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The Explicit Formula of the Presumed Optimal Recurrence
Relation for the Star Tower of Hanoi

Akihiro MATSUURA†a), Member and Yoshiaki SHOJI†, Nonmember

SUMMARY In this paper, we show the explicit formula of the recur-
rence relation for the Tower of Hanoi on the star graph with four vertices,
where the perfect tower of disks on a leaf vertex is transferred to the cen-
tral vertex. This gives the solution to the problem posed at the 17th Inter-
national Conference on Fibonacci Numbers and Their Applications [11].
Then, the recurrence relation are generalized to include the ones for the
original 4-peg Tower of Hanoi and the Star Tower of Hanoi of transferring
the tower from a leaf to another.
key words: Tower of Hanoi, four pegs, star graph, Frame-Stewart algo-
rithm, recurrence relation

1. Introduction

The Tower of Hanoi puzzle was invented by French math-
ematician E. Lucas in 1883 [15]. The original puzzle has 3
pegs with a tower of n disks of different sizes initially piled
on one peg in decreasing order from the bottom. The pur-
pose of the puzzle is to transfer all the disks from the initial
peg to the other in the minimum number of steps, under the
condition that at each step one of the topmost disks is trans-
ferred to another peg not to put a disk on a smaller one. This
simple mathematical puzzle was then extended to use 4 pegs
by Dudeney in 1907 and was called the Reve’s puzzle [7].
The original three-peg puzzle is easily solved, but some-
what surprisingly, any algorithm for the Reve’s puzzle was
not shown to be optimal for more than 100 years. For the
general Tower of Hanoi using k (≥ 4) pegs, Frame [8] and
Stewart [18] independently presented recursive algorithms
that produce the same number of steps for transferring n
disks; thus, they are generically called the Frame-Stewart
algorithm. When k = 4, it uses the following procedure:

1. transfer the topmost n −m disks of the initial peg to an
intermediate peg using 4 pegs;

2. transfer the larger m disks from the initial peg to the
final (destination) peg using 3 pegs;

3. finally, transfer the n − m disks from the intermediate
peg to the final peg using 4 pegs.

The algorithm chooses the integer m (0 < m ≤ n) such that
the total number of steps of the above procedure is mini-
mized. Let H(n) be the number of steps for transferring the
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n disks. Then, H(n) satisfies the following recurrence rela-
tion: H(0) = 0 and for n ≥ 1,

H(n) = min
0<m≤n

{2 · H(n − m) + 2m − 1}. (1)

The explicit formula of H(n) and its various properties have
been obtained [12]–[14]. Since the values of H(n)’s (and
those for general k pegs) are optimal at least by computer
search, it had been believed to be optimal and was called the
Frame-Stewart conjecture. As for the lower bounds, there
had been little progress until Szegedy gave non-trivial lower
bounds [20]. Then, there had been further improvement [6],
[9]. Recently, Bousch [3] finally proved the Frame-Stewart
conjecture for the case of 4 pegs in the affirmative way, that
is, the solution of the Frame-Stewart algorithm is optimal
for the case of 4 pegs.

Along with the original Tower of Hanoi, there is a
Tower of Hanoi variant that limits the pairs of pegs to be
used for transferring disks. The problem can be regarded
as the Tower of Hanoi on graphs, by assigning each of the
pegs to a different vertex and allowing the transfer of disks
only when there is an edge between the pair of vertices.
This variant has been studied for both undirected and di-
rected graphs. For example, the original Tower of Hanoi
with k (≥ 3) pegs is regarded as the problem on the com-
plete graphs with k vertices. The Tower of Hanoi on graphs
have been studied on cyclic graphs, path graphs, star graphs,
etc. [1], [2], [5], [12], [16], [17], [19].

The Tower of Hanoi on star graphs (Fig. 1), which is
called the Star Tower of Hanoi [12], is the main topic of
this paper. The Star Tower of Hanoi has the following two
types of problems. The first one is to transfer all the disks
on one leaf of the star graph to another leaf. The second
one is to transfer the disks from a leaf to the center of the
graph. The first type of problem with 4 pegs was studied
by Stockmeyer [19], in which he gave a Frame-Stewart-type
recursive algorithm. Then, Bousch [4] again proved its op-
timality. The algorithm was further generalized for the case
of k (≥ 4) pegs and its explicit solution was obtained in
[5]. The second type of Star Tower of Hanoi problem is
to transfer the n disks from one leaf to the center. A Frame-
Stewart-type algorithm can be also designed in this case and
its solution was checked to be optimal up to n = 15 by com-
puter search [10], [11]; thus, called to be “presumed opti-
mal”. However, neither of the explicit solution nor its opti-
mality are shown yet and are posed as open problems [11].

