
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019
1439

PAPER Special Section on Formal Approaches

Verification of LINE Encryption Version 1.0 Using ProVerif∗

Cheng SHI†, Nonmember and Kazuki YONEYAMA†a), Member

SUMMARY LINE is currently the most popular messaging service in
Japan. Communications using LINE are protected by the original encryp-
tion scheme, called LINE Encryption, and specifications of the client-to-
server transport encryption protocol and the client-to-client message end-
to-end encryption protocol are published by the Technical Whitepaper.
Though a spoofing attack (i.e., a malicious client makes another client mis-
understand the identity of the peer) and a reply attack (i.e., a message in a
session is sent again in another session by a man-in-the-middle adversary,
and the receiver accepts these messages) to the end-to-end protocol have
been shown, no formal security analysis of these protocols is known. In
this paper, we show a formal verification result of secrecy of application
data and authenticity for protocols of LINE Encryption (Version 1.0) by
using the automated security verification tool ProVerif. Especially, since it
is claimed that the transport protocol satisfies forward secrecy (i.e., even if
the static private key is leaked, security of application data is guaranteed),
we verify forward secrecy for client’s data and for server’s data of the trans-
port protocol, and we find an attack to break secrecy of client’s application
data. Moreover, we find the spoofing attack and the reply attack, which are
reported in previous papers.
key words: formal methods, end-to-end encryption, LINE Encryption,
ProVerif

1. Introduction

1.1 Background

With the development of network communications technol-
ogy, more and more people use messaging services to com-
municate. LINE is currently the most popular messaging
service in Japan. Thus, if there is security vulnerability in
LINE, widespread incidents may be caused due to its pop-
ularity. Hence, it is required that the security of LINE is
rigorously analyzed.

In order to ensure the security of LINE, communica-
tions in LINE are protected by a dedicated encrypted com-
munication scheme, called LINE Encryption, and specifi-
cations of the client-to-server transport encryption proto-
col (TEP) and the client-to-client message end-to-end en-
cryption protocol (E2EEP) are published by the Technical
Whitepaper [2]. In [2], some informal security analyses of
the TEP and the E2EEP are shown, and it is claimed that the
TEP satisfies forward secrecy [3] such that “In the event that

Manuscript received September 18, 2018.
Manuscript revised February 8, 2019.
Manuscript publicized April 24, 2019.
†The authors are with Ibaraki University, Hitachi-shi, 316–

8511 Japan.
∗This paper is the full version of the extended abstract appeared

in [1].
a) E-mail: kazuki.yoneyama.sec@vc.ibaraki.ac.jp

DOI: 10.1587/transinf.2018FOP0001

a private key is leaked, messages that were encrypted be-
fore the leak are protected if the communication supports
forward secrecy” [4]. Since there are two kinds of mes-
sages (client’s application data encrypted by temporary key
keytemp and server’s application data encrypted by forward
secure key keyFS) in the TEP, we need to consider two kinds
of forward secrecy (i.e., forward secrecy for client’s data and
forward secrecy for server’s data).

On the other hand, Espinoza et al. [5] showed a reply
attack against the E2EEP. A man-in-the-middle (MTM) ad-
versary can send an encrypted message in an old session as
the message in the new session without changing the con-
tent of the message. Though the adversary cannot know
the content of the message, the receiver client accepts these
two messages as valid. Isobe and Minematsu [6] showed a
spoofing attack against the E2EEP. A malicious client C3

intercepts the E2EEP between clients C1 and C2, and imper-
sonates C1 to C2. Hence, since another unknown attack may
exist, security of LINE Encryption is still unclear.

On the other hand, since it is difficult to analyze all
attacks by hands, such as the replay attack or the spoof-
ing attack, automated security verification methods by us-
ing formal methods have been studied to formally verify the
security of cryptographic protocols.

1.2 Contribution

In this paper, we give the first formal verification result of
the security of LINE Encryption (Version 1.0) by using the
automated security verification tool ProVerif [7]. Specifi-
cally, for the TEP, we verify forward secrecy of both client’s
application data and server’s application data, and server au-
thenticity. For the E2EEP, we verify secrecy of application
data and authenticity. We obtain the following verification
results:

For the TEP: We find an attack to break forward secrecy
for client’s data, but we cannot find attacks for forward
secrecy for server’s data and server authenticity.

For the E2EEP: We find the spoofing attack and the re-
play attack, but we cannot find attacks for secrecy of
application data.

Thus, our verification result captures all known attacks to
LINE Encryption, and points out the attack to forward
secrecy for client’s data, which is not formally reported.
Therefore, our result clarifies that the automated verification
tool is useful to verify the security of messaging protocols.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

1440
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019

1.3 Organization of Paper

In Sect. 2, we recall protocols of the TEP and the E2EEP,
and roughly explain ProVerif. In Sect. 3, we give our for-
malization of the TEP and the E2EEP by using the ProVerif
language. In Sect. 4, we show LINE’s claimed security for
the TEP and the E2EEP. In Sect. 5, we give our verification
result and found attacks.

2. Preliminaries

2.1 Client-to-Server Transport Encryption Protocol (TEP)

The client and server exchange the following messages in
order to establish the transport key used to protect applica-
tion data. A message sequence chart is given in Fig. 1.

