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SUMMARY Unitary operator discrimination is a fundamental problem
in quantum information theory. The basic version of this problem can be
described as follows: Given a black box implementing a unitary opera-
tor U ∈ S := {U1,U2 } under some probability distribution over S , the goal
is to decide whether U = U1 or U = U2. In this paper, we consider the
query complexity of this problem. We show that there exists a quantum
algorithm that solves this problem with bounded error probability using⌈√

6θ−1
cover

⌉
queries to the black box in the worst case, i.e., under any proba-

bility distribution over S , where the parameter θcover, which is determined
by the eigenvalues of U†1U2, represents the “closeness” between U1 and U2.
We also show that this upper bound is essentially tight: we prove that for
every θcover > 0 there exist operators U1 and U2 such that any quantum
algorithm solving this problem with bounded error probability requires at
least

⌈
2

3θcover

⌉
queries under uniform distribution over S .

key words: quantum algorithms, quantum information theory, query com-
plexity

1. Introduction

(1) Background

Quantum state discrimination is one of the most fundamen-
tal problems in quantum information theory [1]–[4]. In a
typical setting, the goal of this problem is to discriminate
two quantum states. The success probability of this prob-
lem is known to be characterized by the orthogonality of the
two states. In particular, non-orthogonal states cannot be
discriminated with probability 1, no matter how many inde-
pendent copies of the input state are given.

A problem closely related to quantum state discrimi-
nation is the quantum operator discrimination problem [5]–
[15]. Similarly to quantum state discrimination, in a typi-
cal setting the goal of quantum operator discrimination is to
discriminate two operators: given a black box implementing
a quantum operator O ∈ {O1,O2 } under some distribution
over {O1,O2 }, the goal is to decide whether O = O1 or
O = O2. A specificity of the quantum operator discrimi-
nation problem, which is not present in the quantum state
discrimination problem, is that we can choose an arbitrary
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input state on which the operator O is applied. Additionally,
the operator O can be applied more than once in various
combinations (parallel, sequential, or in any other scheme
physically allowed). In contrast to quantum state discrimi-
nation, it is known that for several classes of operators dis-
crimination is possible without error [5], [7]–[10], [13]. For
example, any two unitary operators can be discriminated
without error by applying the operator in parallel on some
well-chosen entangled quantum state [5], [8], or by apply-
ing the operator sequentially on a non-entangled state [9].
In addition to unitary operators, it is also known that projec-
tive measurements can be discriminated without error [13].
Necessary and sufficient conditions for discriminating trace
preserving completely positive (TPCP) maps without errors
are given in [10] as well.

Many computational problems solved by quantum al-
gorithms can be recasted as discrimination problems. Here
the quantum operator given as input typically implements a
classical operation on the basis of the corresponding Hilbert
space and the goal is to (possibly partially) identify which
classical operation it implements. Such problems gener-
alize Grover’s original quantum search problem [16] and
have been studied under the name of the oracle identifica-
tion problem [17], [18]. For instance, Grover’s algorithm for
search solves the following problem: given an oracle Ux cor-
responding to an unknown string x ∈ {0, 1}n that maps any
quantum basis state |i〉 |b〉, with i ∈ {1, . . . , n} and b ∈ {0, 1},
to the quantum state |i〉 |b ⊕ xi〉, determine if x contains at
least one non-zero coordinate. These problems have been
mainly considered in the query complexity setting, where
the complexity is defined as the number of calls of the oper-
ator Ux used by the algorithm. Upper and lower bounds on
the query complexity of several oracle identification prob-
lems have been obtained [17], [18].

Quantum operator discrimination problems relevant to
quantum information theory, on the other hand, have not yet
been the subject of much study in the framework of quantum
query complexity.

(2) Our results

In this paper, we investigate the query complexity of
the quantum operator discrimination problem for general
quantum unitary operators (i.e., quantum unitary opera-
tors not necessarily corresponding to classical operations)
in bounded-error settings. More precisely, we consider
the following problem: given an unknown unitary operator
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U ∈ S := {U1,U2 } under some probability distribution over
a candidate set S , where U is given as a (quantum) black-
box and both U1 and U2 are known unitary operators, deter-
mine whether U = U1 or U = U2 correctly with bounded
error probability.

Our main contribution is a characterization of the query
complexity of this problem (i.e., the number of times the
black-box U has to be applied to solve the problem) in terms
of a parameter θcover, which is defined formally later (Def-
inition 12 in Sect. 3), representing the “closeness” between
U1 and U2. By showing a tradeoff between the number of
queries and success probability, we show the following up-
per and lower bounds:

• There exists a quantum algorithm that makes
⌈√

6θ−1
cover

⌉
non-adaptive queries and can correctly discriminate U1

from U2 in the worst case (i.e., under any probability
distribution over a candidate set S ), for any unitary op-
erators U1 and U2, with probability 2/3 (Theorem 14).
• For every distinct unitary operators U1 and U2, every

quantum algorithm requires at least
⌈

2
3θcover

⌉
queries to

discriminate U1 from U2 with probability 2/3 (Theo-
rem 17) under uniform distribution over S .

