites is the
path from landing to exploit URLs. To reduce the computa-
tional cost, we extract only subgraphs that have an important
structure, i.e., path-shaped subgraphs. Excluding subgraphs
that have a branch structure reduces the computational cost.
Let G = (V, E) denote a redirection graph, where V is a set
of vertices, and E ⊆ (V × V) is a set of edges. Edge (vi, v j)
represents the redirections from vertex vi to vertex v j. A
set of paths, P, is defined as P = {pi, j|v j ∈ c(vi), vi ∈ V},
where pi, j is a path from vi to v j, and c(vi) is a set of vertices
reachable from vi through edges. We use the information of
vertices and edges as a feature of a subgraph. The feature of
a subgraph sg is represented as (m, r), where m is a vector
containing the information of vertices and r is a vector con-
taining the information of redirections. A redirection graph
is decomposed into a set of features of subgraphs extracted
from all path-shaped subgraphs.

For the information of vertices, we calculate the mali-
ciousness of web content because exact matching of URLs
and their web content can be easily evaded by changing the
characters of URLs and small pieces of their web content.
The maliciousness is calculated with machine learning using
the 22 widely used features in Table 1. These features are
extracted with the honeyclient [14]. The features are divided
into three types: redirection, HTML, and JavaScript. We ex-
tract five redirection features: HTTP 3xx redirections to dif-
ferent domains (No. 1), redirections to files used for exploit

Table 2 Methods of redirections.

Type Examples of methods

HTTP 3xx HTTP 301 HTTP 302
HTML tag iframe script link

JavaScript document.write innerHTML

Fig. 5 Example of a subgraph.

(Nos. 2–4), and redirection without referer (No. 5). We ex-
tract three HTML features: the suspicious Document Object
Model (DOM) position (No. 6), invisible content (No. 7),
and exploitable classid (No. 8). We extract 13 JavaScript
features: the number of functions (Nos. 9–18), the number
of suspicious content (Nos. 19–20), the number of long pa-
rameters (No. 21), and entropy (No. 22).

Fingerprinting functions are identified by arguments
including versions of plugins. Obfuscated content is iden-
tified by Latin-1 code or a comma delimited string whose
length is 128 or more. Content containing shellcode is
identified by a string including 128 or more Unicode/non-
printable ASCII characters. We define long parameters as
JavaScript functions’ arguments whose lengths are 350 or
more. To calculate maliciousness, we apply random for-
est [18] as a classifier. We train the classifier by using the
training data in Sect. 4. For the information of edges, we
use redirection methods and destination domains (external
or internal). Table 2 shows the three types of redirection
methods: HTTP 3xx, HTML tag, and JavaScript. HTML
tag redirections are triggered by tags for acquiring exter-
nal sources such as iframe, script, and link. JavaScript
redirections are triggered by DOM modification functions
such as document.write and innerHTML.

Figure 5 shows an example of a subgraph consisting
of three vertices and two edges. The maliciousness of the
first, second, and third vertices is 0.0, 0.4, and 1.0, re-
spectively. The redirection methods of the first and sec-
ond edges are script and iframe. The destination do-
mains of the first and second edge are external and in-
ternal. The feature of a subgraph of this example sg
is represented as (m, r), where m = [0.0, 0.4, 1.0], r =
[script−external, iframe−internal]. The information of
edges is represented by the hyphenation of the redirec-
tion method and the destination domain. Hereafter, we at-
tach new indexes to features of subgraphs and represent a
subgraph feature set extracted from a redirection graph as
S G = {sgi} for convenience.

Template Construction. We split redirection graphs
into clusters composed of similar redirection graphs and
construct templates from the clusters. The similarity uti-
lized for clustering is defined similarly to the Dice index.
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The Dice index, D, between set A and set B is defined as
D = 2×|A∩B|/(|A|+ |B|). If the intersection of two subgraph
feature sets is defined on the basis of both the redirection in-
formation and the maliciousness, the amount of difference
in the maliciousness does not properly affect the similarity
because the maliciousness is a continuous value. For this
reason, we define the intersection of two subgraph feature
sets on the basis of only the redirection information and use
the maliciousness as weighting coefficients.

The similarity function S (S Gi, S G j), given subgraph
feature sets S Gi and S G j, is defined as

S (S Gi, S G j) =
2 ×∑(mk ,ml)∈Λ s(mk,ml)

|S Gi| + |S G j| ,

s(mk,ml) =
1

1 + α × |mk − ml|2 ,
Λ = {(mk,ml)|(mk, rk) ∈ S Gi, (ml, rk) ∈ S G j},

where α is a weight coefficient. Here, s(mk,ml) denotes
the similarity function given the maliciousness mk and ml.
If there are multiple subgraph-feature-pair possibilities, we
adopt the pair that has higher similarity than the others. The
optimal pair can be quickly found by using the Hungarian
algorithm [19].