2.1.1 Static Keys

In order to guarantee that clients only connect to legiti-
mate the LINE servers, the TEP uses static ECDH and
ECDSA [8] key pairs. The LINE servers securely store the
private part of each pair, while the corresponding public
keys are embedded in LINE client applications.

• ECDH key pair for key exchange: (staticprivate,
staticpublic)
• ECDSA key pair for server identity verification:

(signprivate,signpublic)

2.1.2 Client Hello

The client generates a temporary transport key and initial-
ization vector by the static ECDH key exchange, and en-
crypts application data.

1. Generate an initial ephemeral ECDH key (c_initprivate,
c_initpublic) and a client nonce cnonce.

2. Derive a temporary transport key and initialization vec-
tor (IV) using the server’s static key and the initial
ephemeral key generated in Step 1 (where HKDF is the
HMAC-based extract-and-expand key derivation func-
tion [9]) as follows.

lenkey=16
leniv=16
sharetemp=ECDH(c_initprivate,staticpublic)

Fig. 1 Message sequence chart for TEP

MStemp=HKDFex(c_initpublic||cnonce,sharetemp)†
keyivtemp=HKDFexp(MStemp,”legy temp key”,

lenkey+leniv)
keytemp=keyivtemp[0:15]
ivtemp=keyivtemp[16:31]
(keyivtemp[0:15] and keyivtemp[16:31] mean the high-
order 16 bytes and the low-order 16 bytes of keyivtemp,
respectively.)

3. Generate an ephemeral ECDH client handshake key
(cprivate,cpublic).

4. cpublic and application data appdataclient are encrypted
with keytemp and the client nonce cnonce using the AES-
GCM [10] AEAD cipher as the ciphertext dataenc.
The nonce is calculated by combining a client/server
marker marker, a sequence number numseq, and ivtemp

obtained in the handshake process.
5. Send the version statickeyversion, client’s initial

ephemeral key c_initpublic
††, client nonce cnonce and en-

crypted data dataenc to the server.

2.1.3 Server Hello

The server generates the temporary transport key and ini-
tialization vector by the static ECDH key exchange, and de-
crypts the ciphertext from the client. Also, the server gener-
ates a forward-secure transport key and initialization vector
by the ephemeral ECDH key exchange, and encrypts appli-
cation data.

1. Calculate the temporary transport key keytemp and IV
ivtemp using the server’s static ECDH key staticprivate

and the client’s initial ephemeral key c_initpublic as fol-
lows.

sharetemp=ECDH(staticprivate,c_initpublic)
MStemp=HKDFex(c_initpublic||cnonce,sharetemp)
keyivtemp=HKDFexp(MStemp,”legy temp key”,

lenkey+leniv)
keytemp=keyivtemp[0:15]
ivtemp=keyivtemp[16:31]

2. Decrypt dataenc by using keytemp and ivtemp, and obtain
application data appdataclient and cpublic.

3. Generate an ephemeral key pair (sprivate,spublic) and a
server nonce snonce.

4. Derive the forward-secure (FS) transport key keyFS and
IV ivFS as follows.

lenkey=16
leniv=16
shareFS=ECDH(sprivate,cpublic)

†In [2], it is described as MStemp = HKDFex(cpublic||cnonce,
sharetemp). However, it is a typo. The authors confirmed the typo
to the LINE Security Team.
††In [2], it is described as to send cpublic. However, it is a typo.

The authors confirmed the typo to the LINE Security Team.

SHI and YONEYAMA: VERIFICATION OF LINE ENCRYPTION VERSION 1.0 USING PROVERIF
1441

MSFS=HKDFex(cnonce||snonce,shareFS)
keyivFS=HKDFexp(MSFS,”legy temp key”,

lenkey+leniv)
keyFS=keyivFS[0:15]
ivFS=keyivFS[16:31]

5. Generate and sign the handshake state using the
server’s static signing key as follows.

state=SHA256(cpublic||cnonce||spublic||snonce)
statesign=ECDSAsign(state,signprivate)

6. Application data appdataserver is encrypted with keyFS
and the nonce snonce using the AES-GCM AEAD cipher
as the ciphertext data′enc. The nonce is calculated by
combining a client/server marker marker, a sequence
number numseq, and the ivFS obtained in the handshake
process.

7. Send the ephemeral key spublic, server nonce snonce and
encrypted data data′enc to the client.

2.1.4 Client Finish

The client generates the forward-secure transport key and
initialization vector by the ephemeral ECDH key exchange.

1. Verify the handshake signature statesign. If it is valid,
proceed to the next step. If not, abort the connection.

2. Derive keyFS and ivFS as follows.

shareFS=ECDH(cprivate,spublic)
MSFS=HKDFex(cnonce||snonce,shareFS)
keyivFS=HKDFexp(MSFS,”legy temp key”,

lenkey+leniv)
keyFS=keyivFS[0:15]
ivFS=keyivFS[16:31]

2.2 Message End-to-End Encryption (E2EEP)

Two clients exchange the following messages in order to
send a message without revealing it to others. A message
sequence chart is given in Fig. 2.