We thus obtain a tight (up to possible constant factors) char-
acterization of the query complexity of unitary operator dis-
crimination. Our upper bound is actually achieved by a
quantum algorithm that makes only non-adaptive queries,
i.e., a quantum algorithm in which all queries to the black-
box can be made in parallel. On the other hand, our lower
bound holds even for adaptive quantum algorithms. Our re-
sults thus show that for the quantum unitary operator dis-
crimination problem making adaptive query cannot (signif-
icantly) reduce the query complexity of the algorithm. A
similar consequence was derived in [19] for unitary dis-
crimination of some continuous candidates. This contrasts
with oracle identification problems [20] such as quantum
search, where adaptive queries are necessary for achieving
the speed-up exhibited by Grover’s algorithm [16], and with
quantum channel discrimination, where adaptivity is essen-
tially required to discriminate some quantum channels as
shown by [21].

(3) Relation with other works

Note that Acı́n actually showed upper bounds on the query
complexity of the problem by using an entangled input state
with non-adaptive queries [5]. Acı́n provided a geometric
interpretation for the statistical distinguishability of unitary
operators based on sophisticated metrics of Fubini-Study
and Bures. D’Ariano et al. briefly noted a simpler geomet-
ric interpretation based on the Euclidean metric on the com-
plex plane for the same result [8]. Duan et al. also showed
the same upper bounds with adaptive queries and a non-
entangled input state using the parameter θcover [9]. Our al-
gorithm for the upper bounds uses an entangled input state
with non-adaptive queries similarly to Acı́n’s and D’Ariano
et al.’s. In addition, we prove a tradeoff between the num-
ber of queries and success probability with rigorous analy-

sis. Duan et al. also showed the optimality of their lower
bounds to perfectly discriminate two unitary operators [9].
Our proof of the lower bound additionally analyzes the nec-
essary number of queries for imperfect discrimination in de-
tails by showing a tradeoff between the number of queries
and success probability.

Harrow et al. showed the existence of a quantum state
discriminator M∗ which solves the quantum state discrim-
ination problem in the worst case, i.e., independently of
a probability distribution over a set of candidate quantum
states [22]. Using M∗, we construct the unitary operator
discriminator A∗. As withM∗, A∗ solves the unitary oper-
ator discrimination problem independently of a probability
distribution over a set of candidate unitary operators, which
provides the worst-case upper bound of query complexity
for unitary operator discrimination problem.

In a more general setting, Aharonov et al. introduced
the diamond norm, which can be utilized for quantum chan-
nel discrimination [23]. In addition, they pointed out a char-
acterization of success probability for unitary discrimination
from eigenvalues of candidate unitary operators, which is
similar to the parameter θcover.

(4) Organization of the paper

The organization of this paper is as follows. In Sect. 2,
we define formally the quantum state discrimination prob-
lem, the unitary operator discrimination problem, the error
probability of a discriminator, and the query complexity. In
Sect. 3, we show average-case upper bounds on the query
complexity when arbitrary candidate operators U1 and U2

are given with probability 1/2 respectively by constructing
a discriminator for U1 and U2 and analyzing the error prob-
ability. In Sect. 4, we show the worst-case upper bounds
on the query complexity by combining the discriminator in
Sect. 3 with Harrow et al.’s result [22]. In Sect. 5, we show
the lower bound on the query complexity of any quantum
algorithm solving the quantum unitary operator discrimina-
tion problem. Finally, we provide an improved analysis for
lower bounds of the query complexity, which is attributed to
Mori [27], in Sect. 6.

2. Preliminaries

First, we define the quantum state discrimination problem
since the unitary operator discrimination problem can be re-
duced to the quantum state discrimination problem.

Definition 1 (Quantum state discrimination problem): The
quantum state discrimination problem is defined as the
problem of determining whether an unknown state |φ〉 is
|φ1〉 or |φ2〉, where |φ〉 is given from a candidate set S =
{ |φ1〉 , |φ2〉 } of arbitrary two quantum states. Below, we
denote the quantum state discrimination problem of S =
{ |φ1〉 , |φ2〉 } by QSDP

( { |φ1〉 , |φ2〉 } ).
Definition 2 (Error probability of QSDP

( { |φ1〉 , |φ2〉 } )):
For a quantum state discriminatorA, when |φ1〉 and |φ2〉 are
given with probability p1 and p2 := 1 − p1 respectively, the
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error probability Perror ofA is defined as follows:

Perror = p1PrA
[A (|φ1〉) =“2”

]
+p2PrA

[A (|φ2〉) =“1”
]
.

Namely, the error probability Perror is the sum of the proba-
bility that A mistakes |φ1〉 for |φ2〉 and |φ2〉 for |φ1〉, where
the probability is taken over randomness of { |φ1〉 , |φ2〉 } and
A.