This similarity is utilized for clustering. If the maxi-
mum similarity between redirection graphs belonging to one
cluster and redirection graphs belonging to another is higher
than threshold β, the two clusters are merged. This process
is conducted from when each cluster is composed of one
redirection graph to when no cluster can be merged.

Clustering is computationally expensive because sim-
ilarities between all pairs of redirection graphs need to
be calculated, i.e., O(n2), where n denotes the number of
redirection graphs. We leverage locality sensitive hashing
(LSH) [20] to avoid calculating the similarities of redirec-
tion graphs that have low similarities. Reducing the com-
putational cost of clustering enables us to reduce computa-
tional resources or increase the number of candidate hyper-
parameters used for optimization. We encode a redirection
graph into a vector by using bag-of-words representation to
apply LSH. The vector contains the number of redirection
methods or JavaScript functions/objects. The redirection
methods include HTTP 302, iframe tag, and script tag.
JavaScript functions/objects include documentw.write,
innerHTML, setInterval, and ActiveXObject. The
hash function is formulated as h(x) = � aT x+b

c �, where a is
a vector and b is a real number. Here, �x� denotes the largest
integer, which is equal to or less than x. Each element of
a is chosen from the normal distribution whose mean is 0
and variance is σ2. The real number, b, is chosen from the
uniform distribution whose range is [0, c]. The parameters
σ2 = 10, c = 1 are selected so that the number of websites
that have the same hash values is not too small.

We construct templates from the clusters composed of
γ or more redirection graphs. The template, T , is a set of fea-
tures of subgraphs whose redirection information is shared
across all redirection graphs in the cluster C = {S Gi}. Since

maliciousness is a continuous value, we use the average ma-
liciousness as the maliciousness of the template. Template
T is formulated as

T = {(mi, ri)|∀S G ∈ C,∃(mi, ri) ∈ S G},
mi =

1
|C|
∑

mj∈Mi

mj,

Mi = {mj|(mj, ri) ∈ S G j, S G j ∈ C}.
Feature Extraction. A high similarity between the features
of subgraphs of a redirection graph and a template indicates
that the redirection graph contains the template as its sub-
graph. In other words, we can encode the redirection graphs
of websites into numerical values by calculating similari-
ties between features of subgraphs of redirection graphs and
templates. We extract a feature vector x containing similar-
ities between a subgraph feature set S G and templates Ti:
x = [S (S G,T1), . . . , S (S G,TN)], where N is the number of
templates.

Classification. These feature vectors are classified by
using supervised machine learning. We use random for-
est [18], which can classify a large amount of data accurately
and quickly. We use a randomForest package in R [21].
Note that the classification algorithm is not limited to ran-
dom forest; other algorithms of supervised machine learning
can be applied.

4. Experimental Setup

Our proposed system is designed to detect not only mali-
cious redirection graphs containing exploit URLs but also
evasive malicious redirection graphs, which do NOT con-
tain all malicious data. We evaluate the detection perfor-
mance of our system using these redirection graphs. Here,
we describe the experimental setup for evaluation.

4.1 Conventional Systems for Comparison

We evaluate the effectiveness of our system by comparing
it with conventional systems. Some conventional systems
detect malicious websites by matching redirection or ex-
ploit URLs [9], [12]. These systems suffer from false nega-
tives when targeted URLs are concealed by evasion tech-
niques. Other conventional systems using statistical fea-
tures [6], [7], [10] are assumed to be more robust against
evasion techniques because their targets are not limited to
specific URLs. For this reason, we compare our system with
conventional systems that use statistical features. Note that
we cannot compare our system with conventional systems
that leverage large-scale user traffic [22], [23] because our
system is supposed to use web content and redirections col-
lected with a honeyclient.

We compare our system with the content-based sys-
tem, the redirection-based system, and the combination of
these systems. The content-based system extracts widely
used features listed in Table 1 such as the conventional sys-
tem [6] and classifies them by using random forest. If one
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Table 3 Features of the redirection-based system.

No. Feature

1 # of different domains
2 Path length
3 # of HTTP 3xx redirections
4 # of different domain HTTP 3xx redirections
5 # of consecutive HTTP 3xx redirections
6 # of consecutive different domain HTTP 3xx redirections
7 # of consecutive short redirections
8 Median of redirection duration
9 Average of redirection duration

10 Minimum of redirection duration
11 Maximum of redirection duration

or more pieces of web content in a redirection graph are de-
tected, the redirection graph is classified as malicious. If
no piece of web content is detected, the redirection graph is
classified as benign.