2.2.1 Client-to-Client Key Exchange

In order to be able to exchange encrypted messages, clients

Fig. 2 Message sequence chart for E2EEP

must share a common cryptographic secret. When a LINE
client wishes to send a message, it first retrieves the current
public key of the recipient. Next, the client passes its own
private key and the recipient’s public key to the ECDH al-
gorithm in order to generate a shared secret as follows.

Shared Secret
=ECDHcurve25519(keyuser1

private,keyuser2
public)

=ECDHcurve25519(keyuser2
private,keyuser1

public)

2.2.2 Message Encryption

The sender client encrypts a message with a unique encryp-
tion key and IV, and sends the encrypted message to the re-
cipient client.

1. The sender derive the encryption key Keyencrypt and IV
IVencrypt from the shared secret calculated in the above
process, and a randomly generate salt as follows.

Keyencrypt=SHA256(Shared Secret||salt||”Key”)
IVpre=SHA256(Shared Secret||salt||”IV”)
IVencrypt=IVpre[0:15] ⊕ IVpre[16:31]

2. The generated key and IV are used to encrypt the mes-
sage payload M using AES in CBC block mode.

3. The sender calculates a message authentication code
(MAC) of the ciphertext C (where AESECB is the AES
in ECB mode) as follows.

MACplain=SHA256(C)
MACenc=AESECB(Keyencrypt,MACplain[0:15]

⊕MACplain[16:31])

4. version, content type, salt, C, MACenc, sender key
ID and recipient key ID are included in the message
sent to the recipient.

5. The recipient derives the symmetric encryption key
Keyencrypt, and IV IVencrypt as described above.

6. The recipient calculates the MAC MAC′enc of the re-
ceived cipher text, and compares it with the MAC
MACenc value included in the message. If they match,
the contents of the message are decrypted and dis-
played. Otherwise, the message will be discarded.

2.3 ProVerif

ProVerif is a model checking tool that performs automated
security verification. To verify a security requirement of a
protocol by ProVerif, we must formalize the cyptographic
primitives, the protocol specification and the security re-
quirement as input to ProVerif. Here, we briefly explain how
to formalize these by using an example of a symmetric key
encryption. For the detail of ProVerif, please see [7].

1. Define communication paths and cryptographic primi-
tives

• Type designates types representing keys, random

1442
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019

numbers, etc.

type key (*types of private keys
in symmetric key encryption*)

type coins (*type of random
numbers*)

• Free name defines channel name.

free c:channel (*Public
communication channel*)

free c:channel [private] (*Secret
communication channel*)

• Constructors defines cryptographic primitives
such as encryption functions, etc.

fun senc(bitstring,key):bitstring
(*function of symmetric key
encryption*)

• Destructor specifies conditions of functions.

reduc forall m:bitstring,k:key;
sdec(senc(m,k),k)=m. (*
decryption condition of
symmetric key encryption*)

2. Define participant behaviors within the cryptographic
protocol

out(c,A) (*send the message A to
channel c*)

in(c,B) (*receive the message B
from channel c*)

3. Define public information, confidential information
held in advance by each participant, and give it as input
to participants.

new r:coins (*generate a random number*)
((!clientA)|(!serverB)) (*parallel execution

of client and server*)

A variety of properties can be analyzed by ProVerif,
such as the correspondence assertions (i.e., whether event
B occurred before the event A occurred), the reachability
(i.e., whether a specific event occurred), and the observation
equivalence (i.e., whether is able to analyze two processes
that perform different computations but have the same run
result).

3. Formalization of LINE Encryption

In this section, we give our formalization of LINE Encryp-
tion in ProVerif.

3.1 Formalization of TEP

3.1.1 Rules for Signature

Here, we define types of signature key and verification key

required for digital signature, furthermore, the function spk
that creates a verification key from the signing key. When a
plaintext (bitstring) and a signing key are inputted, the func-
tion sign generates a signature. When a signature and a
verification key are inputted, if the verification result is cor-
rect, define the checksign outputs true.

type signpublickey. (*verification key *)
type signprivatekey. (*signing key *)
fun spk(signprivatekey):signpublickey. (*

generate a verification key *)
fun sign(bitstring,signprivatekey):bitstring.

(*generate a signature *)
reduc forall m:bitstring,sprikey:

signprivatekey;
checksign(sign(m,sprikey),spk(sprikey),m)=

true. (*verify signature *)

3.1.2 Rules for ECDH Key Exchange

Here, we define types of the generator, exponents and the
base point, and functions Ggen to convert the base point to
the generator and sca to compute the scalar multiplication,
and commutativity by equation.

type G. (*type of generator *)
type scalar. (*type of scalar *)
type basis. (*type of base points *)
fun Ggen(basis):G. (*convert base point to

generator *)
fun sca(scalar,G):G. (*scalar multiplication

*)
equation forall a:scalar, b:scalar, P:basis;
sca(a,sca(b,Ggen(P)))=sca(b,sca(a,Ggen(P))).

(*commutativity*)

3.1.3 Ruless for XOR

Here, we define the function xor to compute the XOR of
two inputs, and the property of XOR by four equation†.

fun xor(bitstring,bitstring):bitstring.
equation forall x:bitstring, y:bitstring; xor

(xor(x,y),y)=x.
equation forall x:bitstring, y:bitstring; xor

(y,xor(x,x))=y.
equation forall x:bitstring, y:bitstring; xor

(xor(x,y),xor(x,x))=xor(x,y).
equation forall x:bitstring, y:bitstring; xor

(xor(x,y),xor(y,y))=xor(x,y).