The error probability is characterized by the closeness
between two quantum states such as the trace distance and
the fidelity.

Definition 3 (Trace distance): Let ρ and σ be pure quan-
tum states. The trace distance d (ρ, σ ) is defined as
d (ρ, σ ) := 1

2 ‖ρ−σ‖tr, where ‖X ‖tr := Tr ( |X | ) =
Tr
( √

X†X
)
.

Definition 4 (Fidelity): Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| be
pure quantum states. The fidelity F (ρ, σ ) is defined as
F (ρ, σ ) = | 〈ψ|φ〉 | . Since it is an absolute value of inner
product, it holds that 0 ≤ F (ρ, σ ) ≤ 1, F (ρ, σ ) = 1 ⇔
|ψ〉 = |φ〉, and F (ρ, σ ) = 0⇔ |ψ〉 ⊥ |φ〉 .

Also, the trace distance and the fidelity satisfy the fol-
lowing relation.

Lemma 5 ([24]): Let ρ and σ be pure quantum states. We

then have d (ρ, σ ) := 1
2 ‖ρ − σ‖tr =

√
1−F (ρ, σ )2.

A result of Barnum and Knill [25] shows that, assum-
ing a probability distribution { pi } on a candidate set {ρi }
of quantum states, the error probability of a quantum state
discriminatorA is bounded as

Perror ≤
∑
i� j

√
pi p j

√
F
(
ρi, ρ j

)
.

In this paper, we consider the case of two quantum states.
Additionally, from p1 ≥ 0, p2 ≥ 0, and p1 + p2 = 1,√

p1 p2 ≤ 1
2 holds. Therefore, we obtain the following the-

orem of upper bounds of error probability for quantum state
discrimination in the worst case.

Theorem 6: Suppose the quantum states ρ and σ are given
from the candidate set S = {ρ, σ } of pure quantum states
with any probability p1 and p2 respectively. Then there ex-
ists a discriminatorA such that its error probability Perror is
given as follows:

Perror ≤ √p1 p2

√
F (ρ, σ ) ≤ 1

2

√
F (ρ, σ ).

On the other hand, if we choose a uniform probability
distribution over two candidate states, the error probability
is completely characterized by their fidelity as shown in the
following theorem, which is used to prove the lower bounds
of query complexity.

Theorem 7 ([15]): Suppose quantum states ρ = |ψ〉〈ψ| and
σ = |φ〉〈φ| are given from S = {ρ, σ } of pure quantum
states with probability 1/2 respectively. Then there exists a

discriminatorA such that its error probability Perror is given
as follows:

Perror =
1
2

(
1 −
∥∥∥∥∥ 1

2
ρ − 1

2
σ

∥∥∥∥∥
tr

)

=
1
2

(1 − d (ρ, σ ) )

=
1
2

(
1 −

√
1 − F (ρ, σ )2

)
.

Next, we define the unitary operator discrimination
problem.

Definition 8 (Unitary operator discrimination problem):
The unitary operator discrimination problem is defined as
the problem of determining whether an unknown opera-
tor U is U1 or U2, where U is given from a candidate set
S = {U1,U2 } of arbitrary two unitary operators Below,
we denote the unitary operator discrimination problem of
S = {U1,U2 } by UODP

( {U1,U2 } ).
Definition 9 (Error probability of UODP

( {U1,U2 } )): For
a unitary operator discriminator A, when U1 and U2 are
given with any probability p1 and p2 respectively, the error
probability PU

error ofA is defined as follows:

PU
error = p1 PrA

[
AU1 = “2”

]
+p2 PrA

[
AU2 = “1”

]
.

Namely, the error probability PU
error is the sum of the proba-

bility that A mistakes U1 for U2 and U2 for U1, where the
probability is taken over randomness of {U1,U2 } andA.

Except for Sect. 4, we assume that the given probability dis-
tribution is uniform in this paper, i.e., U1 and U2 are given
with probability 1/2, respectively.

Generally, the unitary operator discrimination problem
can be reduced to the quantum state discrimination problem
by applying the unknown unitary operator U to an arbitrary
|φ〉. An application of U to |φ〉 is called a query. Then, we
denote by

∣∣∣φU,q
〉

the quantum state generated by q queries to
U and unitary operators {Xi }qi=1, which are independent of
U (however, possibly depend on {U1,U2}), specified by A.
It is given as follows:∣∣∣φU,q

〉
= Xq (U ⊗ I ) Xq−1 (U ⊗ I ) · · · X1 (U ⊗ I ) |φ〉 .

Here, |φ〉 and
∣∣∣φU,q

〉
are quantum states of m+n qubits, Xi

is a unitary operator over m+n qubits for each i, and U and
I are unitary operators over n qubits and m qubits, respec-
tively. Note that this formulation can represent non-adaptive
discrimination. Let Û be a sequence of unitary operators
of A. Then we have

∣∣∣φU,q
〉
= Û |φ〉. Also, we define Û1

and Û2 as unitary operators satisfying
∣∣∣φU1,q

〉
= Û1 |φ〉 and∣∣∣φU2,q

〉
= Û2 |φ〉, respectively.

