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SUMMARY Linux container technology and clusters of the containers
are expected to make web services consisting of multiple web servers and
a load balancer portable, and thus realize easy migration of web services
across the different cloud providers and on-premise datacenters. This pre-
vents service to be locked-in a single cloud provider or a single location
and enables users to meet their business needs, e.g., preparing for a natural
disaster. However existing container management systems lack the generic
implementation to route the traffic from the internet into the web service
consisting of container clusters. For example, Kubernetes, which is one
of the most popular container management systems, is heavily dependent
on cloud load balancers. If users use unsupported cloud providers or on-
premise datacenters, it is up to users to route the traffic into their cluster
while keeping the redundancy and scalability. This means that users could
easily be locked-in the major cloud providers including GCP, AWS, and
Azure. In this paper, we propose an architecture for a group of container-
ized load balancers with ECMP redundancy. We containerize Linux ipvs
and exabgp, and then implement an experimental system using standard
Linux boxes and open source software. We also reveal that our proposed
system properly route the traffics with redundancy. Our proposed load bal-
ancers are usable even if the infrastructure does not have supported load
balancers by Kubernetes and thus free users from lock-ins.
key words: redundancy, ECMP, load balancer, container, BGP

1. Introduction

Recently, Linux containers have drawn a significant amount
of attention because they are lightweight, portable, and re-
producible. Linux containers are generally more lightweight
than virtual machine (VM), because the containers share the
kernel with the host operating system (OS), even though
they maintain separate execution environments. They are
generally portable because the process execution environ-
ments are archived into tar files, so whenever one attempts
to run a container, the exact same file systems are restored
from the archives even when totally different data centers are
used. This means that containers can provide reproducible
and portable execution environments. For the same reasons,
Linux containers are attractive for web services as well, and
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it is expected that web services consisting of container clus-
ters would be capable of being migrated easily for a vari-
ety of purposes. For example disaster recovery, cost perfor-
mance improvements, legal compliance, and shortening the
geographical distance to customers are the main concerns
for web service providers in e-commerce, gaming, Finan-
cial technology (Fintech) and Internet of Things (IoT) field.

Kubernetes [1], which is one of the most popular con-
tainer cluster management systems, enables easy deploy-
ment of container clusters. Since Kubernetes seems to hide
the differences in the base environments, users are expected
to be able to easily deploy a web service on different cloud
providers or on on-premise data centers, without adjusting
the container cluster configurations to the new environment.
This allows a user to easily migrate a web service consisting
of a container cluster even to the other side of the world as
follows: A user starts the container cluster in the new loca-
tion, route the traffic there, then stop the old container clus-
ter at his or her convenience. This is a typical web service
migration scenario.

However, this scenario only works when the user mi-
grates a container cluster among major cloud providers in-
cluding Google Cloud Platform (GCP), Amazon Web Ser-
vices (AWS), and Microsoft Azure. Kubernetes does not
provide generic ways to route the traffic from the internet
into container cluster running in the Kubernetes and is heav-
ily dependent on cloud load balancers, which is external
load balancers that are set up on the fly by cloud providers
through their application protocol interfaces (APIs). These
cloud load balancers distribute incoming traffic to every
server that hosts containers. The traffic is then distributed
again to destination containers using iptables destination
network address translation (DNAT) [13], [18] rules in a
round-robin manner. The problem happens in the envi-
ronment with a load balancer that is not supported by the
Kubernetes, e.g. in an on-premise data center with a bare
metal load balancer. In such environments, the user needs to
manually configure the static route for inbound traffic in an
ad-hoc manner. Since the Kubernetes fails to provide a uni-
form environment from a container cluster viewpoint, mi-
grating container clusters among the different environments
will always be a burden.

In order to solve this problem by eliminating the de-
pendency on cloud load balancers, we have proposed a con-
tainerized software load balancer that is run by Kubernetes
as a part of web service container clusters in the previous
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work [23]. It enables a user to deploy a web service in differ-
ent environments without modification because the web ser-
vice itself includes load balancers. We containerized Linux
kernel’s Internet Protocol Virtual Server (IPVS) [4] Layer
4 load balancer using an existing Kubernetes ingress [3]
framework, as a proof of concept. We also proved that our
approach does not significantly degrade the performance, by
comparing the performance of our proposed load balancer
with those of iptables DNAT load balancer and the Nginx
Layer 7 load balancing. The results indicated that the pro-
posed load balancer could improve the portability of con-
tainer clusters without performance degradation compared
with the existing load balancer.

However, the way to route traffic from the Internet to
load balancers while keeping redundancy has not been dis-
cussed in our previous work, even though the redundancy
is always needed to improve the availability of services in
modern systems. This is because, standard Layer 2 redun-
dancy protocols, e.g., Virtual Router Redundancy Protocol
(VRRP) [19] or OSPF [20], which uses multicast, cannot be
used in many network environments for containers. Fur-
thermore, providing uniform methods independent of the
infrastructures such as various cloud environments and the
on-premise data center is much more difficult.

In this paper, we extend the previous work and pro-
pose a software load balancer architecture with Equal Cost
Multi-Path (ECMP) [31] redundancy by running a Border
Gateway Protocol (BGP) agent container together with ipvs
container. In order to demonstrate the feasibility of the pro-
posed load balancer, we containerize an open source BGP
software, exabgp [26], and also containerize Linux kernel’s
ipvs load balancer. Then we launch them as a single pod,
which is a group of containers that share a single net names-
pace using Kubernetes. We launch multiple of such pods
and form a cluster of load balancers. We demonstrate the
functionality and evaluate preliminary performance.