In this paper, we make exact analysis of this recurrence
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Fig. 1 Star graphs with (a) 3 vertices; and (b) 4 verticees.

relation. The key step is to make a recursive definition of an
integer sequence that is exactly the sequence of differences
of the target Tower of Hanoi. Then, we prove its correctness
by induction. We further generalize and analyze the recur-
rence relation to cover the problems of the original 4-peg
Tower of Hanoi, i.e., the Reve’s puzzle, and the leaf-to-leaf
Star Tower of Hanoi.

This paper is organized as follows: In Sect. 2, we sum-
marize the Star Tower of Hanoi problems with 3 pegs and
also 4 pegs in the leaf-to-leaf case. In Sect. 3, we first sum-
marize the Frame-Stewart-type algorithm for the Star Tower
of Hanoi in the leaf-to-center case, define an integer se-
quence for the differences, and then state the main theo-
rem. In Sect. 4, the proof of the main theorem is shown.
In Sect. 5, a generalized recurrence relation is analyzed and
finally, concluding remarks are given in Sect. 6.

2. Preliminaries

2.1 The Star Tower of Hanoi with 3 Pegs

The star graph with 3 vertices is shown in Fig. 1 (a), which
is also regarded as the path graph. On this graph, the follow-
ing two kinds of Tower of Hanoi problems are considered.
Given n disks on a leaf peg, we transfer all the disks from
the initial leaf to another, which is denoted as leaf-to-leaf, or
to the center peg, which is denoted as leaf-to-center. Note
that the leaf-to-center problem is equivalent to the problem
of transferring the disks in the opposite direction, that is,
from the center to a leaf. The optimal algorithms and their
analysis are rather straightforward, but we summarize them
as basis for later analysis.

For the leaf-to-leaf problem with 3 pegs, (i) we first
move the smaller n − 1 disks to another leaf (destination);
(ii) then move the largest disk to the center; (iii) move the
n − 1 disks back to the initial leaf; (iv) move the largest
disk to the destination leaf; and (v) finally, move the n − 1
disks to the destination. Let S 3(n) be the number of steps of
this recursive algorithm. Then, S 3(n) satisfies the following
recurrence relation:

S 3(0) = 0, S 3(n) = 3S 3(n − 1) + 2 for n ≥ 1.

Therefore, S 3(n) = 3n − 1 and ΔS 3(n) = S 3(n)− S 3(n− 1) =
2 · 3n−1 for n ≥ 1.

For the leaf-to-center problem, (i) we first move the
smaller n− 1 disks to another leaf with the algorithm for the

leaf-to-leaf problem (with S 3(n − 1) moves); (ii) move the
largest disk to the center; and (iii) finally, move the n − 1
disks to the center. The recurrence relation of this algorithm
is the following:

T3(0) = 0, T3(n) = S 3(n− 1)+ 1+ T3(n− 1) for n ≥ 1.

It is simplified as T3(n) = T3(n − 1) + 3n−1, so T3(n) = 3n−1
2

and ΔT3(n) = T3(n) − T3(n − 1) = 3n−1 for n ≥ 1.
We will use these results in the Star Tower of Hanoi

problems with 4 pegs.

2.2 The 4-Peg Star Tower of Hanoi: Leaf-to-Leaf Case

In this section, we summarize the results on the Tower of
Hanoi on the star graph in Fig. 1 (b) in the case that the n
disks are transferred from one leaf to another [19].

Let S 4(n) be the number of steps of the recursive al-
gorithm to be stated. The task of transferring n disks is
achieved by the following procedure:

1. transfer the topmost n − m disks of one leaf to a non-
final leaf using 4 pegs;

2. transfer the larger m disks from the initial leaf to the
final leaf using 3 pegs;

3. finally, transfer the n − m disks from the non-final leaf
to the final leaf using 4pegs.