3.1.4 Parameter

Here, we define key type, random number type, version
type, and fixed values and word “legy temp key” as const.

type key.
type iv.

†As being described in [7], associativity cannot be handled by
ProVerif, which prevents the modeling of primitives such as XOR,
because associativity as (xor(x, y) = xor(y, x)) generates an infinite
number of rewrite rules, so in this case ProVerif does not terminate.
Thus, we formalize the XOR by limited rules as previous works.

SHI and YONEYAMA: VERIFICATION OF LINE ENCRYPTION VERSION 1.0 USING PROVERIF
1443

type coins.
type version.
const legy:bitstring[data].
const len:bitstring[data].
const num:bitstring[data].
const marker:bitstring[data].

3.1.5 Rules for AEAD

Here, we define the function senc to encrypt a plaintext and
the function sdec to decrypt a ciphertext, and the relation-
ship between senc and sdec by reduc.

fun senc(key,coins,bitstring):bitstring. (*
encryption function *)

reduc forall x:bitstring, k:key, r:coins;
sdec(k,r,senc(k,r,x))=x.(*decryption function

*)

3.1.6 Declaration of Channel and Secret

Here, we define the channel and secret information by free.

free c:channel. (*the channel *)
free appdata1:bitstring[private]. (*the

client’s secret information *)
free appdata2:bitstring[private]. (*the

server’s secret information *)

3.1.7 Type-Converting Functions

Here, we define implicit functions to convert types for type
adjustments of inputs of functions.

fun HKDFex(bitstring,G):bitstring. (*HKDFex*)
fun HKDFexp(bitstring,bitstring,bitstring):

bitstring. (*HKDFexp*)
fun Ggen3(bitstring):key. (*convert bitstring

type to key type *)
fun Ggen4(bitstring):iv. (*convert bitstring

type to iv type *)
fun Hash(bitstring):bitstring. (*hash

function *)
fun Ggen6(bitstring):coins. (*convert

bitstring type to randam type *)
fun Ggen7(iv):bitstring. (*convert iv type to

bitstring type *)

3.1.8 Verification of Forward Secrecy

We use reachability to verify forward secrecy. The attacker
is passive, but he/she can obtain all static private keys of the
server. Forward secrecy for client’s (resp. server’s) data re-
quire that the attacker cannot reach client’s (resp. server’s)
application data. If the protocol has forward secrecy for
client’s (resp. server’s) data, attacker(appdata1) (resp.
attacker(appdata2)) will not happen. In other words,
appdata1 (resp. appdata2) cannot be obtained by the pas-
sive attacker.

set attacker = passive.
query attacker(appdata1).
query attacker(appdata2).

3.1.9 Verification of Server Authenticity

Using the correspondence assertions, we can verify authen-
ticity for clients. We define event Client1 corresponding to
encrypting Client’s secret message, and event Server1 cor-
responding to decrypting the secret message. If Server1
occurs, then Client1 must occur before Server1. It
corresponds to client authenticity. Also, we define event
Server2 corresponding to accepting digital signature ver-
ification, and event Client2 corresponding to completion
of the session. If Client2 occurs, then Server2 must oc-
cur before Client2. It corresponds to server authenticity.

event Client1(key,coins).
event Server1(key,coins).
event Client2(key,iv).
event Server2(key,iv).
query x:key, n:coins;
event(Server1(x,n))==>event(Client1(x,n)).
query x:key, n:iv;
event(Client2(x,n))==>event(Server2(x,n)).

3.1.10 Client Subprocess

Here, we define client’s actions.

let Client(ver:version,J:basis,stapu:G,spuk:
signpublickey)=

new cinitpr:scalar;
new cnon:coins; (*Generate random number of

client*)
let cinitpu=sca(cinitpr,Ggen(J))in
let sharedtemp=sca(cinitpr,stapu)in
let MStemp=HKDFex((cinitpu,cnon),sharedtemp)

in (*MStemp*)
let keyivtemp=HKDFexp(MStemp,legy,len)in
let keytemp=Ggen3(breakf(keyivtemp))in (*

keytemp*)
let ivtemp=Ggen4(breakb(keyivtemp))in (*

ivtemp*)
let nonce=Ggen6(xor((marker,num),Ggen7(ivtemp

)))in
new cpr:scalar;
let cpu=sca(cpr,Ggen(J))in
let dataenc=senc(keytemp,nonce,(cpu,appdata1)

)in (*dataenc*)
event Client1(keytemp,nonce);
out(c,(ver,cinitpu,cnon,dataenc));
in(c,(spu’:G,srand:coins,statesign’:bitstring

,dataenc1’:bitstring));
let statesign1=Hash((cpu,cnon,spu’,srand))in
if checksign(statesign’,spuk,statesign1)then

(*Detect signature *)
let sharedFS’=sca(cpr,spu’)in
let MSFS’=HKDFex((cnon,srand),sharedFS’)in
let keyivFS’=HKDFexp(MSFS’,legy,len)in
let keyFS’=Ggen3(breakf(keyivFS’))in
let ivFS’=Ggen4(breakb(keyivFS’))in
event Client2(keyFS’,ivFS’).