The redirection-based system extracts features from
paths between landing URLs and final destinations of redi-
rections and classifies them by using random forest. Table 3
shows a list of features that have been proposed for the con-
ventional system [10]. More precisely, the features are the
number of different domains (No. 1), path length (No. 2),
HTTP 3xx redirections (Nos. 3–6), and redirection duration
(Nos. 7–11). Short redirections are defined as redirections
that occur in no more than one second. If one or more paths
in a redirection graph are detected, the redirection graph is
classified as malicious. If no path is detected, the redirection
graph is classified as benign.

The combination of the content-based and redirection-
based systems (combination system for short) classifies
a redirection graph as malicious if it is detected by the
content-based or redirection-based system. A redirection
graph is classified as benign if it is detected by neither sys-
tem.

4.2 Ground Truth

We collect the redirection graphs used for the evaluation by
accessing websites listed on public blacklists [24], [25] or
a list of popular websites [26] by using the low-interaction
honeyclient [14]. Some websites listed on public blacklists
no longer contain malicious web content, and websites listed
on the popular-website list can be compromised and forced
to engage in attacks. Since we need ground truth of redi-
rection graphs, we access websites by using low-interaction
and high-interaction honeyclients [27] almost at the same
time. The high-interaction honeyclient detect exploit URLs
on the basis of system behavior such as unintended pro-
cess creation and file/registry accesses. We label redirection
graphs detected by the high-interaction honeyclient as ma-
licious and redirection graphs listed on the popular-website
list and not detected as benign. We do not use the redirec-
tion graphs listed on public blacklists but not detected be-
cause they might not be detected due to the discrepancy be-
tween the targeted environment of exploit and the environ-
ment of the high-interaction honeyclient. Since redirection

Table 4 Dataset.

Label Number Period

Training Malicious 2,170 Jan.–Apr. 2016
Benign 199,982 Aug. 2016

1st Test Malicious 365 May–Sep. 2016
Benign 249,958 Aug. 2016

2nd Test Evasive 3,385 Jan.–Sep. 2016

graphs are all websites observed at the time of access, ma-
licious redirection graphs contained compromised and ma-
licious websites. Note that the malicious redirection graphs
do not necessarily contain exploit URLs due to evasion tech-
niques even if the high-interaction honeyclient access ex-
ploit URLs. We use malicious redirection graphs that do
not contain exploit URLs as evasive malicious redirection
graphs.

Conventional systems require labeled web content or
paths. For the content-based system, we label web content
as malicious if it is collected from destinations of malicious
redirections and domains of corresponding URLs are differ-
ent from those of landing URLs. We label the web content
of benign redirection graphs as benign. For the redirection-
based system, we label paths including exploit URLs as ma-
licious and paths of benign websites as benign.

4.3 Dataset

We use one training dataset and two test datasets for our
evaluation as shown in Table 4. The training dataset consists
of 2,170 malicious redirection graphs collected from Jan.–
Apr. 2016 and 199,982 benign redirection graphs collected
in Aug. 2016. We confirm that each malicious redirection
graph in the training dataset contains at least one malicious
redirection. Note that we can collect malicious redirection
graphs because their targeted environment and the environ-
ment of the low-interaction honeyclient are identical or eva-
sion techniques are not used. The benign training dataset
should be collected during the same period as the malicious
dataset. However, we have not collected benign redirection
graphs during that period; hence, we use benign redirection
graphs collected in Aug. 2016 as a training dataset. Note
that the collection period is not assumed to affect the evalu-
ation results because the redirection graphs of benign web-
sites are not subject to change.

We use the first test dataset to evaluate the detection
performance with malicious redirection graphs containing
exploit URLs from a large number of benign redirection
graphs. It consists of 365 malicious redirection graphs col-
lected from May–Sep. 2016 and 249,958 benign redirec-
tion graphs collected in Aug. 2016. We use the second test
dataset to evaluate the detection performance with evasive
malicious redirection graphs. It consists of 3,385 evasive
malicious redirection graphs collected from Jan.–Sep. 2016.
This dataset does not overlap with the training data collected
in the period Jan.–Apr. 2016.
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4.4 Hyperparameter Optimization

The hyperparameters are a weight coefficient, α, of similar-
ity, threshold β for clustering, and threshold γ for template
construction. In addition to them, we optimize the training
dataset. The prevalence of new exploit kits or updates to
exploit kits changes the redirection subgraphs of malicious
websites. Therefore, malicious redirection graphs detected
in the past do not always contribute to improving the classi-
fication performance. We optimize the percentage θ of mali-
cious redirection graphs that we use for training. The num-
ber of malicious redirection graphs is limited, but we can
collect a large number of benign redirection graphs. We op-
timize the ratio η of malicious to benign redirection graphs.