Similarly to the original Frame-Stewart algorithm, the algo-
rithm chooses the integer m (0 < m ≤ n) such that the total
number of steps of the above procedure is minimized. Then,
the following recurrence relation holds: S 4(0) = 0 and for
n ≥ 1,

S 4(n) = min
0<m≤n

{2 · S 4(n − m) + S 3(m)}
= min

0<m≤n
{2 · S 4(n − m) + (3m − 1)}. (2)

Stockmeyer [19] obtained the following explicit formulas:

mmin = �log3 sn� + 1,

ΔS 4(n) = S 4(n) − S 4(n − 1) = 2sn,

S 4(n) = 2
n∑

i=1

si,

where mmin is the value of m that minimizes the recurrence
relation for S 4(n) and

sn = 1, 2, 3, 4, 6, 8, 9, 12, · · ·
is the sequence of 3-smooth numbers 2 j · 3k, j, k ≥ 0 lined
in increasing order. To summarize:

Lemma 1: For the 4-peg Star Tower of Hanoi of transfer-
ring n disks from one leaf peg to another, the Frame-Stewart-
type recursive algorithm uses S 4(n) = 2

∑n
i=1 si steps to

achieve the task, where {sn} is the sequence of 3-smooth
numbers.
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3. The 4-Peg Star Tower of Hanoi: Leaf-to-Center
Case

3.1 Frame-Stewart-Type Algorithm and Its Recurrence

We first state the Frame-Stewart-type algorithm and the cor-
responding recurrence relation for the Star Tower of Hanoi
of the leaf-to-center case. Let T4(n) be the number of steps
used by the algorithm. The procedure of the algorithm is the
following:

1. transfer the topmost n − m disks of one leaf to another
leaf using 4 pegs;

2. transfer the larger m disks from the initial leaf to the
center (destination) using 3 pegs;

3. finally, transfer the n − m disks from the intermediate
leaf to the center using 4 pegs.

As before, the algorithm chooses the integer m (0 < m ≤
n) such that the total number of steps for the procedure is
minimized. Then, the following recurrence relation holds:
T4(0) = 0 and for n ≥ 1,

T4(n) = min
0<m≤n

{S 4(n − m) + T3(m) + T4(n − m)}

= min
0<m≤n

{
T4(n − m) + 2

n−m∑
i=1

si +
3m − 1

2

}
, (3)

where Eq. (3) holds due to the results in Sect. 2. The values
of T4(n), the differences ΔT4(n) = T4(n) − T4(n − 1), and
the argument mmin at which the equation is minimized are
shown in Table 1 for 1 ≤ n ≤ 10. Here we note that the
recurrence takes the minimum at two values of mmin at n =
2, 5 (then, at n = 15). In such cases, if we choose the larger
values for mmin, that is, if we regard mmin = 2 for n = 2 and
mmin = 3 for n = 5, then we observe that up to n = 10, the
following equality holds:

mmin = �log3 ΔT4(n)� + 1. (4)

Furthermore, the sequence {ΔT4(n)} consists of the terms of
{ΔT4(n)+ΔS 4(n)} and {ΔT3(n)} arranged in increasing order
in the weak sense that there can be identical values. How-
ever, we should be careful for these computations because
they are self-referential and in order to compute ΔT4(n),
the value of mmin itself is needed. By computer experi-
ments, values of T4(n)’s are confirmed to be optimal up
to n = 15 [10], [11], but the exact analysis of the recur-
rence relation has not been done yet. In the next section, we
present an integer sequence that coincides with the sequence
{ΔT4(n)}.

Table 1 Values of mmin, T4(n) and ΔT4(n) for 1 ≤ n ≤ 10.

n 1 2 3 4 5 6 7 8 9 10
mmin 1 1, 2 2 2 2, 3 3 3 3 3 4
T4(n) 1 4 7 14 23 32 47 68 93 120
ΔT4(n) 1 3 3 7 9 9 15 21 25 27

3.2 Explicit Solutions for ΔT4(n) and T4(n)

From now on, we regard integer sequences as a multiset
which allows the existence of multiple identical integers as
elements. Instead of {·}, [·] is used to denote a multiset.