3.1.11 Server Subprocess

Here, we define server’s actions.

1444
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019

let Server(stapr:scalar,stapu:G,J:basis,sprk:
signprivatekey)=

in(c,(sver:version,cinitpu’:G,crand:coins,
dataenc’:bitstring));

let sharedtemp’=sca(stapr,cinitpu’)in (*
shardtemp*)

let MStemp’=HKDFex((cinitpu’,crand),
sharedtemp’)in (*MStemp*)

let keyivtemp’=HKDFexp(MStemp’,legy,len)in (*
keyivtemp*)

let keytemp’=Ggen3(breakf(keyivtemp’))in (*
keytemp*)

let ivtemp’=Ggen4(breakb(keyivtemp’))in (*
ivtemp*)

let nonce1=Ggen6(xor((marker,num),Ggen7(
ivtemp’)))in

let (cpu’:G,appdata1’:bitstring)=sdec(keytemp
’,nonce1,dataenc’)in (*cpu&app data*)

new snon:coins; (*Generate random number of
server*)

new spr:scalar;
let sharedFS=sca(spr,cpu’)in
let MSFS=HKDFex((crand,snon),sharedFS)in (*

MSFS*)
let keyivFS=HKDFexp(MSFS,legy,len)in
let keyFS=Ggen3(breakf(keyivFS))in (*keyFS*)
let ivFS=Ggen4(breakb(keyivFS))in (*ivFS*)
let spu=sca(spr,Ggen(J))in
let state=Hash((cpu’,crand,spu,snon))in (*

state*)
let statesign=sign(state,sprk)in (*signature

*)
let nonce2=Ggen6(xor((marker,num),Ggen7(ivFS)

))in
let dataenc1=senc(keyFS,nonce2,appdata2)in (*

dataenc*)
event Server1(keytemp’,nonce1);
event Server2(keyFS,ivFS);
out(c,(spu,snon,statesign,dataenc1)).

3.1.12 Main Process for Verifying Forward Secrecy

Here, we define the version ver, base point J, the ECDH
private key stapr, and the signing key sprk. The ECDH
public key stapu and public key of signature spuk are ex-
posed in channel c. The client subprocess and the server
subprocess are executed in parallel in phase 0. In order to
verify forward secrecy, the ECDH private key stapr and
the signing key sprk will be exposed in phase 1.

process
new ver:version;
new J:basis;
new stapr:scalar;
new sprk:signprivatekey;
let stapu=sca(stapr,Ggen(J))in out(c,stapu);
let spuk=spk(sprk)in out(c,spuk);
(((!Client(ver,J,stapu,spuk))|(!Server(stapr,

stapu,J,sprk)))|phase 1;out(c,(stapr,
sprk)))

3.2 Formalization of E2EEP

3.2.1 Rules for ECDH Key Exchange

The process is described in Sect. 3.1, and we omit it.

3.2.2 Rules for AES-CBC

Here, we define the function senccbc to encrypt a plaintext
and the function sdeccbc to decrypt a ciphertext, and the
relationship between senccbc and sdeccbc by reduc.

type key.
type iv. (*type of keys *)
fun senccbc(bitstring,key,iv):bitstring. (*

encryption function *)
reduc forall m:bitstring, k:key, i:iv ;

sdeccbc(senccbc(m,k,i),k,i)=m. (*
decryption function *)

3.2.3 Rules for AES-ECB

Here, we define the function sencecb to encrypt a plaintext
and the function sdececb to decrypt a ciphertext, and the
relationship between sencecb and sdececb by reduc.

fun sencecb(bitstring,key):bitstring. (*
encryption function *)

reduc forall m:bitstring, k:key; sdececb(
sencecb(m,k),k)=m. (*decryption function
*)

3.2.4 Parameter

Here, we define random number type, version type and fixed
words “Key” and “IV” by const.

type coins.
type version.
type ID.
const Key:bitstring[data].
const IV:bitstring[data].

3.2.5 Rules for XOR

The process is described in Sect. 3.1, and we omit it.

3.2.6 Declarationof Channel and Secret

Here, we define the channel and secret information.

free c:channel. (*channel *)
free M:bitstring[private]. (*client’s secret

information *)

3.2.7 Hash Function and Type-Converting Functions

Here, we define the hash function and implicit functions to
convert types for type adjustments of inputs of functions.

SHI and YONEYAMA: VERIFICATION OF LINE ENCRYPTION VERSION 1.0 USING PROVERIF
1445

fun Hash(bitstring):bitstring. (*hash
function *)

fun Ggen1(G,coins,bitstring):bitstring. (*G,
coins, bitstring to bitstring type *)

fun Ggen2(bitstring):key. (*convert bitstring
type to key type *)

fun Ggen3(bitstring):iv. (*convert bitstring
type to iv type *)

3.2.8 Verification of Secrecy and Authenticity for Replay
Attack

We use the correspondence assertions, we can verify authen-
ticity for clients. We define event Client1 which Client1
encrypts Client1’s secret message, and event Client2
which Client2 decrypts Client 1’s secret message. If
Client2 occurs, then Client1must occur only once before
Client2. In order to verify replay attack, we use injective
correspondence assertions inj-event to capture the one-
to-one relationship. If it is a non-one-to-one relationship, it
may happen that Client2 is executed twice or more, but
Client1 is executed only once. In other words, it corre-
sponds to a replay attack.

query attacker(M).
event Client1(key,iv).
event Client2(key,iv).
query x:key, i:iv;
inj-event(Client2(x,i))==>inj-event(Client1(x

,i)).

