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SUMMARY In this paper, we consider a uniform bipartition problem in
a population protocol model. The goal of the uniform bipartition problem
is to divide a population into two groups of the same size. We study the
problem under global fairness with various assumptions: 1) a population
with or without a base station, 2) symmetric or asymmetric protocols, and
3) designated or arbitrary initial states. As a result, we completely clarify
solvability of the uniform bipartition problem under global fairness and, if
solvable, show the tight upper and lower bounds on the number of states.
key words: population protocol, uniform bipartition, distributed protocol

1. Introduction

1.1 The Background

A population protocol model [2] is an abstract model that
represents computation on a network of low-performance
devices. We refer to such devices as agents and a set of
agents as a population. Agents can update their states by
interacting with other agents, and proceed with computation
by repeating the pairwise interactions. The population pro-
tocol model can be applied to many systems. For example,
one may construct sensor networks to monitor wild birds by
attaching sensors to them. In this system, sensors collect
and process data based on pairwise interactions when two
sensors (or birds) come sufficiently close to each other. An-
other future example is a system of low-performance molec-
ular robots [3]. The system is being developed, for example,
to deploy inside a human body and diagnose the physical
condition. To realize such systems, many protocols have
been proposed as building blocks in the population protocol
model [4]. For example, they include leader election pro-
tocols [5]–[12], counting protocols [13]–[16], and majority
protocols [5], [17]–[19].
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In this paper, we consider a uniform bipartition prob-
lem, which divides a population into two groups of the same
size. The uniform bipartition problem is a special case of a
group composition problem, which divides a population into
multiple groups to satisfy some conditions. Some protocols
for the group composition problem are developed as sub-
routines to realize fault-tolerant protocols [20] and periodic
functions [21]. However, the complexity of the problem has
not been studied deeply yet. For this reason, as the first step
to study the complexity of the group composition problem,
we focus on the space complexity of the uniform bipartition
problem. Note that the uniform bipartition problem itself
has some applications. For example, we can reduce energy
consumption by switching on one group and switching off
the other. In another example, we can assign a different task
to each group and make agents execute multiple tasks at the
same time. This can be regarded as differentiation of a pop-
ulation in the sense that initially identical agents are eventu-
ally divided into two groups and execute different tasks. In
addition, by repeating uniform bipartition, we can divide a
population into an arbitrary number of groups with almost
the same size. For example, by repeating uniform bipartition
four times, we can make sixteen groups of the same size. We
can regroup the sixteen groups to three groups with almost
the same size by partitioning them into five, five, and six
groups.

1.2 Our Contributions

For the uniform bipartition problem, we clarify solvability
and minimum requirements of agent space under various
assumptions. More concretely, we consider three types of
assumptions, 1) a population with or without a base station,
2) symmetric or asymmetric protocols, and 3) designated or
arbitrary initial states. A base station (BS) is a distinguish-
able agent with a powerful capability. When a single BS
exists in a population, the BS can behave as a leader; for ex-
ample, it can collect information of agents and assign roles
to agents. This facilitates design of population protocols,
however in some applications we cannot use a BS. Symmet-
ric property of protocols is related to the power of symmetry
breaking in the population. Asymmetric protocols may in-
clude transitions that make agents with the same states enter
different states. This requires a mechanism to break symme-
try among agents and its implementation is sometimes diffi-
cult with low-performance agents such as molecular robots.
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Table 1 Our contributions: The number of states to solve the uniform
bipartition problem.

BS initial states symmetry upper bound lower bound

single
designated

asymmetric 3 3
symmetric 3 3

arbitrary
asymmetric 4 4
symmetric 4 4

no
designated

asymmetric 3 [20] 3
symmetric 4 [23] 4

arbitrary
asymmetric unsolvable
symmetric unsolvable

Symmetric protocols do not include such transitions. The
assumption of initial states is related to the requirement of
initialization and the fault-tolerant property. If a protocol re-
quires a designated initial state, we need some mechanism
to initialize agent states before executing protocols. On the
other hand, when the protocol allows arbitrary initial states,
initialization of agents other than the BS is not necessary. In
addition, even if agents enter arbitrary states due to transient
faults, the system can eventually reach the desired configu-
ration by initializing the BS. If a protocol allows arbitrary
initial states and does not require a BS, the protocol is self-
stabilizing because it can work from arbitrary initial config-
urations.

In addition to the above assumptions, we require some
fairness assumption on interactions of agents. This is be-
cause, if some agents do not join any interaction, no proto-
col can solve the uniform bipartition problem. In this paper,
we adopt global fairness, which is a common assumption to
ensure the progress of protocols [4], [7]–[9], [13], [14], [16],
[20], [22], [23]. We give the definition of global fairness in
Sect. 2.

For each combination of assumptions, we completely
clarify solvability of the uniform bipartition problem and,
if solvable, show the tight upper and lower bounds on the
number of states. Our contributions are given in Table 1.

First, we consider the case of a single BS. For desig-
nated initial states, we give a symmetric protocol with three
states and prove impossibility of asymmetric protocols with
two states. That is, three states are necessary and sufficient
for designated initial states. For arbitrary initial states, we
give a symmetric protocol with four states and prove impos-
sibility of asymmetric protocols with three states. That is,
four states are necessary and sufficient for arbitrary initial
states. These results show that only one additional state is
required to treat arbitrary initial states.

Next, we consider the case of no BS. For designated
initial states, no asymmetric protocol with two states ex-
ists (this is clearly derived from the result of a single BS).
Since an asymmetric protocol with three states is given in
[20], three states are necessary and sufficient for asymmet-
ric protocols. For symmetric protocols, we prove impos-
sibility with three states. Since a symmetric protocol with
four states is obtained by a general transformer in [23], four
states are necessary and sufficient for symmetric protocols.
For arbitrary initial states, we prove that no protocol exists
even if the protocol can use any number of states. This im-

plies that a BS is necessary for protocols with arbitrary ini-
tial states.