The unitary operator discriminator that makes all the
queries at once (regardless of the answers to other queries)
is called a non-adaptive unitary operator discriminator. Oth-
erwise it is called an adaptive unitary operator discrimi-
nator. When unitary operators U1 and U2 are given from
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S = {U1,U2 } with probability p1 and p2 respectively, the
error probability of any discriminator is bounded for every
p1, p2 as follows:

PU
error ≤

1
2

√
min
|φ〉
∣∣∣ 〈φ| Û†1Û2 |φ〉

∣∣∣
=

1
2

√
min
|φ′ 〉
| 〈φ′ |U′ |φ′ 〉 |. (1)

For Û1 and Û2, let U′ = V†Û†1Û2V , where U′ is a diagonal
matrix, and let |φ′ 〉 = V† |φ〉. This inequality is shown
immediately from Theorem 6.

Definition 10: We say a discriminator A makes q queries
if A applies a unitary operator U q times to the initial state
|φ〉 in total. We say A solves UODP

( {U1,U2 } ) with q
queries if A correctly discriminates unitary operators U1

and U2 with probability at least 2/3 with q queries when
U1 and U2 are given with probability 1/2 repectively. In ad-
dition, we sayA solves UODP

( {U1,U2 } ) with q queries in
the worst case ifA solves UODP

( {U1,U2 } ) with at most q
queries under every probability distribution over {U1,U2 }.
The query complexity of UODP

( {U1,U2 } ) is the minimum
number of queries whereA solves UODP

( {U1,U2 } ).
3. Upper Bounds

Let U1 and U2 be unitary operators acting on n qubits. In
this section, we suppose that either U1 or U2 is given with
equal probability, i.e., 1/2, respectively. Below we give
a construction of a non-adaptive q-query discriminator for
UODP

( {U1,U2 } ). See Fig. 1 for its schematic description.

Construction 11: (Non-adaptive q-query discriminator A
for UODP

( {U1,U2 } ))
1. Generate an initial qn-qubit quantum state |φ〉 that

is determined by U1,U2 and q as in the proof of
Lemma 13.

2. Apply U⊗q to |φ〉, where U ∈ {U1,U2 } is the unknown
unitary operator.

3. Apply the quantum state discriminator for
QSDP

( {
U⊗q

1 |φ〉 ,U⊗q
2 |φ〉

} )
, from Theorem 6, to the

quantum state U⊗q |φ〉.
4. Output the result of the quantum state discriminator.

To analyze the error probability of the non-adaptive q-query
discriminator A, let us introduce a notion of the covering
angle.

Fig. 1 Non-adaptive unitary operator discriminatorA

Definition 12 (Covering angle θcover): Let arg(eiθ, eiθ′ ) de-
note the smaller angle between eiθ and eiθ′ in the complex
plane, and let arc(eiθ, eiθ′ ) denote its arc on the complex unit
circle. Then, covering angle of the set

{
eiθ1 , . . . , eiθn

}
, de-

noted by θcover, is defined as θcover := min{θ : ∃θk,
∃θl ∈

{θ1, . . . , θn } s.t. θ = arg(eiθk , eiθl ) ∧
{
eiθ1 , . . . , eiθn

}
⊆

arc(eiθk , eiθl )}.
The covering angle θcover is formed by eiθk and eiθl if

θcover = arg(eiθk , eiθl ). As mentioned in Introduction, the cov-
ering angle of U†1U2 represents the “closeness” between U1

and U2. This notion is also used for characterization of per-
fect unitary discrimination [9] See Fig. 2 for an illustrated
example of a covering angle. Aharonov et al. [23] pointed
out that the success probability of unitary discrimination is
characterized by the distance from the origin to the polygon
whose vertices are the eigenvalues of U†1U2 in the complex
plane. (Its proof was given, e.g., by Johnston et al. [26].)
The parameter θcover is similar to their characterization, but
θcover is more convenient to characterize the query complex-
ity of the unitary discrimination simply.

Let
{
eiθ1 , . . . , eiθn

}
be the set of eigenvalues of U†1U2

and let θcover be its covering angle. The following is the
main technical lemma of this section.

Lemma 13: The error probability PU
error of the non-

adaptive q-query discriminatorA is given as follows:

PU
error

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ≤
1
2

√
cos

qθcover

2
(0 ≤ qθcover < π ) ,

= 0 (π ≤ qθcover ) .

This lemma immediately implies the following:

Theorem 14: The non-adaptive q-query discriminator A
solves UODP

( {U1,U2 } ) if q ≥
⌈√

6θ−1
cover

⌉
. Furthermore,

the error probability ofA is zero if q ≥
⌈

π
θcover

⌉
.