Now we make definitions of a family of multisets Ai for
i ≥ 0 and an integer sequence {ti}i≥1, which is the candidate
for {ΔT4(n)}. Let {sn}n≥1 be the sequence of 3-smooth num-
bers 2 j · 3k for j, k ≥ 0. Ai’s and ti’s are defined recursively
as follows:

1. A0 = [3n]n≥0 = [1, 3, 32, 33, · · · ] and t1 = min A0 = 1,
where min A0 is the minimum integer in A0.

2. For i ≥ 1, the multiset Ai is defined as

Ai = Ai−1\min Ai−1 ∪ [ti + 2si],

where min Ai−1 is the minimum integer in Ai−1. Then,
ti+1 is defined as ti+1 = min Ai.

Here we note that subtraction of min Ai−1 from the multiset
Ai−1 is done only once and the other identical integers, if
any, remain in min Ai−1.

Example 1: We show some small values of An’s and tn’s.

A1 = A0 \min A0 ∪ [t1 + 2s1] = [3n]n≥0 \ [1] ∪ [2 + 1]

= [3, 3, 32, 33, 34, · · · ].
So, t2 = min A1 = 3. It implies ti + 2si can be a power of 3.

A2 = A1 \min A1 ∪ [t2 + 2s2] = [3n]n≥1 \ [3] ∪ [4 + 3]

= [3, 7, 32, 33, 34, · · · ].
So, t3 = min A2 = 3.

A3 = A2 \min A2 ∪ [t3 + 2s3] = A2 \ [3] ∪ [6 + 3]

= [7, 32, 32, 33, 34, · · · ].
So, t4 = min A3 = 7.

The values of tn’s for 1 ≤ n ≤ 10 are shown in Ta-
ble 2. Compared with Table 1, it is observed that the values
of {ΔT4(n)} and {tn} are exactly the same in these cases. We
justify this observation by the following theorem.

Theorem 1: Suppose that {tn}n≥1 is the aforementioned in-
teger sequence. Then, the following equality holds.

ΔT4(n) = tn for n ≥ 1.

Therefore, T4(n) is computed as

T4(n) =
n∑

i=1

ti for n ≥ 1.

Table 2 Values of tn for 1 ≤ n ≤ 10.

n 1 2 3 4 5 6 7 8 9 10
tn 1 3 3 7 9 9 15 21 25 27
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4. Proof of Theorem 1

We prove ΔT4(n) = tn for n ≥ 1 by induction on n.
When n = 1, T4(1) = t1 = 1 holds.
Suppose that ΔT4(n) = tn holds for 1 ≤ n ≤ k−1. Then

we show that ΔT4(k) = tk. For this purpose, we first define
the logarithm of tk similarly to Eq. (4):

mn = �log3 tn� + 1. (5)

As opposed to Eq. (4), mn can be computed without self-
reference since tn is explicitly defined. We show one lemma
on the relation between sequences {mn} and {tn}.
Lemma 2: Let {mn}, {tn}, {sn} be the aforementioned inte-
ger sequences. Then for n ≥ 2, mn is expressed either as
mn = mn−1 + 1 or mn = mn−1. Furthermore, tn is explicitly
written as follows:
⎧⎪⎪⎨⎪⎪⎩

(i) When mn = mn−1 + 1, tn = 3mn−1.

(ii) When mn = mn−1, tn = tn−mn + 2sn−mn .

Proof : The value tn is by definition the nth smallest value in
the multiset

[3i]i≥0 ∪ [ti + 2si]1≤i≤n−1.

We first divide the type of values of tn’s into three cases.
Case 1. When tn = 3l for some l and when 3l appears

as an element of the sequence {ti} for the first time, then
3l−1 ≤ tn−1 < tn = 3l. Thus, l − 1 ≤ log3 tn−1 < log3 tn = l.
Recall that mn = �log3 tn�+1, so l−1 ≤ mn−1−1 < mn−1 = l.
Therefore,

mn = mn−1 + 1 and tn = 3l = 3mn−1.

Case 2. When tn = 3l for some l but when it is not the
first time for 3l to appear in the sequence {tn}, then tn−1 =

tn = 3l. Therefore,

mn = mn−1 = l + 1 and tn = 3l = 3mn−1.