We further split the training dataset into a prior-training
dataset and a validation dataset. The prior-training dataset
includes 90% of the training dataset selected from the old-
est data and is used for training a classifier The validation
dataset includes 10% of the training dataset selected from
the newest data and is used for evaluating the classification
performance. We select the hyperparameters that had the
highest classification performance. To evaluate the perfor-
mance, we use the f-measure defined as:

f-measure =
2 × precision × recall

precision + recall
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

where TP, FN, TN, and FP denote the number of true posi-
tives, false negatives, true negatives, and false positives, re-
spectively. The best hyperparameters were α = 1, β = 0.4,
γ = 2, θ = 50, and η = 1 : 10. The hyperparameters
of random forest, i.e., the number of decision trees and the
number of features for each decision tree, are optimized by
using the tuneRF function of the randomForest package
in R [21] when a classifier is trained.

If a small difference in the hyperparameters of our sys-
tem results in a large difference in its classification perfor-
mance, it makes our system difficult to deploy because the
hyperparameters need to be carefully optimized. To deter-
mine whether they are difficult or not to optimize, we in-
vestigate classification performance with different system-
specific hyperparameters, i.e., α, β, and γ. We select α from
1, 10, and 100, β from 0.4, 0.6, and 0.8, and γ from 2, 5,
and 10. The classifier is trained by using the prior-training
dataset and calculate the f-measure on the validation dataset.
Figure 6 shows the f-measure of every hyperparameter. The
hyperparameters are arranged in the ascending order of f-
measures. The hyperparameters and their orders are listed
in Table 5. Since our system achieved high f-measures with
several hyperparameters, we can find with simple optimiza-
tion methods such as a grid search.

Our system leverages LSH to reduce the computational
cost of clustering. We evaluate the effectiveness of LSH

Fig. 6 F-measure of different hyperparameters.

Table 5 Hyperparametes and their orders.

Order α β γ Order α β γ

1 1 0.4 10 15 1 0.8 2
2 10 0.8 10 16 10 0.6 2
3 100 0.8 10 17 10 0.6 5
4 1 0.8 10 18 1 0.6 5
5 10 0.8 5 19 1 0.4 5
6 100 0.4 5 20 10 0.4 2
7 100 0.6 5 21 10 0.4 5
8 100 0.6 10 22 10 0.8 2
9 100 0.8 5 23 100 0.8 2

10 10 0.6 10 24 1 0.6 2
11 100 0.4 10 25 100 0.4 2
12 10 0.4 10 26 100 0.6 2
13 1 0.8 5 27 1 0.4 2
14 1 0.6 10

Fig. 7 Calculation time of clustering. Error bars represent standard de-
viation.

by comparing the calculation times with clustering without
LSH (baseline). Figure 7 shows the average and standard
deviation of calculation time. If the number of data is the
same, the calculation time differed depending on the hyper-
parameters. This result shows that LSH drastically speeds
up clustering. Note that we selected hyperparameters of
LSH so that similar redirection graphs have the same hash
value with high probability. Such hyperparameters cannot
achieve optimal clustering speed but suppress degradation
of classification performance caused by inaccurate cluster-
ing results.
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5. Experimental Results

We now report the experimental results. In Sect. 5.1, we
show the results of the first test dataset (see Sect. 4.3 for
more detail) including malicious redirection graphs contain-
ing exploit URLs. We compare our system with conven-
tional systems in terms of classification performance, degra-
dation in classification performance over time, and calcu-
lation time. We further investigate constructed templates,
false positives, and false negatives to obtain a better under-
standing of our system. Lastly, we present a case study of
server-side cloaking to show the effectiveness of our sys-
tem. In Sect. 5.2, we show the results of the second dataset
including evasive malicious redirection graphs. To avoid
duplicate evaluation, we focus on the detection capability
of evasive malicious redirection graphs in this subsection.
Specifically, we show classification performance, false neg-
atives, and a case study of an evasive malicious website. The
prototype version of our system is installed on an Ubuntu
server with four 12-core CPUs and 128-GB RAM.

5.1 Detecting Malicious Websites with Exploit URLs

We report the evaluation results of the first test dataset
including malicious redirection graphs containing exploit
URLs in terms of classification performance, degradation in
classification performance over time, and calculation time.
We also show analysis results of constructed templates, false
positives, false negatives, and a redirection graph of server-
side cloaking.

Classification Performance. We evaluate our system
by using widely used metrics: TPR (also known as recall),
FPR, precision, f-measure, area under the receiver operating
characteristic curve (AUC), and TPR at a fixed FPR of 0.1%.
As shown in Table 6, our system outperformed all conven-
tional systems for all metrics. These results show that lever-
aging the redirection graphs of all websites contributes to
improving the classification performance.