Proof of Theorem 14. If q ≥
⌈

π
θcover

⌉
, then π ≤ qθcover

holds and the error probability of A is zero by Lemma 13.
For 0 ≤ qθcover < π, again by Lemma 13, it suffices to find q
such that

PU
error ≤

1
2

√
cos

qθcover

2

≤ 1
2

√
1 − 1

2!

( qθcover

2

)2
+

1
4!

( qθcover

2

)4

Fig. 2 Covering angle θcover
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≤ 1
2

√
1 − 1

2

( qθcover

2

)2 (
1 − π2

48

)
≤ 1

3
. (2)

holds according to Definition 10. From (2), it is easy to see
that PU

error ≤ 1/3 holds if q ≥
⌈√

6θ−1
cover

⌉
. �

It remains to prove Lemma 13. It is instructive to first an-
alyze a special case of q = 1 as it captures the essence of
general cases.

Lemma 15: The error probability of the non-adaptive 1-
query discriminatorA is given as follows:

PU
error

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ≤
1
2

√
cos

θcover

2
(0 ≤ θcover < π ) ,

= 0 (π ≤ θcover ≤ 2π ) .

Proof of Lemma 15. We consider two cases according to
the value of θcover.
Case (i) 0 ≤ θcover < π.
Let U′ = diag

(
eiθ1 , . . . , eiθn

)
and |φ′ 〉 = (α1, . . . , αn ). By (1)

in Sect. 2, the minimum value of the fidelity of U1 |φ〉 and
U2 |φ〉 is represented as follows:

min
|φ〉
∣∣∣ 〈φ|U†1U2 |φ〉

∣∣∣ = min
|φ′ 〉
∣∣∣ 〈φ′ ∣∣∣U′ ∣∣∣φ′〉 ∣∣∣

= min∑n
j=1|α j |2=1

∣∣∣∣∣∣∣∣
n∑

j=1

∣∣∣α j

∣∣∣2 eiθ j

∣∣∣∣∣∣∣∣ .
The last term above is equal to the square of the short-
est distance from the origin of the complex plane to the

convex set C :=
{∑n

j=1

∣∣∣α j

∣∣∣2 eiθ j :
∑n

j=1

∣∣∣α j

∣∣∣2 = 1
}
. The

shortest distance from the origin of the complex plane
to C is equal to the shortest distance from the ori-
gin of the complex plane to the line segment C′ :={
|αk |2 eiθk + |αl |2 eiθl : |αk |2 + |αl |2 = 1

}
, where eiθk and eiθl

form the covering angle θcover. See Fig. 3 for illustration.
Thus, we have

min∑n
j=1|α j |2=1

∣∣∣∣∣∣∣∣
n∑

j=1

∣∣∣α j

∣∣∣2 eiθ j

∣∣∣∣∣∣∣∣
= min
|αk |2+|αl |2=1

∣∣∣ |αk |2 eiθk + |αl |2 eiθl
∣∣∣ .

The minimum of the right hand side above is achieved by
setting |αk |2 = 1

2 , |αl |2 = 1
2 . Hence

min
|αk |2+|αl |2=1

∣∣∣ |αk |2 eiθk + |αl |2 eiθl
∣∣∣

Fig. 3 The shortest distance to the convex set C

=
1
2

∣∣∣eiθk + eiθl
∣∣∣ = cos

θcover

2
.

Thus, PU
error ofA is represented as follows:

PU
error ≤

1
2

√
cos

θcover

2
(0 ≤ θcover ≤ π ) .

Case (ii) π ≤ θcover ≤ 2π.
The error probability can be calculated in the same way as
Case (i). In this case, the convex set C contains the origin of
the complex plane, i.e., the shortest distance from the origin
to C is zero, hence we have PU

error = 0. �
We are prepared to prove Lemma 13.

Proof of Lemma 13.
Case (i) 0 ≤ qθcover ≤ π.
Let U′ = diag

(
eiθ1 , . . . , eiθn

)
. Then the set of eigenvalues of

U′⊗q is

Λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q∏

j=1

eiθk j : 1 ≤ k1, . . . , kq ≤ n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Note that if the covering angle θcover of {eiθ1 , . . . , eiθn } is
formed by eiθk and eiθl , then the covering angle ofΛ is qθcover

and formed by eiqθk and eiqθl , as long as q is not too large.
As the proof of Lemma 15, the minimum value of the

square of the fidelity of U⊗q
1 |φ〉 and U⊗q

2 |φ〉 is

min
|φ〉

∣∣∣∣ 〈φ|U⊗q
1
†
U⊗q

2 |φ〉
∣∣∣∣ = min

|φ′ 〉
∣∣∣ 〈φ′ ∣∣∣U′⊗q

∣∣∣φ′〉 ∣∣∣
= min∑qn

j=1|α j |2=1

∣∣∣ |α1 |2 eiqθ1 + |α2 |2 ei( (q−1)θ1+θ2 )