Case 3. When tn = t j+2s j for some j such that 1 ≤ j ≤
n − 1 and when tn is not a power of 3, then tn is bounded as
3l < tn < 3l+1 for some l. Then, tn−1 must be also bounded
in the same interval as 3l ≤ tn−1 ≤ tn < 3l+1 since at least
one 3l must exist in {ti}i≤n−1. Therefore,

mn = mn−1 = l + 1.

Next we find the index j such that tn = t j +2s j. Since n
integers t1, · · · , tn are chosen from the multiset [3i]i≥0 ∪ [ti +
2si]1≤i≤n−1 and since 3mn−1 < tn < 3mn , exactly mn smallest
3i’s in [3n]n≥0, i.e., {1, 3, 32, · · · , 3mn−1}, are chosen and used
in {ti}1≤i≤n−1. Since the remaining elements for {t1, · · · , tn}
are chosen from {ti + 2si}, ti + 2si’s should appear n − mn

times at the time of determining tn, yielding j = n − mn.
Thus,

tn = t j + 2s j = tn−mn + 2sn−mn .

This completes Case 3.

Now, we prove (i) and (ii) of the lemma using the re-
sults of Cases 1, 2, and 3. As for (i), since Cases 2 and 3
both satisfy mn = mn−1, when mn = mn−1 + 1, Case 1 of
tn = 3mn−1 holds and (i) of Lemma 2 is proved.

When mn = mn−1 of (ii) holds, by Cases 2 and 3, there
are two kinds of expressions for tn, that is, tn = 3l for some
l and tn = tn−mn + 2sn−mn . But in Case 2, since 3l appears at
least twice, tn−1 = tn = 3l. So, this 3l can be also written as
tn−mn + 2sn−mn . This shows that when mn = mn−1, tn can be
expressed as tn = tn−mn + 2sn−mn as claimed in (ii).

This completes the proof of Lemma 2. �

Next, we show at which m the inner function of T4(k)
takes the minimum.

Lemma 3: Under the assumption of induction, the func-
tion

f (m) = T4(k − m) + S 4(k − m) +
3m − 1

2

takes the minimum at m = mk.

Proof : When i < mk,

f (i + 1) − f (i)

=

(
T4(k − (i + 1)) + S 4(k − (i + 1)) +

3i+1 − 1
2

)

−
(
T4(k − i) + S 4(k − i) +

3i − 1
2

)

= 3i − (ΔT4(k − i) + ΔS 4(k − i)
)

= 3i − (tk−i + 2sk−i) (by Assumption) (6)

By the definition of tn and by Lemma 2, the sequence
{t1, t2, · · · , tk} consists of the k smallest numbers

[1, 3, · · · , 3mk−1] ∪ [t1 + 2s1, · · · , tk−mk + 2sk−mk ]

in the multiset [3 j] j≥0 ∪ [t j + 2s j]1≤ j≤k−1. This with k − i >
k−mk implies that tk−i+2sk−i is larger or equal to both tk−mk+

2sk−mk and 3mk−1 (≥ 3i). Therefore, Eq. (6) leads to f (i +
1) − f (i) = 3i − (tk−i + 2sk−i) ≤ 0 and f (m) is monotonically
decreasing for m ≤ mk.

When i ≥ mk, since k − i ≤ k − mk,

f (i + 1) − f (i)

= 3i − (ΔT4(k − i) + ΔS 4(k − i)
)

= 3i − (tk−i + 2sk−i) (by Assumption)

≥ 3i − (tk−mk + 2sk−mk )

≥ 0. (7)

Inequality (7) holds because the multiset that consists of the
n smallest values in the multiset [3i]i≥0 ∪ [ti + 2si]1≤i≤k−1 is

[3i]0≤i≤mk−1 ∪ [ti + 2si]1≤i≤k−mk

by the definition of tn and by Lemma 2. Therefore, f (m) is
monotonically increasing for m ≥ mk.
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Consequently, f (m) takes the minimum at m = mk. �

Now, we are ready to show that ΔT4(k) = tk under the
assumption of induction. First, by Lemma 3, ΔT4(k) is com-
puted as follows:

ΔT4(k) = T4(k) − T4(k − 1)

=

(
T4(k − mk) + S 4(k − mk) +

3mk − 1
2

)
−

(
T4(k − 1 − mk−1) + S 4(k − 1 − mk−1) +

3mk−1 − 1
2

)

=
(
T4(k − mk) − T4(k − 1 − mk−1)

)
+
(
S 4(k − mk) − S 4(k − 1 − mk−1)

)

+

(3mk − 3mk−1

2

)
. (8)

For further computation, we divide into two cases according
to the relation of mk and mk−1 in Lemma 2.