Classification Performance Degradation Over Time.
The prevalence of new exploit kits and updates to exploit
kits degrades the classification performance. Therefore, we
evaluate the performance degradation over time. Figure 9
shows the TPR of malicious redirection graphs collected for
the first, second, and third or following month of the test
dataset. The TPRs of our system and the redirection-based
system become smaller for the second month of the test

Table 6 Classification performance with malicious redirection graphs
containing exploit URLs.

System Proposed Content Redirect Comb.

TPR (recall) 0.9057 0.8465 0.2564 0.8876
FPR 0.0007 0.0022 0.0028 0.0041

Precision 0.6631 0.0385 0.1388 0.2401
F-measure 0.7657 0.5300 0.1801 0.3780

AUC 0.9938 0.9664 0.6408 0.9774
TPR (FPR=0.1%) 0.9171 0.7726 0.2256 0.7726

dataset than for the first month. The TPRs of the content-
based and combination systems become smaller for the third
or following months of the test dataset than for the first and
second months. The degradation of the combination sys-
tem was similar to that of the content-based system because
the content-based system had a dominant role in the clas-
sification of the combination system. The degradation of
our system was steeper than those of conventional systems
because our system utilizes more types of websites. That
is, our system is focused on malicious, benign, and com-
promised websites, and a change in structure of any one
of them degrades classification performance. Specifically,
classification performance of our system degraded because
features of compromised websites changed between the first
and second months of the test dataset. The training data in-
cludes a large number of compromised websites constructed
by using WordPress, which is a CMS. Similarly, the number
of compromised websites constructed with WordPress in the
test dataset is high in the first month but low in the second
month. The number of such compromised websites in the
third or following months of the test dataset was higher than
that in the second month. This is why the proposed system
had a higher TPR than the conventional systems in the third
or following months of the test dataset.

Calculation Time. To detect malicious websites, we
must analyze a large number of websites. To evaluate the
capability of large-scale analysis, we evaluate the calcula-
tion time of feature extraction and classification. Table 8
shows that our system required a 35 times longer calcula-
tion time than the content-based system. However, our sys-
tem finished the feature extraction and classification of one
redirection graph in less than 0.13 seconds. The calculation
time of feature extraction and classification was shorter than
that of the download and execution of web content. There-
fore, our system can classify a large number of redirection
graphs collected by using a honeyclient.

Template Analysis. We analyze the templates of our
system to elucidate the improvement in classification perfor-
mance. Table 7 shows the number of templates and order of
the importance calculated with the randomForest package
for each label of template. The labels of templates are those
of redirection graphs from which templates are constructed:
malicious, benign, and malicious and benign (compromised
for short). The importance represents the level of contri-

Table 7 Statistics of templates

Malicious Benign Compromised

# of templates 167 246 54
Order Highest 1 10 7

of Lowest 454 467 458
importance Average 111.7 293.1 343.0

Table 8 Calculation time for one website (sec).

System Proposed Content Redirection Comb.

Feature extraction 0.1251 0.0033 0.0073 0.0106
Classification 0.0005 0.0003 0.0002 0.0004
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Fig. 8 Redirection subgraphs of templates.

Fig. 9 True positive rate degradation over time.

bution of each template to classification. More than half the
templates were constructed from only benign websites. This
is because benign redirection graphs outnumbered malicious
ones. However, malicious templates tended to have a higher
importance than benign and compromised templates. Some
benign and compromised templates also had the highest im-
portance.

One malicious template that had a high importance
contained redirection subgraphs relevant to the Angler Ex-
ploit Kit as shown in Fig. 8 (a). The iframe tag redi-
recting to the exploit URL of a different domain was in-
jected at the landing URL. The malicious web content at
http://mal.example/ exploited a use-after-free vulnera-
bility (CVE-2014-4130) and also contained redirection to
other malicious web content such as Flash (CVE-2015-
0313). Another malicious template that had a high impor-
tance contained redirection subgraphs relevant to an exploit
kit and compromised website. Since it contained all web-
sites related to drive-by download attacks, it was a large
template composed of many redirection subgraphs.

One compromised template that had a high importance
contained redirection subgraphs relevant to a CMS as shown
in Fig. 8 (b). Websites created with a CMS tend to be tar-
geted and compromised by attackers. For this reason, redi-
rection subgraphs relevant to the same CMS were included
in malicious and benign redirection graphs. The landing
URL includes some HTML tags redirecting to Cascading
Style Sheets, image, and JavaScript code. These redirec-
tions are included in the template of the CMS. The landing
URL also includes a script tag redirecting to an analysis

Fig. 10 F-measure and the number of templates on different hyperpa-
rameters.

service because many websites’ administrators use it.
One benign template that had a high importance con-

tained redirection subgraphs relevant to an advertisement.
If websites use the same advertisement service, they have
the same redirection subgraph for obtaining advertisement
content. This is why a template relevant to the advertise-
ment was constructed. We omit illustrating the template be-
cause it contains too many URLs to be depicted in a limited
amount of space.