1.3 Related Works

The population protocol model was introduced by Angluin
et al. [2], [22]. They regard initial states of agents as an input
to the system, and resultant states of them as an output from
the system. Following this definition, they clarified the class
of computable predicates in the population protocol model.

In addition to such computability researches, many al-
gorithmic problems have been considered in the population
protocol model. For example, they include leader elec-
tion [5]–[12], counting [13]–[16], and majority [5], [17]–
[19]. These problems are considered under various assump-
tions of a population with or without a base station, sym-
metric or asymmetric protocols, designated or arbitrary ini-
tial states. The leader election problem has been thoroughly
studied for both designated and arbitrary initial states. For
designated initial states, many researches aim to minimize
the time and space complexity [5], [6], [9]. For arbitrary
initial states, many papers have developed self-stabilizing
and loosely-stabilizing protocols [7], [8], [10]–[12]. Cai et
al. [8] proposed a self-stabilizing leader election protocol
with knowledge of n, and proved that knowledge of n is nec-
essary to construct a self-stabilizing leader election protocol,
where n is the number of agents. To overcome the require-
ment of knowledge of n, Sudo et al. [12] proposed a concept
of loose stabilization and gave a loosely-stabilizing leader
election protocol. The complexity and the requirement on
communication graphs are improved later [10], [11]. The
counting problem aims to count the number of agents and
it has been studied under assumptions of a single BS and
arbitrary initial states. After the first protocol was pro-
posed in [15], the space complexity was gradually mini-
mized [14], [16]. In [13], a time and space optimal protocol
was proposed. The majority problem is also a fundamental
problem in the population protocol model. In this problem,
each agent initially has a color x or y, and the goal is to
decide which color gets a majority. For the majority prob-
lem, many protocols have been proposed [5], [17]–[19]. Re-
cently an asymptotically space-optimal protocol for c colors
(c > 2) has been proposed in [19].

As a similar problem to the uniform bipartition prob-
lem, a group composition problem is studied in [20], [21].
Delporte-Gallet et al. [20] proposed a protocol to divide a
population into g groups of almost the same size. The pro-
tocol is asymmetric, assumes designated initial states, and
works under global fairness in the model of no BS. When
g = 2, the protocol solves the uniform bipartition prob-
lem with three states. However, the paper does not consider
other setting. Lamani et al. [21] studied a problem that di-
vides a population into groups of designated sizes. Although
the proposed protocols assume arbitrary initial states, they
also assume that n/2 pairs of agents make interactions at the
same time and that agents know n. In addition, the protocol
requires n states, that is, it is not a constant-space protocol.
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2. Definitions

2.1 Population Protocol Model

A population A is defined as a collection of pairwise inter-
acting agents. A protocol is defined as P = (Q, δ), where
Q is a set of possible states of agents and δ is a set of tran-
sitions on Q. Each transition in δ is described in the form
(p, q) → (p′, q′), which means that, when an agent in state
p and an agent in state q interact, they change their states
to p′ and q′, respectively. We consider only deterministic
protocols, that is, for every pair (p, q) ∈ Q × Q, there ex-
ists at most one pair (p′, q′) ∈ Q × Q such that transition
(p, q) → (p′, q′) is in δ. If transition (p, q) → (p′, q′) sat-
isfies p = q and p′ � q′, the transition is asymmetric. We
assume state changes by asymmetric transitions are decided
deterministically, that is, when ai and a j in states p change
their states by transition (p, p) → (p′, q′), 1) ai and a j al-
ways enter p′ and q′, respectively, or 2) ai and a j always
enter q′ and p′, respectively. A transition is symmetric if it
is not asymmetric. For protocol P = (Q, δ), P is symmetric
if every transition in δ is symmetric, and P is asymmetric if
every transition in δ is symmetric or asymmetric. Note that
a symmetric protocol is also asymmetric.

A global state of a population is called a configuration.
A configuration is defined as a vector of (local) states of all
agents. We define s(a,C) as the state of agent a at configu-
ration C. When C is clear from the context, we simply write
s(a). If configuration C′ is obtained from configuration C
by a single transition of a pair of agents, we say C → C′.
For configurations C and C′, if there is a sequence of con-
figurations C = C0,C1, . . . ,Ck = C′ that satisfies Ci → Ci+1

for any i (0 ≤ i < k), we say C′ is reachable from C, denoted

by C
∗−→ C′.

If an infinite sequence of configurations E =

C0,C1,C2, . . . satisfies Ci → Ci+1 for any i (i ≥ 0), E is an
execution of a protocol. An execution E is globally fair if,
for every pair of configurations C and C′ such that C → C′,
C′ occurs infinitely often when C occurs infinitely often. In-
tuitively, global fairness represents that, when the current
configuration is C, the system can transit, with a positive
probability, to any configuration C′ such that C → C′ holds.
This implies that, if the system reaches configuration C in-
finitely many times, the system infinitely many times tran-
sits to any C′ such that C → C′ holds. If C occurs infinitely
often, C′ satisfying C → C′ occurs infinitely often, and con-
sequently C′′ satisfying C′ → C′′ also occurs infinitely of-
ten. This implies that, under global fairness, if C occurs in-
finitely often, every configuration C∗ reachable from C also
occurs infinitely often. Note that global fairness does not
put a condition on a finite sequence of interactions. From
this property, in some impossibility proofs, we construct a
globally fair execution such that some artificial sequence of
interactions make the uniform bipartition problem unsolv-
able.