+ · · · + ∣∣∣αqn

∣∣∣2 eiqθn

∣∣∣∣ .
This is the square of the shortest distance from the origin of
the complex plane to the convex set

Cq :=
{
|α1 |2 eiqθ1 + |α2 |2 ei( (q−1)θ1+θ2 )

+ · · · + ∣∣∣αqn

∣∣∣2 eiqθn :
qn∑
j=1

∣∣∣α j

∣∣∣ = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The shortest distance from the origin of the complex plane
to Cq is equal to the line segment

Cq
′ :=

{
|αx |2 eiqθk +

∣∣∣αy ∣∣∣2 eiqθl : |αx |2 +
∣∣∣αy ∣∣∣2 = 1

}
.

See Fig. 4 for illustration. Hence, in the same way as the

Fig. 4 The shortest distance to the convex set Cq
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proof of Lemma 15, we have

PU
error ≤

1
2

√
cos

qθcover

2
(0 ≤ qθcover ≤ π ) .

Case (ii) π ≤ qθcover.
Since the convex set Cq contains the origin of the complex
plane, the error probability of A can be made zero as the
case of q = 1. �

4. Worst-Case Upper Bounds

A quantum state discriminator is generally designed to op-
timize the success probability under a given probability dis-
tribution over a set of candidate states. In contrast, Harrow
et al. showed the existence of a quantum state discrimina-
torM∗ which solves quantum state discrimination problem
independently of the probability distribution over a candi-
date set by using the min-max theorem [22]. Namely, they
showed that someM∗ can solve the quantum state discrim-
ination problem in the worst case.

By applying the argument of Harrow et al. to our set-
ting, we can show the existence of the unitary operator dis-
criminatorA∗ in the worst case as in quantum state discrim-
ination problem.

Theorem 16: Let θcover be the covering angle of U†1U2.

There exists a non-adaptive
⌈√

6θ−1
cover

⌉
-query discriminator

A∗ that solves UODP
( {U1,U2 } ) in the worst case.

Proof. A∗ is constructed by replacing “QSDP algorithm”
in Fig. 1 withM∗. Using A∗, we can show the worst-case
upper bound given in the statement by the same analysis
with Theorem 14. �

5. Lower Bounds

Every unitary operator discriminator can be represented
as an adaptive discriminator given in Fig. 5. We now
analyze the necessary number q of queries to solve
UODP

( {U1,U2 } ) for every distinct U1 and U2. In this sec-
tion, we suppose that one of U1 and U2 is given from a can-
didate set with probability 1/2.

The unitary operators in Fig. 5 can be described as fol-
lows:

Û := Xq (U ⊗ I ) Xq−1 (U ⊗ I ) · · · X1 (U ⊗ I )
from a given U ∈ {U1,U2 } and any fixed unitary operators
Xi ( i = 1, 2, . . . , q ).

Fig. 5 The arbitrary adaptive discriminator

The following theorem shows the necessary number of
queries for every distinct U1 and U2.

Theorem 17: Let θcover be the covering angle of U†1U2. If
A solves UODP

( {U1,U2 } ) with q adaptive queries, q ≥⌈
2

3θcover

⌉
holds.

Proof. Let |φ〉 be any initial state and let
∣∣∣φU,q

〉
be the state

after applying Û to the initial state |φ〉. Then, we obtain the
following states for U1 and U2 respectively:

Û1 |φ〉 :=
∣∣∣φU1,q

〉
=Xq (U1 ⊗ I ) Xq−1 (U1 ⊗ I ) · · · X1 (U1 ⊗ I ) |φ〉 ,

Û2 |φ〉 :=
∣∣∣φU2,q

〉
=Xq (U2 ⊗ I ) Xq−1 (U2 ⊗ I ) · · · X1 (U2 ⊗ I ) |φ〉 .

We represent their states as ρq :=
∣∣∣φU1,q

〉〈
φU1,q

∣∣∣ and

σq :=
∣∣∣φU2,q

〉〈
φU2,q

∣∣∣ respectively. Then, the trace norm is∥∥∥ρq − σq

∥∥∥
tr
, and we obtain the equation as follows:∥∥∥ρq − σq

∥∥∥
tr
=
∥∥∥Xq (U1 ⊗ I ) ρq−1 (U1 ⊗ I )† X†q
−Xq (U2 ⊗ I )σq−1 (U2 ⊗ I )† X†q

∥∥∥
tr
.

Since unitary operators do not change the trace distance, we
have ∥∥∥Xq (U1 ⊗ I ) ρq−1 (U1 ⊗ I )† X†q

−Xq (U2 ⊗ I )σq−1 (U2 ⊗ I )† X†q
∥∥∥

tr

=
∥∥∥ (U1 ⊗ I ) ρq−1 (U1 ⊗ I )†
− (U2 ⊗ I )σq−1 (U2 ⊗ I )†

∥∥∥
tr
.