By using these templates, our system can classify redi-
rection graphs on the basis of the structural similarities to
exploit kits, CMSs, and advertisements. If the content-based
system wrongly classified advertisement content as mali-
cious, our system classified its redirection graphs as benign
by referring to other web content and redirections relevant to
the advertisement. In addition, if the content-based system
could not detect malicious web content, our system detected
its redirection graphs by taking the compromised CMSs into
account.

As shown in the aforementioned examples, effective
templates are essential to achieve high classification perfor-
mance. We investigate classification performance on the ba-
sis of different templates. Specifically, we investigate the
number of templates, distribution of template sizes, and f-
measure with different hyperparameters. We use the number
of redirection subgraphs consisting of a template as the size
of a template. When the number of templates was small, our
system had a low f-measure as shown in Fig. 10. This is be-
cause coverage of redirection subgraphs was not sufficient



SHIBAHARA et al.: EVASIVE MALICIOUS WEBSITE DETECTION BY LEVERAGING REDIRECTION SUBGRAPH SIMILARITIES
439

Fig. 11 Distribution of size of templates on different hyperparameters.

to classify redirection graphs accurately. Figure 11 shows
the distribution of template sizes with different hyperparam-
eters. The hyperparameters are arranged in the ascending
order of f-measures. When the f-measure was high, large
templates tended to be constructed and variance of the dis-
tribution tended to be high. When the f-measure was low,
most templates were small. This is because small templates
were similar to many redirection graphs and unable to ex-
tract discriminative features. To achieve a high classification
performance, various differently sized templates need to be
constructed.

False Positives and False Negatives. We identified
two main cases of false positives with manual inspection.
The first was websites created with a CMS for electronic
commerce sites. They contained multistage redirections to
JavaScript code. Similarly, malicious redirection graphs
have multistage redirections to malicious JavaScript code.
This structural similarity caused the false positives. The
second case was websites created with a CMS and slightly
modified by their administrators. Some redirections for ad-
vertisement or analysis services were injected to landing
URLs. The redirection graphs of these websites were simi-
lar to malicious redirection graphs created by compromising
CMSs. Note that our system accurately classified redirec-
tion graphs of plain or customized CMS websites as benign.

We identified one main case of false negatives. On the
websites of false negatives, benign JavaScript code that was
the destination of redirections from landing URLs was com-
promised. However, in most malicious redirection graphs,
the web content of landing URLs was compromised. The
difference in redirection graphs caused false negatives.

Case Study of Server-side Cloaking. We describe a
website for which redirection subgraphs of compromised
websites need to be captured for detection. The redirection

Fig. 12 Redirection graph of a website launching server-side cloaking.

from the landing URL to the exploit URL was triggered by
an injected iframe tag as shown in Fig. 12. The status code
of the HTTP response from the exploit URL was 200, but
its body was empty. This website was speculated to be an
attempt of server-side cloaking, which detects security ven-
dors or researchers on web servers and conceals malicious
web content from them. The exploit URL was created with
Rig Exploit Kit, and most attempts to obtain malicious web
content were unsuccessful. The content-based system could
definitely not detect this website due to the lack of malicious
web content.

Our system detected the website by utilizing the redi-
rection graph of all of the websites. The compromised web-
site was created with a CMS that is sometimes compromised
by attackers. Moreover, it had a redirection to a different
domain with a iframe tag. The same redirection is fre-
quently used on malicious redirection graphs. Our system
detected this website by capturing both traits of the compro-
mised website and the malicious redirection.

5.2 Detecting Evasive Malicious Websites

We report the evaluation results of the second dataset includ-
ing evasive malicious redirection graphs. To avoid duplicate
evaluation, we focus on the detection capability and show
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Table 9 Number of TP and TPR at fixed FPR of 0.1%.

System Proposed Content Redirection Comb.

# of TP 821 678 71 669
TPR 0.243 0.200 0.021 0.206

Fig. 13 Redirection graph of a false negative.

Fig. 14 Redirection graph of an evasive malicious website.

classification performance, false negatives, and a case study
of an evasive malicious website.