In this paper, we consider two models, one with a sin-

gle BS (base station) and one with no BS. In the model
with a single BS, we assume that a single agent called a
BS exists in A. The BS is distinguishable from other non-
BS agents while non-BS agents are identical and cannot be
distinguished. That is, state set Q is divided into state set Qb

of a BS and state set Qp of non-BS agents. The BS can be as
powerful as needed, in contrast with resource-limited non-
BS agents. That is, we focus on the number of states |Qp|
for non-BS agents and do not care the number of states |Qb|
for the BS. In addition, even if we consider protocols with
arbitrary initial states, we assume that the BS has a desig-
nated initial state while all non-BS agents have arbitrary ini-
tial states. If we consider protocols with designated initial
states, all non-BS agents have the same designated initial
states and the BS has another designated initial state. In the
model with no BS, no BS exists and all agents are identical.
In this case, they all have the same designated initial states
or arbitrary initial states. In both models, no agent knows
the total number of agents in the initial configuration.

2.2 Uniform Bipartition Problem

Let Ap be a set of all non-BS agents. Let f : Qp →
{red, blue} be a function that maps a state of a non-BS agent
to red or blue. We define a color of a ∈ Ap as f (s(a)). We
say agent a ∈ Ap is red if f (s(a)) = red and agent a ∈ Ap is
blue if f (s(a)) = blue.

Configuration C is stable if there is a partition {R, B} of
Ap that satisfies the following condition: 1) ||R| − |B|| ≤ 1,

and 2) for every C∗ such that C
∗−→ C∗, each agent in R is red

and each agent in B is blue at C∗.
An execution E = C0,C1,C2, . . . solves the uniform

bipartition problem if there is a stable configuration Ct in
E. If each execution E of protocol P solves the uniform
bipartition problem, we say protocol P solves the uniform
bipartition problem. The main objective of this paper is to
minimize the number of states for non-BS agents. Since the
BS is powerful, we do not care the number of states for the
BS. When protocol P requires x states for non-BS agents,
we say P is a protocol with x states.

For simplicity, we use agents only to refer to non-BS
agents in the following sections. To refer to the BS, we al-
ways use the BS (not an agent).

3. Uniform Bipartition Protocols with a Single BS

In this section, we consider the uniform bipartition problem
under the assumption of a single BS. Recall that the BS is
distinguishable from other non-BS agents, and we do not
care the number of states for the BS.

3.1 Protocols with Designated Initial States

In this subsection, we consider protocols with designated
initial states. We give a simple symmetric protocol with
three states, and then prove that there exists no asymmet-
ric protocol with two states. This implies that, in this case,
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three states are sufficient for asymmetric or symmetric pro-
tocols.

3.1.1 A Protocol with Three States

In this protocol, the state set of (non-BS) agents is Qp =

{initial, red, blue}, and we set f (initial) = f (red) = red and
f (blue) = blue. The designated initial state of all agents is
initial. The idea of the protocol is to assign states red and
blue to agents alternately when agents interact with the BS.
To realize this, the BS has a state set Qb = {bred, bblue}, and
its initial state is bred. The protocol consists of the following
two transitions.

1. (bred, initial)→ (bblue, red)
2. (bblue, initial)→ (bred, blue)

That is, when the BS in state bred (resp., bblue) and a
non-BS agent in state initial interact, the BS changes the
state of the non-BS agent to red (resp., blue) and the state of
itself to bblue (resp., bred). When two non-BS agents interact,
no state transition occurs. Clearly, all non-BS agents evenly
transit to state red or blue, and the difference in the numbers
of red and blue agents is at most one. Note that the protocol
contains no asymmetric transition and works correctly if ev-
ery non-BS agent interacts with the BS. Therefore, we have
the following theorem.

Theorem 1: In the model with a single BS, there exists
a symmetric protocol with three states and designated ini-
tial states that solves the uniform bipartition problem under
global fairness.

3.1.2 Impossibility with Two States

Next, we show three states are necessary to construct an
asymmetric protocol under global fairness. This implies
that, in this case, three states are necessary for asymmet-
ric or symmetric protocols under global fairness because a
symmetric protocol is also asymmetric. That is, three states
are necessary and sufficient in this case.

Theorem 2: In the model with a single BS, no asymmetric
protocol with two states and designated initial states solves
the uniform bipartition problem under global fairness.

Proof : For contradiction, assume that such a protocol
Alg exists. Without loss of generality, we assume Qp =

{s1, s2}, f (s1) = red, f (s2) = blue, and that the designated
initial state of all agents is s1. Let n be an even number that
is at least four. We consider the following three cases.

First, for population A of a single BS and n (non-BS)
agents a1, a2, . . . , an, consider a globally fair execution E =
C0,C1, . . . of Alg. According to the definition, there exists
a stable configuration Ct. That is, after Ct, the state of each
agent does not change even if the BS and agents in states s1

and s2 interact in any order.
Next, for population A′ of a single BS and n +

2 agents a1, a2, . . . , an+2, we define an execution E′ =

C′0,C
′
1, . . . ,C

′
t ,C

′
t+1, . . . of Alg as follows.

• From C′0 to C′t , the BS and n agents a1, a2, . . . , an inter-
act in the same order as the execution E.

• After C′t , the BS and n+2 agents interact so as to satisfy
global fairness.

Since the BS and agents a1, . . . , an change their states simi-
larly to E from C′0 to C′t , there are n/2 + 2 agents in state s1

and n/2 agents in state s2 at C′t . Moreover, the state of the
BS at C′t is the same as the state of the BS at Ct. However,
since the difference in the numbers of red and blue agents is
two, C′t is not a stable configuration. Consequently, after C′t ,
some red or blue agent changes its state in execution E′.