By the triangle inequality,∥∥∥ (U1⊗I ) ρq−1 (U1⊗I )† − (U2⊗I )σq−1 (U2⊗I )†
∥∥∥

tr

=
∥∥∥ (U1⊗I ) ρq−1 (U1⊗I )† − (U1⊗I )σq−1 (U1⊗I )†

+ (U1⊗I )σq−1 (U1⊗I )† − (U2⊗I )σq−1 (U2⊗I )†
∥∥∥

tr

≤ ∥∥∥ρq−1 − σq−1

∥∥∥
tr

+
∥∥∥ (U1⊗I )σq−1 (U1⊗I )† − (U2⊗I )σq−1 (U2⊗I )†

∥∥∥
tr
.

By Definition 3, 4 and Lemma 5,
∥∥∥ (U1 ⊗ I )σq−1 (U1 ⊗ I )† −

(U2 ⊗ I )σq−1 (U2 ⊗ I )†
∥∥∥

tr
is:∥∥∥ (U1 ⊗ I )σq−1 (U1 ⊗ I )† − (U2 ⊗ I )σq−1 (U2 ⊗ I )†

∥∥∥
tr

= 2d
(
(U1 ⊗ I )σq−1 (U1 ⊗ I )† , (U2 ⊗ I )σq−1 (U2 ⊗ I )†

)
= 2

√
1−F

(
(U1⊗I )σq−1(U1⊗I )†, (U2⊗I )σq−1(U2⊗I )†

)2
= 2
√

1 − ∣∣∣ 〈φU2,q−1
∣∣∣ (U1 ⊗ I )† (U2 ⊗ I )

∣∣∣φU2,q−1
〉 ∣∣∣2

= 2

√
1 −
∣∣∣∣ 〈φU2,q−1

∣∣∣ (U†1U2 ⊗ I
) ∣∣∣φU2,q−1

〉 ∣∣∣∣2
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≤ 2

√
1 −min

|ψ〉

∣∣∣∣ 〈ψ| (U†1U2 ⊗ I
)
|ψ〉
∣∣∣∣2.

Since U†1U2 is diagonalizable, there is always the unitary op-
erator V for generating the diagonal operator D from the
U†1U2. Therefore, we obtain U†1U2 = VDV†. By using it,

min
|ψ〉

∣∣∣∣ 〈ψ| (U†1U2 ⊗ I
)
|ψ〉
∣∣∣∣2

= min
|ψ〉

∣∣∣∣ 〈ψ| (VDV† ⊗ I
)
|ψ〉
∣∣∣∣2

= min
|ψ〉

∣∣∣∣ 〈ψ| (V ⊗ I ) ( D ⊗ I )
(
V† ⊗ I

)
|ψ〉
∣∣∣∣2 .

Here, using the state |ψ′ 〉 satisfying |ψ′ 〉 =
(
V† ⊗ I

)
|ψ〉, we

obtain:

min
|ψ〉

∣∣∣∣ 〈ψ| (V ⊗ I ) ( D ⊗ I )
(
V† ⊗ I

)
|ψ〉
∣∣∣∣2

= min
|ψ′ 〉
∣∣∣ 〈ψ′ ∣∣∣ ( D ⊗ I ) ∣∣∣ψ′〉 ∣∣∣2 .

Let D = diag
(
eiθ1 , . . . , eiθn

)
and let

(
eiθk , eiθl

)
be

the pair making the covering angle θcover. Then
min
|ψ′ 〉
| 〈ψ′ | ( D ⊗ I ) |ψ′ 〉 |2 becomes as follows:

min
|ψ′ 〉
∣∣∣ 〈ψ′ ∣∣∣ ( D ⊗ I ) ∣∣∣ψ′〉 ∣∣∣2 = ∣∣∣∣∣ 1

2
eiθk +

1
2

eiθl

∣∣∣∣∣2
=

1
2

(1 + cos (θk − θl ) ) =
1
2

(1 + cos θcover )

= cos2 θcover

2
.

Therefore, we obtain the following equation:

2

√
1 −min

|ψ〉

∣∣∣∣ 〈ψ| (U†1U2 ⊗ I
)
|ψ〉
∣∣∣∣2

= 2

√
1 − cos2 θcover

2
= 2 sin

θcover

2
.

Since sin θ ≤ θ, we obtain 2 sin θcover
2 ≤ θcover. Therefore,

we obtain:∥∥∥ρq − σq

∥∥∥
tr
≤ ∥∥∥ρq−1 − σq−1

∥∥∥
tr

+ 2

√
1 −min

|ψ〉

∣∣∣∣ 〈ψ| (U†1U2 ⊗ I
)
|ψ〉
∣∣∣∣2

≤ ∥∥∥ρq−1 − σq−1

∥∥∥
tr
+ θcover.