Case 1. For k such that mk = mk−1 + 1, tk = 3mk−1 by
Lemma 2(i). Then, the values in the brackets of Eq. (8) are
computed respectively as follows:

T4(k − mk) − T4(k − 1 − mk−1)

= T4(k − mk) − T4(k − 1 − (mk − 1)) = 0,

S 4(k − mk) − S 4(k − 1 − mk−1) = 0,

3mk − 3mk−1

2
=

3mk − 3mk−1

2
= 3mk−1.

Therefore, by Lemma 2(i), Eq. (8) is simplified as

ΔT4(k) = 3mk−1 = tk.

Case 2. For k such that mk = mk−1, tk = tk−mk + 2sk−mk

by Lemma 2(ii). Then, the values in brackets of Eq. (8) are
computed respectively as follows:

T4(k − mk) − T4(k − 1 − mk−1)

= T4(k − mk) − T4(k − 1 − mk)

= ΔT4(k − mk)

= tk−mk (by Assumption),

S 4(k − mk) − S 4(k − 1 − mk−1)

= ΔS 4(k − mk)

= 2 sk−mk (by Lemma 1),
3mk − 3mk−1

2
=

3mk − 3mk

2
= 0.

Therefore, by Lemma 2(ii), Eq. (8) is simplified as

ΔT4(k) = tk−mk + 2sk−mk = tk.

This completes the proof of Theorem 1. �

5. Generalized Recurrence Relation and Its Analysis

The recurrence relation for the 4-peg Star Tower of Hanoi
and its analysis in Sects. 3 and 4 are generalized to include
the cases of the original 4-peg Tower of Hanoi, i.e., the

Reve’s Puzzle, and the leaf-to-leaf Star Tower of Hanoi.
Namely, we define a generalized recurrence relation as fol-
lows: Let {H(n)}n≥0 be an integer sequence such that H(0) =
0 and that hn = ΔH(n) is monotonically increasing on n (in
the weak sense). Then, the recurrence relation for a function
G(n) is defined as follows: G(0) = 0 and for n ≥ 1,

G(n) = min
0<m≤n

{
G(n − m) + H(n − m) +

a(qm − 1)
q − 1

}
, (9)

where a and q are constant integers such that a ≥ 1 and
q ≥ 2. We note that

a(qm − 1)
q − 1

− a(qm−1 − 1)
q − 1

= a · qm−1.

Equation (9) generalizes Eq. (1) for the original 4-peg Tower
of Hanoi by setting G(n) = H(n) for all n and (a, q) = (1, 2),
Eq. (2) for the leaf-to-leaf Star Tower of Hanoi by setting
G(n) = H(n) for all n and (a, q) = (2, 3), and the leaf-to-
center Star Tower of Hanoi, i.e., Eq. (3) for T4(n) by setting
H(n) = S 4(n) for all n and (a, q) = (1, 3). For other val-
ues of (a, q), we have not found a case in which Eq. (9) has
some concrete meaning such as being a recurrence relation
for some Tower of Hanoi variant, but emphasis and benefit
of the generalization should lie at this point in understanding
the algorithms of the three types of 4-peg Tower of Hanoi in
the unified manner.

Now, the analysis for T4(n) in Sects. 3 and 4 is gen-
eralized for G(n). Similarly to the definition of {ti}i≥1 in
Sect. 3.2, we define the integer sequence {gi}i≥1 and the mul-
tisets Ai’s for i ≥ 0 as follows:

1. A0 =
[
a · qn]

n≥0 and g1 = min A0 = a.
2. For i ≥ 1, the multiset Ai is defined as

Ai = Ai−1\min Ai−1 ∪ [gi + hi],

where min Ai−1 is the minimum integer in Ai−1. Then,
gi+1 is defined as gi+1 = min Ai.