Lastly, we define execution E′′ = C′′0 ,C
′′
1 , . . . for pop-

ulation A as follows. First, we make agents transit similarly
to E and reach stable configuration C′′t (= Ct) in E′′. Af-
ter that we apply interactions in E′ to execution E′′. That
is, we make agents interact as follows after C′′t in E′′: 1)
when the BS and an agent in state s ∈ {s1, s2} interact at
C′u → C′u+1 (u ≥ t) in E′, the BS and an agent in state s in-
teract at C′′u → C′′u+1 in E′′, and 2) when two agents in states
s ∈ {s1, s2} and s′ ∈ {s1, s2} interact at C′u → C′u+1 (u ≥ t)
in E′, two agents in states s and s′ interact at C′′u → C′′u+1
in E′′. We can realize such interactions because, after sta-
ble configuration C′′t , at least two agents are in s1 and at
least two agents are in s2. After C′′t , since interactions oc-
cur similarly to E′, some red or blue agent changes its state
similarly to E′. After such a state change occurs, we make
agents interact so that E′′ satisfies global fairness. This im-
plies that, in globally fair execution E′′, an agent changes its
color after stable configuration C′′t . This is a contradiction.

�

3.2 Protocols with Arbitrary Initial States

In this subsection, we consider protocols with arbitrary ini-
tial states. As a result, we give a symmetric protocol with
four states, and prove impossibility of protocols with three
states. That is, we show that four states are necessary and
sufficient to construct a (symmetric or asymmetric) protocol
in this case. Recall that, since a BS is powerful, the BS can
start the protocol from a designated initial state.

3.2.1 A Symmetric Protocol with Four States

Here we show a symmetric protocol with four states under
global fairness. In this protocol, each (non-BS) agent x has
two variables rbx ∈ {red, blue} and markx ∈ {0, 1}. Variable
rbx represents the color of agent x. That is, for state s of
agent x, f (s) = red holds if rbx = red and f (s) = blue holds
if rbx = blue. We define #red as the number of red agents
and #blue as blue agents. We explain the role of variable
markx later.

The basic strategy of the protocol is that the BS counts
red and blue agents by counting protocol Count [14] and
changes colors of agents so that the numbers of red and blue
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agents become equal. Protocol Count is a symmetric proto-
col that counts the number of non-BS agents from arbitrary
initial states under global fairness. Protocol Count uses only
two states for each non-BS agent. We use variable markx to
maintain the state of protocol Count. In protocol Count, the
BS has variable Count.out that eventually outputs the num-
ber of agents. More concretely, Count.out initially has value
0, gradually increases one by one, eventually equals to the
number of agents, and stabilizes. The following lemma ex-
plains the characteristic of protocol Count.

Lemma 1 ( [14]): Let n be the number of non-BS agents.
In the initial configuration, Count.out = 0 holds. When
Count.out < n, Count.out eventually increases by one un-
der global fairness. When Count.out = n, Count.out never
changes and stabilizes.

To count red and blue agents, the BS executes two in-
stances of protocol Count in parallel to the main procedure
of the uniform bipartition protocol. We denote by Countred

and Countblue instances of protocol Count to count red and
blue agents, respectively. The BS executes Countred when it
interacts with a red agent. That is, the BS updates vari-
ables of Countred at the BS and the red agent by apply-
ing a transition of protocol Countred. By this behavior, the
BS executes Countred as if the population contains only red
agents. Therefore, after the BS initializes its own variables
of Countred, it can correctly count the number of red agents
by Countred (i.e., Countred.out eventually stabilizes to #red)
as long as a set of red agents does not change. Similarly, the
BS executes Countblue when it interacts with a blue agent,
and counts the number of blue agents. The straightforward
approach to use the counting protocols is to adjust colors of
agents after Countred.out and Countblue.out stabilize. How-
ever, the BS cannot know whether the outputs have stabi-
lized or not. For this reason, the BS maintains estimated
numbers of red and blue agents, and it changes colors of
agents when the difference in the estimated numbers of red
and blue agents is two. Note that, since the counting proto-
cols assume that a set of counted agents does not change, the
BS must restart Countred and Countblue from the beginning
when the BS changes colors of some agents.

We explain the details of this procedure. The BS
records the estimated numbers of red and blue agents in
variables C∗rb[red] and C∗rb[blue], respectively. In the be-
ginning of execution, these variables are identical to out-
puts of Countred and Countblue. If the difference between
C∗rb[red] and C∗rb[blue] becomes two, the BS immediately
changes colors of agents. At the same time, the BS up-
dates C∗rb[red] and C∗rb[blue] to reflect the change of col-
ors. After the BS changes colors of some agents, it restarts
Countred and Countblue from the beginning by initializing its
own variables of the counting protocols. Since the count-
ing protocols allow arbitrary initial states of non-BS agents,
the BS can correctly count red and blue agents after that.
Note that the BS does not initialize C∗rb[red] and C∗rb[blue]
because it knows such numbers of red and blue agents ex-
ist. If the output of Countred and Countblue exceeds C∗rb[red]

Algorithm 1 Uniform bipartition protocol
Variables at BS:

C∗rb[c](c ∈ {red, blue}): the estimated number of c agents, initialized to
0
Variables: variables of Countc(c ∈ {red, blue})

Variables at a mobile agent x:
rbx ∈ {red, blue}: color of the agent, initialized arbitrarily
markx ∈ {0, 1}: a variable of Countc(c ∈ {red, blue}), initialized arbi-
trarily

1: when a mobile agent x interacts with BS do
2: update markx and variables of Countrbx at BS by applying a tran-

sition of Countrbx

3: if C∗rb[rbx] < Countrbx .out then
4: C∗rb[rbx]← Countrbx .out
5: end if
6: if C∗rb[rbx] −C∗rb[rbx] = 2 then
7: C∗rb[rbx]← C∗rb[rbx] − 1

8: C∗rb[rbx]← C∗rb[rbx] + 1, rbx ← rbx

9: reset variables of Countred and Countblue at BS
10: end if
11: end when

and C∗rb[blue], the BS updates C∗rb[red] and C∗rb[blue], re-
spectively. After that, if the difference between C∗rb[red] and
C∗rb[blue] becomes two, the BS changes colors of agents. By
repeating this behavior, the BS adjusts colors of agents.