Classification Performance. Table 9 shows the num-
ber of TP and TPR at a fixed FPR of 0.1%. FPR was
fixed using the test dataset of malicious redirection graphs
containing exploit URLs. Our system detected 143 more
evasive malicious redirection graphs than the content-based
system. On the evasive malicious websites detected by our
system, the evasion code prevented the low-interaction hon-
eyclient from accessing exploit URLs at redirection URLs.
The redirection graph and evasion code were more precisely
illustrated as a case study. The content-based system could
not detect some malicious web content at redirection URLs.
This is why our system detected more evasive malicious
redirection graphs.

False Negatives. We identified one main case of
false negatives as shown in Fig. 13. On these web-
sites, the evasion code was used at landing URLs, i.e.,
http://a.example/ in Fig. 13. Therefore, the low-
interaction honeyclient was not redirected to malicious
URLs but only to benign URLs, i.e., http://a.example/
script.js and http://a.example/logo.jpg in Fig. 13.
The redirection graphs of these websites were the same as
those of benign websites. On benign websites, a client
is typically redirected to some benign URLs to obtain
scripts or images when it accesses a landing URL. As a re-
sult, benign redirection graphs are shallow and have many
branches. For this reason, our system could not detect web-
sites where the evasion code was used at landing URLs.
Note that we did not find any websites containing malicious
redirections after manually inspecting 100 false negatives.

Case Study of Evasive Malicious Website. We de-
scribe the evasive malicious website shown in Fig. 14. This
website (redirection URL) was pointed to by the iframe
tag injected at the landing URL. Figure 15 shows the eva-
sion code created with the Angler Exploit Kit. A different
value was assigned to flag depending on the error when the

Fig. 15 Evasion code at http://mal.example/redirect.js.

ActiveXObject of “Anti-virus” was loaded at line 3. If the
error occurred, true was assigned, and vice versa at lines
4 and 6. Subsequent malicious code was executed only if
it was true. Since the high-interaction honeyclient had no
anti-virus software installed, it raised the exception. How-
ever, the low-interaction honeyclient did not raise any ex-
ception. By leveraging this difference, the evasive malicious
website prevented the low-interaction honeyclient from ac-
cessing the exploit URL.

The compromised website was also created with a
CMS sometimes compromised by attackers. Similar to the
website launching server-side cloaking, our system could
detect it by utilizing the redirection graph of all of the web-
sites.

6. Limitations

Our system requires redirection subgraphs widely shared
across malicious websites to distinguish malicious redirec-
tion graphs from benign ones. Therefore, our system did
not detect malicious redirection graphs that had subgraphs
different from those of typical malicious websites (as dis-
cussed in Sect. 5.1) or malicious redirection graphs that
contain evasion code used at landing URLs (as discussed
in Sect. 5.2). This is a general limitation from which all
machine-learning-based systems suffer. To detect uncom-
mon malicious redirection graphs, the number of malicious
training data must be increased. To detect malicious redi-
rection graphs that contain evasion code used at landing
URLs, systems that detect injected code on compromised
websites [3], [4] can be utilized complementarily. We can
analyze a relatively small number of websites detected by
these systems with various clients and detect malicious web-
sites using collected malicious redirection graphs by using
our system.

Another limitation is the degradation in classification
performance over time. Conventional systems also have this
limitation, but the degradation of our system was steeper
than those of the conventional systems as discussed in
Sect. 5.1. Our system is based on redirection subgraphs of
many websites such as benign, compromised, and malicious
websites. Change in the structure of any one of them de-
grades the classification performance of our system. The
advantage of our system is to achieve high classification per-
formance if training and test data are similar. The evaluation
results showed our system achieved the highest classifica-
tion performance on the first month of test data. To main-
tain high classification performance, the classifier should
be retrained every month by using data labeled by high-
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interaction honeyclients. High-interaction honeyclients are
not suitable for large-scale analysis due to their slow pro-
cessing speed but are useful for labeling a limited number
of websites.

7. Related Work

7.1 Malicious Website Detection

Many systems have been proposed from different perspec-
tives for detecting malicious websites launching drive-by
download attacks. Here, we describe conventional systems
focused on large-scale user traffic, system behavior, and web
content and redirections.

Large-scale User Traffic. One approach for detect-
ing malicious websites is aggregating large-scale user traf-
fic [22], [23]. Attackers redirect clients to the same redirec-
tion URL from landing URLs and then redirect them to the
exploit URLs targeting their environment. Geographical di-
versity and uniform client environments can be used as traits
of malicious websites. However, these systems require logs
provided by anti-virus vendors or large ISPs, and these logs
are generally difficult to obtain. From the perspective of de-
ployment, we designed our system to use data collected with
a honeyclient.