This means that the trace distance only increases at most
θcover per once query. Therefore, we obtain

∥∥∥ρq − σq

∥∥∥
tr
≤

qθcover. Since the discrimination error probability PU
error after

q queries is represented with 1
2

(
1 − 1

2

∥∥∥ρq − σq

∥∥∥
tr

)
from

Theorem 7, PU
error becomes as follows:

PU
error ≥

1
2

(
1 − 1

2
qθcover

)
.

Thus, from 1
2

(
1 − 1

2 qθcover

)
≤ 1

3 , we have q ≥ 2
3θcover

.
Since the number of queries q is integer, using the ceiling
function, q ≥

⌈
2

3θcover

⌉
holds. �

6. Improved Analysis for Lower Bounds of Fidelity

The observation and analysis in this section are attributed to
Mori [27].

In Sects. 3 and 5, we proved upper and lower
bounds of the query complexity from the fidelity of quan-
tum states. Actually, the upper bound of the fidelity
F
( ∣∣∣φU1,q

〉〈
φU1,q

∣∣∣ , ∣∣∣φU2,q
〉〈
φU2,q

∣∣∣ ) ≤ cos qθcover

2 obtained in
Sect. 3 is exactly optimal, since we can show the following
tight lower bound:

Lemma 18: [Mori [27]] Let θcover be the covering angle of
U†1U2. For every X1, . . . , Xq−1 and every |φ〉, we have

F
( ∣∣∣φU1,q

〉〈
φU1,q

∣∣∣ , ∣∣∣φU2,q
〉〈
φU2,q

∣∣∣ ) ≥ cos
qθcover

2

if 0 ≤ qθcover < π.

Proof. The idea for improving the lower bound is the same
as Zalka’s proof of the exact optimality of Grover’s quantum
search [28]. Let∣∣∣φi,q

〉
= Xq (U2 ⊗ I ) Xq−1 (U2 ⊗ I ) · · · Xi+1 (U2 ⊗ I )

Xi (U1 ⊗ I ) Xi−1 · · · X1 (U1 ⊗ I ) |φ〉

for i ∈ {0, 1, . . . , q − 1}. Note that
∣∣∣φ0,q

〉
=
∣∣∣φU2,q

〉
and

|φq,q〉 =
∣∣∣φU1,q

〉
.

Let cos θ0,1 =
∣∣∣∣〈φ0,q

∣∣∣∣ φ1,q
〉∣∣∣∣ and cos θ1,q =

∣∣∣∣〈φ1,q
∣∣∣∣ φq,q

〉∣∣∣∣
for 0 ≤ θ0,1, θ1,q ≤ π/2. We now show that∣∣∣∣〈ψ0,q

∣∣∣∣ψq,q
〉∣∣∣∣ ≥ cos(θ0,1 + θ1,q). (3)

Define x =
〈
φ0,q
∣∣∣∣ φq,q

〉
, y0,1 =

〈
φ0,q
∣∣∣∣ φ1,q

〉
, and y1,q =〈

φ1,q
∣∣∣∣ φq,q

〉
. The Gram matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈
φ0,q
∣∣∣〈

φ1,q
∣∣∣

〈φq,q |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ ∣∣∣φ0,q

〉 ∣∣∣φ1,q
〉
|φq,q〉

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 y0,1 x
y∗0,1 1 y1,q

x∗ y∗1,q 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is positive semidefinite, and thus, its determinant

det(G) = 1 + 2Re(y0,1y1,qx∗) − ∣∣∣y0,1

∣∣∣2 − ∣∣∣y0,1

∣∣∣2 − |x|2
is non-negative. Since

∣∣∣y0,1

∣∣∣ ∣∣∣y1,q

∣∣∣ |x| ≥ Re(y0,1y1,qx∗) and∣∣∣y0,1

∣∣∣ = cos θ0,1,
∣∣∣y1,q

∣∣∣ = cos θ1,q, we obtain

1 + 2 cos θ0,1 cos θ1,q |x| − cos θ2
0,1 − cos θ2

1,q − |x|2 ≥ 0.

Therefore, we obtain |x| ≥ cos(θ0,1+θ1,q),which implies (3).



490
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.3 MARCH 2019

In addition, we have∣∣∣∣〈φ0,q
∣∣∣∣ φ1,q

〉∣∣∣∣ = cos θ0,1 ≥ cos
θcover

2
,

as done in the proof of Lemma 15. By induction, we can
obtain∣∣∣∣〈φ0,q

∣∣∣∣ φq,q
〉∣∣∣∣ ≥ cos

qθcover

2

for 0 ≤ qθcover < π. �
By Theorem 7, the error probability is completely char-

acterized by the fidelity if the distribution on {U1,U2 } is
uniform. Therefore, we obtain the optimal lower bound of
the error probability

PU
error ≥

1
2

(
1 − sin

( qθcover

2

))
from Lemma 18 for 0 ≤ q < π/θcover. Then, we can reprove
the lower bound �π/θcover� of query complexity for perfect
unitary discrimination, which was shown in [9].
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