The pseudocode of this protocol is given in Algo-
rithm 1. We define red = blue and blue = red. Recall
that variable markx is a two-state variable of counting pro-
tocols Countred and Countblue. Since the BS restarts the
counting protocols whenever it changes colors of agents, the
BS keeps a set of red (resp., blue) agents unchanged un-
til it restarts Countred (resp., Countblue). In addition, each
agent is involved in either Countred or Countblue at the same
time. Hence it requires only a single variable markx to ex-
ecute Countred and Countblue. When two non-BS agents in-
teract, no state transition occurs in this protocol and count-
ing protocols. When the BS and a red agent interact, they
update markx and variables of Countred at the BS by ap-
plying a transition of Countred. This means that they exe-
cute Countred in parallel to the main procedure of the uni-
form bipartition protocol. After that, if Countred.out is
larger than C∗rb[red], C∗rb[red] is updated with Countred.out.
If the difference between C∗rb[red] and C∗rb[blue] becomes
two, the red agent changes its color to blue and the BS up-
dates C∗rb[red] and C∗rb[blue]. After updating, the BS resets
variables of Countred and Countblue, and restarts counting.
When the BS and a blue agent interact, they behave simi-
larly.

Lemma 2: In any configuration, C∗rb[red] ≤ #red,
C∗rb[blue] ≤ #blue and |C∗rb[red] −C∗rb[blue]| ≤ 1 hold.

Proof : We prove by induction on the index k ≥ 0 of a
configuration in an execution C0,C1,C2, . . . ,Ck, . . .. At the
initial configuration C0, the lemma holds. Let us assume
that the lemma holds for configuration Ck and prove it for
configuration Ck+1. From this assumption, C∗rb[red] ≤ #red,
C∗rb[blue] ≤ #blue and |C∗rb[red] −C∗rb[blue]| ≤ 1 hold at Ck.
Assume that, when Ck transits to Ck+1, the BS and agent
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x interact. If Countrbx .out becomes larger than C∗rb[rbx],
the BS updates C∗rb[rbx] by C∗rb[rbx] ← Countrbx .out (line
3). Note that, in this case, C∗rb[rbx] increases by one from
Lemma 1. In addition, C∗rb[red] ≤ #red and C∗rb[blue] ≤
#blue still hold. Recall that |C∗rb[red] − C∗rb[blue]| ≤ 1
held before this update and C∗rb[rbx] increases by one.
Consequently, at this moment (before line 5), |C∗rb[rbx] −
C∗rb[rbx]| ≤ 1 or C∗rb[rbx] − C∗rb[rbx] = 2 holds. Next, we
consider lines 5 to 9. If C∗rb[rbx] − C∗rb[rbx] ≤ 1 at line 5,
lines 6 to 8 are not executed, and thus C∗rb[red] ≤ #red,
C∗rb[blue] ≤ #blue and |C∗rb[red] − C∗rb[blue]| ≤ 1 hold. If
C∗rb[rbx] − C∗rb[rbx] = 2 at line 5, agent x changes its color
from rbx to rbx, C∗rb[rbx] decreases by one, and C∗rb[rbx]
increases by one. This also preserves C∗rb[red] ≤ #red,
C∗rb[blue] ≤ #blue and |C∗rb[red] − C∗rb[blue]| ≤ 1. There-
fore, the lemma holds. �

Theorem 3: Algorithm 1 solves the uniform bipartition
problem. That is, in the model with a BS, there exists a sym-
metric protocol with four states and arbitrary initial states
that solves the uniform bipartition problem under global
fairness.

Proof : We define phase = C∗rb[red] + C∗rb[blue]. Initially,
phase = 0 holds. We show that 1) phase increases one by
one if phase < n, and 2) Algorithm 1 solves the uniform
bipartition problem if phase = n.

First consider the initial configuration. Since we
assume global fairness, Countred.out or Countblue.out in-
creases by one from Lemma 1 and at that time phase in-
creases by one.

Let us consider the transition C → C′ such that phase
increases by one (i.e., line 4 is executed) and phase < n
holds at C′. We consider two cases.

• Case that lines 7 to 9 are not executed at C → C′.
In this case, since the BS does not change sets of
red and blue agents, it can correctly continue to ex-
ecute Countred and Countblue. Since phase < n =
#red + #blue holds, either #red > C∗rb[red] or #blue >
C∗rb[blue] holds. Consequently, from Lemma 1, either
Countred.out > C∗rb[red] or Countblue.out > C∗rb[blue]
holds eventually because we assume global fairness. At
that time, C∗rb[red] or C∗rb[blue] increases by one and
hence phase increases by one.

• Case that lines 7 to 9 are executed at C → C′. In
this case, the BS changes sets of red and blue agents.
At that time, the BS initializes its own variables of
counting algorithms Countred and Countblue. Since
the counting algorithms work from arbitrary initial
states of agents, the BS can correctly execute Countred

and Countblue from the beginning under global fair-
ness. Similarly to the first case, from Lemma 1, either
Countred.out > C∗rb[red] or Countblue.out > C∗rb[blue]
holds eventually. Then, phase increases by one.