3.2.9 Client1 Subprocess for Replay Attack

Here, we define client1’s actions.

let Client1(ver:version,c1cpr:scalar,c1cpu:G,
c2cpu:G,J:basis,c1id:ID,c2id:ID)=

in(c,(c2cpu’:G));
if c2cpu=c2cpu’ then
new salt:coins;
let SharedSecret=sca(c1cpr,c2cpu’)in
let Ken=Ggen2(Hash((SharedSecret,salt,Key)))

in
let IVpre=Hash((SharedSecret,salt,IV))in
let IVen=Ggen3(xor(breakf(IVpre),breakb(IVpre

)))in
event Client1(Ken,IVen);
let C=senccbc(M,Ken,IVen)in
let MACp=Hash(C)in
let MACe=sencecb(xor(breakf(MACp),breakb(MACp

)),Ken)in
out(c,(ver,salt,C,MACe,c1id,c2id)).

3.2.10 Client2 Subprocess for Replay Attack

Here, we define client2’s actions.

let Client2(ver:version,c2cpr:scalar,c2cpu:G,
c1cpu:G,J:basis,c2id:ID)=

out(c,(c2cpu));
in(c,(ver’:version,ran:coins,C’:bitstring,mac

:bitstring,id1:ID,id2:ID));
if c2id=id2 then
let SharedSecret’=sca(c2cpr,c1cpu)in

let Ken’=Ggen2(Hash((SharedSecret’,ran,Key)))
in

let MACp’=Hash(C’)in
let MACe’=sencecb(xor(breakf(MACp’),breakb(

MACp’)),Ken’)in
if mac=MACe’ then
let IVpre’=Hash((SharedSecret’,ran,IV))in
let IVen’=Ggen3(xor(breakf(IVpre’),breakb(

IVpre’)))in
let M’=sdeccbc(C’,Ken’,IVen’)in
event Client2(Ken’,IVen’).

3.2.11 Main Process for Replay Attack

Here, we define the version ver, base point J, Client1’s
ECDH private key c1cpr and client2’s ECDH private key
c2cpr. The Client1’s ECDH public key c1cpu and client2’s
ECDH public key c2cpu are exposed in channel c. Client1
subprocess and Client2 subprocess are executed in parallel.

process
new ver:version;
new J:basis;
new c1cpr:scalar;
new c2cpr:scalar;
new c1id:ID;
new c2id:ID;
let c1cpu=sca(c1cpr,Ggen(J))in out(c,c1cpu);
let c2cpu=sca(c2cpr,Ggen(J))in out(c,c2cpu);
((!!Client1(ver,c1cpr,c1cpu,c2cpu,J,c1id,c2id

))|(!Client2(ver,c2cpr,c2cpu,c1cpu,J,
c2id)))

3.2.12 Verification of Secrecy and Authenticity for Spoof-
ing Attack

Using the correspondence assertions, we can verify authen-
ticity for clients. Event accept, which the client1 believes
that it has accepted to run the protocol with the client2 and
the correct sender key ID. Event term, which the client2 be-
lieves that it has terminated a protocol run with the client1
with the correct sender key ID. When a spoofing attack oc-
curs, a fake sender key ID is used by an attacker and the
correspondence assertions cannot be correct execution.

query attacker(M).
event accept(ID).
event term(ID).
query i:ID;
event(term(i))==>event(accept(i)).

3.2.13 Client1 Subprocess for Spoofing Attack

Here, we define client1’s actions.

let Client1(ver:version,c1cpr:scalar,c1cpu:G,
c2cpu:G,J:basis,c1id:ID)=

in(c,(c2cpu’:G,c2id’:ID));
if c2cpu=c2cpu’ then
event accept(c1id);
new salt:coins;
let SharedSecret=sca(c1cpr,c2cpu’)in
let Ken=Ggen2(Hash((SharedSecret,salt,Key)))

in

1446
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019

let IVpre=Hash((SharedSecret,salt,IV))in
let IVen=Ggen3(xor(breakf(IVpre),breakb(IVpre

)))in
let C=senccbc(M,Ken,IVen)in
let MACp=Hash(C)in
let MACe=sencecb(xor(breakf(MACp),breakb(MACp

)),Ken)in
out(c,(ver,salt,C,MACe,c1id,c2id’)).

3.2.14 Client2 Subprocess for Spoofing Attack

Here, we define client2’s actions.

let Client2(ver:version,c2cpr:scalar,c2cpu:G,
c1cpu:G,J:basis,c2id:ID)=

out(c,(c2cpu,c2id));
in(c,(ver’:version,ran:coins,C’:bitstring,mac

:bitstring,id1:ID,id2:ID));
if c2id=id2 then
let SharedSecret’=sca(c2cpr,c1cpu)in
let Ken’=Ggen2(Hash((SharedSecret’,ran,Key)))

in
let MACp’=Hash(C’)in
let MACe’=sencecb(xor(breakf(MACp’),breakb(

MACp’)),Ken’)in
if mac=MACe’ then
let IVpre’=Hash((SharedSecret’,ran,IV))in
let IVen’=Ggen3(xor(breakf(IVpre’),breakb(

IVpre’)))in
let M’=sdeccbc(C’,Ken’,IVen’)in
event term(id1).