When we define

mn =

⌊
logq

gn

a

⌋
+ 1,

the following lemma holds, similarly to Lemma 2:

Lemma 4: mn is written either as mn = mn−1 + 1 or mn =

mn−1. Furthermore, gn is explicitly written as follows:
⎧⎪⎪⎨⎪⎪⎩

(i) When mn = mn−1 + 1, gn = a · qmn−1.

(ii) When mn = mn−1, gn = gn−mn + hn−mn .

Proof : The proof for Lemma 2 works in this case by replac-
ing 3n and 2sn with a · qn and hn, respectively and by taking
the logarithm with respect to q. �

We finally show the following theorem on G(n) and gn:

Theorem 2: Let {gn}n≥1 be the the sequence defined above.
Then, the following equalities hold.



MATSUURA and SHOJI: THE EXPLICIT FORMULA OF THE PRESUMED OPTIMAL RECURRENCE RELATION FOR THE STAR TOWER OF HANOI
497

ΔG(n) = gn for n ≥ 1,

G(n) =
n∑

i=1

gi for n ≥ 1.

Proof : We again prove by induction. First, ΔG(1) = G(1) =
g1 = a.

Next, assume that ΔG(n) = gn for all n such that 1 ≤
n ≤ k − 1. Then, the following lemma generalized from
Lemma 3 holds:

Lemma 5: Under the assumption of induction, the func-
tion

f (m) = G(k − m) + H(k − m) +
a(qm − 1)

q − 1

takes the minimum at m = mk.

Proof of Lemma 5: When i < mk, similarly to Lemma 3,

f (i + 1) − f (i)

=

(
G(k − (i + 1)) + H(k − (i + 1)) +

a(qi+1 − 1)
q − 1

)

−
(
G(k − i) + H(k − i) +

a(qi − 1)
q − 1

)

= a · qi − (gk−i + hk−i) (by Assumption)

≤ 0 (by Lemma 4).

When i ≥ mk, since k − i ≤ k − mk,

f (i + 1) − f (i)

= a · qi − (gk−i + hk−i) (by Assumption)

≥ a · qi − (gk−mk + hk−mk )

≥ 0 (by Lemma 4).

Consequently, f (m) takes the minimum at m = mk. �

Now, we show that ΔG(k) = gk. By Lemma 5,

ΔG(k) = G(k) −G(k − 1)

=
(
G(k − mk) −G(k − 1 − mk−1)

)
+
(
H(k − mk) − H(k − 1 − mk−1)

)

+
a(qmk − qmk−1 )

q − 1
. (10)

We further divide into two cases.

Case 1. For k such that mk = mk−1 + 1, gk = a · qmk−1

by Lemma 4(i). Then, similarly to Theorem 1,

G(k − mk) −G(k − 1 − mk−1) = 0,

H(k − mk) − H(k − 1 − mk−1) = 0,

a(qmk − qmk−1 )
q − 1

=
a(qmk − qmk−1)

q − 1
= a · qmk−1.

Therefore, by Lemma 4(i), Eq. (10) is simplified as

ΔG(k) = a · qmk−1 = gk.

Case 2. For k such that mk = mk−1, gk = gk−mk + hn−mk

by Lemma 4(ii). Then,

G(k − mk) −G(k − 1 − mk−1) = gk−mk (by Assumption),

H(k − mk) − H(k − 1 − mk−1) = hk−mk (by Definition),
a(qmk − qmk−1 )

q − 1
=

a(qmk − qmk )
q − 1

= 0.

Therefore, by Lemma 4(ii), Eq. (10) is simplified as

ΔG(k) = gk−mk + hk−mk = gk.

This completes the proof of Theorem 2. �

6. Concluding Remarks

We made exact analysis of the Frame-Stewart-type recur-
rence relation for the leaf-to-center 4-peg Star Tower of
Hanoi. Then we generalized the recurrence relation to in-
clude the ones for the original 4-peg Tower of Hanoi and the
leaf-to-leaf Star Tower of Hanoi.

Future work includes consideration of applying the
generalized recurrence relation in Sect. 5 possibly to other
Tower of Hanoi variants, analysis of the k-peg leaf-to-center
Star Tower of Hanoi for k ≥ 5, and exploration for the opti-
mality of the solution obtained in this paper.
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