Lastly, consider the transition C → C′ such that phase
increases by one and phase = n holds at C′. From phase =

n, C∗rb[red] + C∗rb[blue] = n = #red + #blue holds, and con-
sequently C∗rb[red] = #red and C∗rb[blue] = #blue hold from
Lemma 2. This implies that Countred.out and Countblue.out
never exceed C∗rb[red] and C∗rb[blue] after that, respectively.
Therefore, C∗rb[red] and C∗rb[blue] are never updated and
consequently agents never change their colors any more.
Since |#red− #blue| = |C∗rb[red]−C∗rb[blue]| ≤ 1 holds from
Lemma 2, we have the theorem. �

3.2.2 Impossibility with Three States

Theorem 4: In the model with a single BS, no asymmetric
protocol with three states and arbitrary initial states solves
the uniform bipartition problem under global fairness.

Proof : For contradiction, assume that such a protocol Alg
exists. Without loss of generality, we assume that the state
set of agents is Qp = {s1, s2, s3}, f (s1) = f (s2) = red, and
f (s3) = blue. We consider the following three cases.

First, consider population A = {a0, . . . , an} of a single
BS and n agents such that n is even and at least 4. Assume
that a0 is a BS. Since each agent has an arbitrary initial state,
we consider an initial configuration C0 such that s(ai) = s3

holds for any i(1 ≤ i ≤ n). Note that the BS a0 has a desig-
nated initial state at C0. From the definition of Alg, for any
globally fair execution E = C0,C1, . . ., there exists a stable
configuration Ct. Hence, both the number of red agents and
the number of blue agents are n/2 at Ct. After Ct, the color
of agent ai (i.e., f (s(ai))) never changes for any ai(1 ≤ i ≤ n)
even if the BS and agents interact in any order.

Next, consider population A′ = {a′0, . . . , a′n+2} of a sin-
gle BS and n + 2 agents. Assume that agent a′0 is a BS.
We consider an initial configuration C′0 such that s(a′i) = s3

holds for any i (1 ≤ i ≤ n + 2). From this initial configura-
tion, we define an execution E′ = C′0,C

′
1, . . . ,C

′
t , . . . using

the execution E as follows.

• For 0 ≤ u < t, when ai and a j interact at Cu → Cu+1, a′i
and a′j interact at C′u → C′u+1.

• For t ≤ u, an interaction occurs at C′u → C′u+1 so that
E′ satisfies global fairness.

Since the BS and agents a1, . . . , an change their states
similarly to E from C′0 to C′t , s(a′i) = s(ai) holds for 1 ≤
i ≤ n. Hence, there exist n/2 red agents and n/2 + 2 blue
agents at C′t . Consequently C′t is not a stable configuration.
This implies that there exists a stable configuration C′t′ for
some t′ > t. Clearly at least one blue agent becomes red
from C′t to C′t′ . That is, for some configuration C′t∗ (t ≤ t∗ <
t′), an agent in state s3 transits to state s1 or s2 at Ct∗ →
Ct∗+1. Assume that t∗ is the smallest value that satisfies the
condition.

Finally, for A we define an execution E′′ = C′′0 ,C
′′
1 , . . .

using executions E and E′ as follows.

• Let C′′u = Cu for 0 ≤ u ≤ t. That is, E′′ reaches stable
configuration C′′t in similarly to E.

• For t ≤ u ≤ t∗, we define an execution so that in-
teraction at C′u → C′u+1 also occurs at C′′u → C′′u+1.
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Concretely, when a′i and a′j interact at C′u → C′u+1,
we define ai′ and a j′ as follows and they interact at
C′′u → C′′u+1. If i ≤ n, let i′ = i. Otherwise, since
s(a′i) = s3 holds at C′u (because no agent in state s3

changes its state from C′t to C′t∗ ), choose i′(≤ n) such
that both s(ai′ ) = s3 and i′ � j hold. Similarly, if j ≤ n,
let j′ = j. Otherwise choose j′(≤ n) such that both
s(aj′ ) = s3 and j′ � i′ hold. Such i′ and j′ exist since at
least two agents in state s3 exist (because n ≥ 4 holds
and no agent in state s3 changes its state from C′t to
C′t∗ ).• After t∗ < u, an interaction occurs at C′′u → C′′u+1 so
that E′′ satisfies global fairness.

Clearly, for t ≤ u ≤ t∗ and i ≤ n, s(ai) at C′′u is equal to
s(a′i) at C′u. Additionally, at C′′t∗ → C′′t∗+1, an agent in state s3

transits to s1 or s2 as well as C′t∗ → C′t∗+1. This means that
the agent changes its color at C′′t∗ → C′′t∗+1. That is, an agent
changes its color after stable configuration C′′t in globally
fair execution E′′. This is a contradiction. �

Remark 5: Note that, in the proof of Theorem 4, we con-
sider a protocol with Qp = {s1, s2, s3}, f (s1) = f (s2) = red,
and f (s3) = blue, and assume that every agent is in state s3

at the initial configuration of E, E′, and E′′. This means,
even if we consider a protocol with three states and des-
ignated initial states, there exists no protocol such that the
designated initial state does not have the same color as any
other state. This fact holds even if the number of states is
larger than three.