3.2.15 Main Process for Spoofing Attack

Here, we define the version ver, base point J, Client1’s
ECDH private key c1cpr, client2’s ECDH private key
c2cpr, the sender key ID c1id and the recipient key ID
c2id. The Client1’s ECDH public key c1cpu, client2’s
ECDH public key c2cpu , c1id and c2id are exposed in
channel c. Client1 subprocess and Client2 subprocess are
executed in parallel.

process
new ver:version;
new J:basis;
new c1cpr:scalar;
new c2cpr:scalar;
new c1id:ID;
new c2id:ID;
out(c,c2id);
out(c,c1id);
let c1cpu=sca(c1cpr,Ggen(J))in out(c,c1cpu);
let c2cpu=sca(c2cpr,Ggen(J))in out(c,c2cpu);
((!Client1(ver,c1cpr,c1cpu,c2cpu,J,c1id))|(!

Client2(ver,c2cpr,c2cpu,c1cpu,J,c2id)))

4. LINE’s Claimed Security

Here, we recall the claimed security for the TEP and the
E2EEP in the Technical Whitepaper [2] and the Status Re-
port [4].

4.1 Claimed Security for TEP

In [2], the claim about security of the TEP is as follows:

Messaging traffic between LINE clients and our
servers is protected with forward-secure encryp-
tion, and both text messages and media streams in
VoIP calls are end-to-end encrypted.

Though it just says that ‘traffic is encrypted’, it seems claims
secrecy of both application data of clients and the server.

In [4], the claim about security of the TEP is as follows:

In the event that LINE server’s secret key is
leaked, messages that were encrypted before the
leak are protected.

It claims forward secrecy of application data, but it is am-
biguous because which application data must be protected.

To summarize, the following security is claimed for the
TEP.

• secrecy of both application data of clients and the
server
• forward secrecy of application data

There is no security claim about authenticity.

4.2 Claimed Security for E2EEP

In [2], the claim about security of the E2EEP is as follows:

LINE messages are locally encrypted on each
client device before being sent to LINE’s messag-
ing server, and can only be decrypted by their in-
tended recipient.

It claims secrecy of application data of clients against the
server.

In [4], the claim about security of the E2EEP is as fol-
lows:

Messages are encrypted on the client side before
they are sent, and the content cannot be decrypted,
even on LINE’s servers. Forward secrecy in Letter
Sealing† (if a user’s device’s secret key is leaked)
is not supported.

The first sentence claims secrecy of application data of
clients against the server. The second sentence claims that
the E2EEP does not satisfy forward secrecy of application
data.

To summarize, the following security is claimed for the
E2EEP.

• secrecy of application data of clients against the server

There is no security claim about authenticity.

5. Verification Results

In this section, we show the verification results. To sum-
marize, we obtain the following verification results as in
Table 1 for the TEP and Table 2 for the E2EEP. In tables,
we also describe LINE’s security claim shown in Sect. 4.

†Letter Sealing is an implementation of the E2EEP.

SHI and YONEYAMA: VERIFICATION OF LINE ENCRYPTION VERSION 1.0 USING PROVERIF
1447

Table 1 Verification results for TEP

Secrecy of app. data Forward secrecy of app. data Server
client’s data server’s data client’s data server’s data authenticity

LINE’s claim � � �? �? -
Our result � � × � �

Table 2 Verification results for E2EEP

Secrecy of Authenticity
message Reply attack Spoofing attack

LINE’s claim � - -
Our result � × ×

� means that no attack is found, × means that an attack is found, �? means that security may be claimed, and - means that there is no security
claim.

Fig. 3 Attack procedure of breaking forward secrecy

Next, we describe the found attack against forward secrecy
for client’s data of the TEP, and the found reply attack and
spoofing attack for the E2EEP.

5.1 Attack to Break Forward Secrecy for Client’s Data of
TEP

1. An attacker who monitors channel c can know the ver-
sion, initial ephemeral ECDH public key c_initpublic,
clint nonce cnonce and ciphertext dataenc, which the
client sends to the server.

2. The attacker obtains the static private keys staticprivate

and signprivate.
3. By using c_initpublic and staticprivate, the attacker gener-

ates temporary transport key keytemp and initialization
vector(IV) ivtemp.

4. By using ivtemp the attacker generates nonce1.
5. By using nonce1 and keytemp, the attacker decrypts

appdataclient.

Therefore, the attacker can obtain application data from the
client by using the static private key of the server with-
out interrupting the communication between the client and
the server. It corresponds to breaking forward secrecy for
client’s data.

A procedure of the attack is given in Fig. 3.

5.2 Replay Attack to E2EEP

1. An attacker can know the static public information that
the sender key ID sender key ID, ECDH public key

keyuser1
public, the recipient key ID recipient key ID and

ECDH public key keyuser2
public.