System Behavior. Decoy client systems using actual
browsers have been proposed to detect exploit accurately
by monitoring unintended process creation and file/registry
accesses [27]–[29]. These systems are known as high-
interaction honeyclients. They have the limitations of a slow
processing speed due to the use of actual browsers and the
limited coverage of collected malicious data due to browser
fingerprinting as discussed in Sects. 1 and 2. For this reason,
they are not suitable for large-scale analysis.

Web Content and Redirections. Systems in this cat-
egory are designed for large-scale analysis. They collect
web content or redirections by using browser emulators
and classify them by using machine learning. Browser
emulators developed for light-weight collection are known
as low-interaction honeyclients. Malicious web content
has distinctive features to exploit known CVE-ID (Com-
mon Vulnerabilities and Exposures identification) or trig-
ger malicious redirections. Some systems are focused on
JavaScript code and HTML tags [6]–[8]. Other systems are
focused on multistage redirections such as the difference
in domains and duration of redirections [10], URLs shared
across malicious websites [9], sequences of URLs [30], and
URLs/HTTP headers and redirections between them [12].
These systems are focused on malicious URLs, web content,
or redirections, but our system is focused on the redirection
graphs of all websites, i.e., malicious/benign web content
and malicious/benign redirections.

7.2 Compromised Website Detection

Detecting compromised websites is another approach to
preventing damage caused by drive-by download attacks.

Soska and Christin [3] detect websites that will become ma-
licious in the future by focusing on web content that is
not generated by users, such as vulnerable CMSs. Li et
al. [4] detect compromised JavaScript code that triggers ma-
licious redirections by comparing it with its clean counter-
part. These systems require a clean version of compromised
websites or JavaScript code. Our system detects compro-
mised websites by leveraging only already compromised
websites and totally benign websites.

7.3 Classification of Graphs

Many researchers have studied different approaches for clas-
sifying graph-structured data such as protein or medicine.

Graph Kernels. One approach is to design a graph
kernel that is a function to calculate similarities between
graphs and classify graphs with machine learning algo-
rithms based on kernel methods such as support vector ma-
chine [31]. The random walk kernel [32] is based on the
co-occurrence of sequences of labels on vertices or edges
in random walks. The shortest-path kernel [33] is based
on the co-occurrence of the length of shortest-paths be-
tween pairs of vertices. The graphlet kernel [34] is based
on the co-occurrence of subgraphs that have k vertices. The
Weishfeiler-Lehman graph kernel [35] is based on the co-
occurrence of multilabels that are created by iteratively in-
tegrating a vertex’s and its neighbors’ labels. The deep
graph kernel [36] is designed to extend the above graph ker-
nels by leveraging latent representations of sub-structures.
The deep graph kernel is defined by considering similari-
ties between sub-structures as well as co-occurrence of sub-
structures. These methods effectively calculate similari-
ties between graphs on the basis of their sub-structures, but
counting the occurrence of a large number of sub-structures
is computationally expensive. Our system reduces computa-
tional cost by calculating similarities between a redirection
graph and a small number of templates.

Convolution on Graphs. Since deep neural networks
(DNNs) have achieved outstanding classification perfor-
mance in image recognition and natural language process-
ing, some studies have applied DNNs to classification of
graphs. Duvenaud et al. [37] have proposed a convolutional
neural network (CNN) that iteratively convolutes vectors
representing a vertex and its neighbors and calculates the
summation of convoluted vectors as a representation of a
whole graph. Li et al. [38] conduct similar convolutions with
the gated recurrent units. Dai et al. [39] designed an archi-
tecture of neural networks on the basis of graphical model
inference procedures. Niepert et al. [40] apply conventional
CNNs by arranging vertices in the order of certain criteria
such as centrality. These methods have difficulty extract-
ing features of differently sized redirection subgraphs such
as exploit kits, compromised websites, and advertisements
because the number of iterations of convolutions must be
determined before training. Our system extracts features of
differently sized redirection subgraphs by leveraging differ-
ently sized templates.



442
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

8. Conclusion

We have proposed a system for detecting malicious websites
on the basis of the redirection graphs of all websites even
when some malicious web content is concealed. We have
extracted redirection subgraphs shared across malicious, be-
nign, and compromised websites as templates and classi-
fied websites using feature vectors containing similarities
between their features of subgraphs and the templates. We
have found that templates contained redirection subgraphs
of exploit kits, compromised websites, and advertiser web-
sites. These templates enable our system to identify mali-
cious websites by capturing redirection subgraphs of com-
promised websites as well as those of malicious websites.
As a result of evaluating our system with crawling data of
455,860 websites, we have found that it achieved a 91.7%
true positive rate for malicious websites containing exploit
URLs at a low false positive rate of 0.1%. Moreover, our
system have detected 143 more evasive malicious websites
than the conventional content-based system.
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