On the other hand, Sect. 3.1.1 gives a protocol with
three states and designated initial states. In the protocol,
the state set of agents is Qp = {initial, red, blue}, we set
f (initial) = f (red) = red and f (blue) = blue, and the des-
ignated initial state is initial. This implies that there exists
a protocol if the designated initial state (i.e., initial) has the
same color as one of other states (i.e., red). �

4. Uniform Bipartition Protocols with No BS

In this section, we consider the uniform bipartition problem
under the assumption of no BS. That is, all agents are iden-
tical.

4.1 Protocols with Designated Initial States

In this subsection, we consider protocols with designated
initial states. Since we consider the model with no BS, all
agents have the same initial state in the initial configuration.

4.1.1 Asymmetric Protocols

First, we consider asymmetric protocols in this case. Since
three states are necessary in the model with a BS from The-
orem 2, three states are also necessary in the model with no
BS. In addition, Delporte-Gallet et al. [20] gives a protocol
with three states. This implies that three states are necessary

and sufficient in this case.
Here, we briefly explain the protocol proposed in

[20]. In this protocol, the state set of agents is Qp =

{initial, red, blue}, and we set f (initial) = f (red) = red and
f (blue) = blue. The designated initial state of all agents is
initial. The protocol consists of a single asymmetric tran-
sition (initial, initial) → (red, blue). In this protocol, when
two agents in state initial interact, one agent transits to red
and the other transits to blue. This implies that the number
of agents in state red is always the same as the number of
agents in state blue. Eventually all agents (possibly except
one agent) transit to state red or blue. From f (initial) = red,
the difference in the numbers of red and blue agents is at
most one. Note that the protocol works correctly if every
pair of agents interacts once.

Theorem 6 ( [20]): In the model with no BS, there exists
an asymmetric protocol with three states and designated ini-
tial states that solves the uniform bipartition problem under
global fairness.

4.1.2 Symmetric Protocols

Next, we consider symmetric protocols in this case. For this
setting, we show a protocol with four states and impossibil-
ity with three states. These results show that, in this case,
four states are necessary and sufficient to construct a sym-
metric protocol under global fairness.

(1) A protocol with four states under global fairness

We can easily obtain a symmetric protocol with four states
by a scheme proposed in [23]. The scheme transforms an
asymmetric protocol with α states to a symmetric proto-
col with at most 2α states. By applying the scheme to an
asymmetric protocol in Sect. 4.1.1 and deleting unnecessary
states, we can obtain a symmetric protocol with four states.

For self-containment, we briefly explain the obtained
protocol. Since no symmetric protocol solves the uni-
form bipartition problem for a population of two agents,
we assume that a population consists of at least three
agents. In this protocol, the state set of agents is
Qp = {initial, initial′, red, blue}, and we set f (initial) =
f (initial′) = f (red) = red and f (blue) = blue. The des-
ignated initial state of all agents is initial. The protocol con-
sists of the following seven transitions.

1. (initial, initial)→ (initial′, initial′)
2. (initial′, initial′)→ (initial, initial)
3. (initial, initial′)→ (red, blue)
4. (initial, red)→ (initial′, red)
5. (initial, blue)→ (initial′, blue)
6. (initial′, red)→ (initial, red)
7. (initial′, blue)→ (initial, blue)

The main behavior of the protocol is similar to the pre-
vious asymmetric protocol with three states. However, since
asymmetric transition (initial, initial) → (red, blue) is not
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Fig. 1 An example execution of the protocol. Symbols i, i′, r, and b rep-
resent states initial, initial′, red, and blue, respectively. Arrows represent
interactions of agents.

allowed in symmetric protocols, the scheme in [23] intro-
duces a new state initial′. Transition 3 implies that, when
agents in states initial and initial′ interact, they become red
and blue, respectively. In addition, agents in states initial
and initial′ become initial′ and initial respectively when
they interact with some agents (except for interaction be-
tween two agents in states initial and initial′). From global
fairness, if at least two agents are in state initial or initial′,
some two agents eventually enter states initial and initial′.
After that, if the two agents interact, they enter states red
and blue. Note that, since f (initial) = f (initial′) = red
holds, the protocol solves the problem even if the number
of agents is odd and an agent with state initial or initial′
remains forever.

Figure 1 shows an example execution of the proto-
col for a population of four agents. Initially all agents are
in state initial (Fig. 1 (a)). After interactions (a1, a2) and
(a3, a4), all agents enter state initial′ (Fig. 1 (b)). Similarly,
after interactions (a1, a4), (a2, a3), (a1, a3), and (a2, a4), all
agents have the same state (Fig. 1 (c) and (d)). If these in-
teractions happen infinite times, all agents keep the same
state and never achieve the uniform bipartition. However,
under the global fairness, such interactions do not happen
infinite times. This is because, if some configuration C
occurs infinite times, every configuration reachable from
C should occur. This implies that eventually interactions
(a1, a2) and (a1, a3) happen in this order from a configu-
ration in Fig. 1 (d). Then, a1 and a3 enter states red and
blue, respectively (Fig. 1 (e) and (f)). After that, in a similar
way, the remaining agents eventually enter red and blue like
Fig. 1 (g) and (h).

Theorem 6 and correctness of the scheme in [23] de-
rives the following theorem.

Theorem 7: In the model with no BS, when the number
of agents is at least three, there exists a symmetric protocol
with four states and designated initial states that solves the
uniform bipartition problem under global fairness.

(2) Impossibility with three states

Theorem 8: In the model with no BS, no symmetric proto-
col with three states and designated initial states solves the
uniform bipartition problem under global fairness.