2. The attacker starts two sessions by initiating client2,
and receives two ECDH public key keyuser2

public.
3. The attacker sends the client2’s ECDH public key

keyuser2
public to client1.

4. Client1 returns version, content type, salt, C, MAC,
sender key ID and recipient key ID to the attacker.

5. The attacker sends version, content type, salt, C,
MAC, sender key ID and recipient key ID to client2
in the first session.

6. The attacker sends version, content type, salt, C,
MAC, sender key ID and recipient key ID send to
client2 in the second session.

Since MAC is valid both for the first session and the second
session, client2 completes both sessions. It corresponds to
the reply attack.

5.3 Spoofing Attack to E2EEP

1. An attacker can know the static information that the
sender key ID sender key ID, ECDH public key
keyuser1

public, the recipient key ID recipient key ID and
ECDH public key keyuser2

public.
2. The attacker starts a session by initiating client2, and

receives ECDH public key keyuser2
public.

3. The attacker randomly generates a fake sender key ID
sender key ID’.

4. The attacker sends client2’s ECDH public key
keyuser2

public and the recipient key ID recipient key ID
to client1.

5. Client1 returns version, content type, salt, C, MAC,
sender key ID sender key ID and recipient key ID re-
cipient key ID to the attacker.

6. The attacker sends version, content type, salt, C,
MAC, the fake sender key ID sender key ID’ and re-
cipient key ID recipient key ID to client2.

Since MAC does not depend on the sender key ID, client2
accepts MAC if the sender key ID is replaced. Hence, the
attacker can impersonate the fake sender to client2. It corre-
sponds to the spoofing attack.

1448
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.8 AUGUST 2019

6. Conclusion

We verified the security of LINE Encryption (Version 1.0),
(i.e., the TEP and the E2EEP) by ProVerif. In LINE doc-
uments [2], [4], it is claimed that the TEP satisfies forward
secrecy (i.e., even if the static private key is leaked, security
of encrypted application data before leakage is guaranteed).
However, it is not clear if both client’s and server’s data must
be protected. We clarify actual forward secrecy of the TEP
by showing an attack to break forward secrecy for client’s
data. In addition, we found a replay attack and a spoofing
attack of the E2EEP.

Since all known attacks (the reply attack and the spoof-
ing attack) and a new attack (breaking forward secrecy
for client’s data) are found, our result shows usefulness
of ProVerif to verify security of messaging protocols like
LINE. Finally, we note that the found attack for forward se-
crecy for client’s data is not serious because the LINE se-
curity team says that client’s data does not contain any sen-
sitive information in the current implementation of LINE
encryption. However, it may be potential vulnerability if an
engineer use the TEP for another implementation.

References

[1] C. Shi and K. Yoneyama, “Verification of LINE Encryption Version
1.0 Using ProVerif,” IWSEC 2018, pp.107–125, 2018.

[2] “LINE Encryption Overview (Ver.1.0).” https://scdn.line-apps.com/
stf/linecorp/en/csr/line-encryption-whitepaper-ver1.0.pdf.

[3] W. Diffie, P.C. van Oorschot, and M.J. Wiener, “Authentication and
Authenticated Key Exchanges,” Des. Codes Cryptography, vol.2,
no.2, pp.107–125, 1992.

[4] “LINE Encryption Status Report (2018.4.24).” https://linecorp.com/
en/security/encryption report.

[5] A.M. Espinoza, W.J. Tolley, J.R. Crandall, M. Crete-Nishihata, and
A. Hilts, “Alice and Bob, who the FOCI are they?: Analysis of
end-to-end encryption in the LINE messaging application,” FOCI
@ USENIX Security Symposium 2017, 2017.

[6] T. Isobe and K. Minematsu, “Breaking Message Integrity of an
End-to-End Encryption Scheme of LINE,” ESORICS (2) 2018,
pp.249–268, 2018.

[7] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “ProVerif 1.98.”
http://prosecco.gforge.inria.fr/personal/bblanche/proverif.

[8] “Public Key Cryptography for the Financial Services Industry, The
Elliptic Curve Digital Signature Algorithm (ECDSA),” American
National Standard X9.62-2005, 2005.

[9] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand
Key Derivation Function (HKDF),” RFC 5869, Internet Engineer-
ing Task Force. https://tools.ietf.org/html/rfc5869.

[10] “Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) for Confidentiality and Authentication,”
NIST Special Publication 800-38D, 2007. https://csrc.nist.gov/
publications/detail/sp/800-38d/final.

Cheng Shi received the B.E., degree from
Civil Aviation University of China, Tianjin,
China, in 2016. He is currently a graduate stu-
dent at the University of Ibaraki, Ibaraki, Japan
since 2018.

Kazuki Yoneyama received the B.E.,
M.E. and Ph.D. degrees from the University
of Electro-Communications, Tokyo, Japan, in
2004, 2006 and 2008, respectively. He was a re-
searcher of NTT Secure Platform Laboratories
from 2009 to 2015. He is presently engaged in
research on cryptography at the Ibaraki Univer-
sity, since 2015. He is a member of the Inter-
national Association for Cryptologic Research
(IACR), IPSJ and JSIAM.

http://dx.doi.org/10.1007/bf00124891
http://dx.doi.org/10.1007/978-3-319-98989-1_13