Proof : For contradiction, assume that such a protocol Alg
exists. Without loss of generality, we assume that the state
set of agents is Qp = {s1, s2, s3}, f (s1) = f (s2) = red, and
f (s3) = blue. Consider population A = {a1, . . . , an} of n
agents such that n is even and at least 6. First, assume that
the designated initial state of all agents is s3. Clearly, Alg
has transition (s3, s3) → (si, si) for some i � 3. However,
since n/2 agents in state s3 exist at a stable configuration,
some agents change their states from s3 to si at the stable
configuration. This implies that agents change their colors.
Therefore, a designated initial state is s1 or s2.

Next, assume that the designated initial state of all
agents is s1 (Case of s2 is the same). Since Alg is a sym-
metric protocol and all the initial states are s1, Alg includes
(s1, s1)→ (si, si) for some i � 1. This implies that all agents
can transit to state si from the initial configuration. Hence,
Alg also includes (si, si) → (s j, s j) for some j � i. When
i = 3, since n/2 blue agents exist at a stable configuration
and they are in state s3, the blue agents become red by tran-
sition (s3, s3)→ (s j, s j). Therefore, i � 3 holds.

The remaining case is i = 2. If j = 3, that is, Alg in-
cludes (s2, s2) → (s3, s3), red agents (i.e., agents in state s1

or s2) change their colors at a stable configuration because
Alg includes (s1, s1) → (s2, s2) and (s2, s2) → (s3, s3). This
implies j = 1. In this case, Alg includes (s2, s2) → (s1, s1).
Since some agents should transit to state s3, Alg includes
(s1, s2) → (sk, sl) such that k or l is 3. At a stable config-
uration, there exist n/2 agents with states s1 or s2. How-
ever, these agents can transit to state s3 from transitions
(s1, s2)→ (sk, sl), (s2, s2)→ (s1, s1), and (s1, s1)→ (s2, s2).
This is a contradiction. �

4.2 Protocols with Arbitrary Initial States

In this subsection, we consider protocols with arbitrary ini-
tial states. We show that, in this case, no protocol solves the
uniform bipartition problem. That is, to allow agents to start
from arbitrary initial states, a single BS is necessary.

Theorem 9: In the model with no BS, no asymmetric pro-
tocol with arbitrary initial states solves the uniform biparti-
tion problem under global fairness.

Proof : For contradiction, assume that such a protocol Alg
exists. Assume that n is even and at least 4. We consider the
following three cases.

First, for population A = {a1, . . . , an} of n agents, con-
sider a globally fair execution E = C0,C1, . . . of Alg. From
the definition of Alg, there exists a stable configuration Ct.
Hence, both the number of red agents and the number of
blue agents are n/2 at Ct. After Ct, the color of agent ai

(i.e., f (s(ai))) never changes for any ai (1 ≤ i ≤ n) even if
agents interact in any order.

Next, for population A′ = {a′i | f (s(ai,Ct)) = red} of n/2
agents, consider an execution E′ = C′0,C

′
1, . . . of Alg from

the initial configuration C′0 such that s(a′i ,C
′
0) = s(ai,Ct)

holds for any i (1 ≤ i ≤ n/2). Since all agents are red at
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C′0, some agents must change their colors to reach a stable
configuration.

Lastly we consider execution E′′ for population A as
follows. First agents interact similarly to E and reach the
same stable configuration as Ct. Then, n/2 red agents inter-
act similarly to E′. From the definition of E′, some agents
change their colors. After that, agents interact to satisfy
global fairness. This implies that, in globally fair execution
E′′, some agents change their colors after a stable configu-
ration. This is a contradiction. �

5. Conclusion

In this paper, we completely clarify solvability of the uni-
form bipartition problem under global fairness and mini-
mum requirements of agent space under various assump-
tions. This paper leaves many open problems:

• Is it possible to extend our results to the uniform k-
partition problem, which divides a population into k
groups of the same size, for arbitrary k? Note that we
can easily construct a uniform k-partition protocol for
k = 2h by repeating the described uniform bipartition
protocol h times. When we assume designated initial
states, protocols in Sects. 3.1.1, 4.1.1, and 4.1.2 guar-
antee that each agent never changes its state after it
enters red or blue. Hence, after each agent becomes
red or blue in the i-th protocol (i.e., the protocol for 2i-
partition) for i < h, it can start the (i + 1)-th protocol
(i.e., the protocol for 2i+1-partition). When we assume
a single BS and arbitrary initial states, the BS can con-
trol the execution of h protocols. That is, if the BS
changes a color of an agent in the i-th protocol, it can
restart the i′-th protocol for each i′ ≥ i+1 by initializing
variables of the i′-th protocol on the BS. By repeating
this behavior, the population eventually stabilizes to a
uniform 2h-partition.
On the other hand, it is difficult to extend the proto-
col to the case of k � 2h. As described in Sect. 1, we
can approximately achieve the uniform k-partition by
regrouping k′(= 2h > k) groups into k groups with al-
most the same size. However, to exactly achieve the
uniform k-partition, we require a protocol specific to
the uniform k-partition.

• What is the relation between the uniform bipartition
problem and other problems such as counting, leader
election, and majority?

• What is the time complexity of the uniform bipartition
problem under probabilistic fairness? The uniform bi-
partition problem has a close relationship to computa-
tion of function f (n) = n/2. The time complexity of
n/2 computation has been studied in [24], [25]. Is it
possible to derive the time complexity of the uniform
bipartition problem from the results?

• Is it possible to characterize other initial configurations
that can achieve the uniform bipartition with a small
number of states? We considered two extremes as ini-

tial configurations: a designated initial configuration,
where all agents have the same state, and an arbitrary
initial configuration, where all agents have arbitrary
states. We can consider initial configurations between
the two extremes, such as initial configuration where
one agent has a unique leader state and other agents
have other arbitrary states. Is it possible to achieve the
uniform bipartition with a small number of states from
such initial configurations?
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