The contributions of this paper are as follows: Al-
though there have been studies regarding redundant soft-
ware load balancers especially from the major cloud
providers [21], [22], their load balancers are only usable
within their respective cloud infrastructures. This paper
aims to provide a redundant software load balancer architec-
ture for those environments that do not have load balancers
supported by Kubernetes. Since proposed load balancer ar-
chitecture uses nothing but existing Open Source Software
(OSS) and standard Linux boxes, users can build a cluster
of redundant load balancers in their environment.

The rest of the paper is organized as follows. Section 2
highlights related work. Section 3 discusses problems of the
existing architecture and proposes our solutions. In Sect. 4,
we explain experimental system in detail. Then, we show
our experimental results and discuss obtained characteristics
in Sect. 5, which is followed by a summary of our work in
Sect. 6.

2. Related Work

This section highlights related work, especially that deal-
ing with container cluster migration, software load balancer
containerization, load balancer tools within the context of
the container technology and scalable load balancer in the
cloud providers.

(1) Container cluster migration:

Kubernetes developers are trying to add federation [2] ca-
pability for handling situations where multiple Kubernetes
clusters† are deployed on multiple cloud providers or on-
premise data centers, and are managed via the Kubernetes
federation API server (federation-apiserver). However, how
each Kubernetes cluster is run on different types of cloud
providers and/or on-premise data centers, especially when
the load balancers of such environments are not supported
by Kubernetes, seems beyond the scope of that project. The
main scope of this paper is to make Kubernetes usable in en-
vironments without supported load balancers by providing a
containerized software load balancer.

(2) Software load balancer containerization:

As far as load balancer containerization is concerned,
the following related work has been identified: Nginx-
ingress [5], [6] utilizes the ingress [3] capability of
Kubernetes, to implement a containerized Nginx proxy as a
load balancer. Nginx itself is famous as a high-performance
web server program that also has the functionality of a
Layer-7 load balancer. Nginx is capable of handling Trans-
port Layer Security (TLS) encryption, as well as Uniform
Resource Identifier (URI) based switching. However, the
flip side of Nginx is that it is much slower than Layer-4
switching. We compared the performance between Nginx
as a load balancer and our proposed load balancer in this
paper. Meanwhile, the kube-keepalived-vip [7] project is
trying to use Linux kernel’s ipvs [4] load balancer capabil-
ities by containerizing the keepalived [8]. The kernel ipvs
function is set up in the host OS’s net namespaces and is
shared among multiple web services, as if it is part of the
Kubernetes cluster infrastructure. Our approach differs in
that the ipvs rules are set up in container’s net namespaces
and function as a part of the web service container cluster it-
self. The load balancers are configurable one by one, and are
movable with the cluster once the migration is needed. The
kube-keepalived-vip’s approach lacks flexibility and porta-
bility whereas ours provide them. The swarm mode of the
Docker [11], [12] also uses ipvs for internal load balancing,
but it is also considered as part of Docker swarm infrastruc-
ture, and thus lacks the portability that our proposal aims to
provide.

(3) Load balancer tools in the container context:

There are several other projects where efforts have been
†The Kubernetes cluster refers to a server cluster controlled by

the Kubernetes container management system, in this paper.



976
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.5 MAY 2019

made to utilize ipvs in the context of container environ-
ment. For example, GORB [9] and clusterf [10] are daemons
that setup ipvs rules in the kernel inside the Docker con-
tainer. They utilize running container information stored in
key-value storages like Core OS etcd [14] and HashiCorp’s
Consul [15]. Although these were usable to implement a
containerized load balancer in our proposal, we did not
use them, since Kubernetes ingress framework already pro-
vided the methods to retrieve running container information
through standard API.

(4) Cloud load balancers:

As far as the cloud load balancers are concerned, two
articles have been identified. Google’s Maglev [21] is a
software load balancer used in Google Cloud Platform
(GCP). Maglev uses modern technologies including per flow
ECMP and kernel bypass for user space packet processing.
Maglev serves as the GCP’s load balancer that is used by the
Kubernetes. Maglev is not a product that users can use out-
side of GCP nor is an open source software, while the users
need open source software load balancer that is runnable
even in on-premise data centers. Microsoft’s Ananta [22] is
another software load balancer implementation using ECMP
and windows network stack. Ananta can be solely used in
Microsoft’s Azure cloud infrastructure [22]. The proposed
load balancer by the author is different in that it is aimed to
be used in every cloud provider and on-premise data centers.

3. Proposed Architecture

Here we discuss a general overview of the proposed load
balancer architectures.

3.1 Problems of Kubernetes Cluster

Problems commonly occur when the Kubernetes container
management system is used outside of recommended cloud
providers (such as GCP or AWS). Figure 1 shows an
exemplified Kubernetes cluster. A Kubernetes cluster typ-

Fig. 1 Conventional architecture of a Kubernetes cluster. Kubernetes is
dependent on external cloud load balancers. This is a problem since bare
metal load balancers in on-premise data centers are most likely not sup-
ported by Kubernetes.

ically consists of a master and nodes. They can be physical
servers or VMs. On the master, daemons that control the
Kubernetes cluster are typically deployed. These dae-
mons include, Apiserver, Scheduler, Controller-manager
and Etcd. On the nodes, kubelet and proxy daemons are
running. The kubelet daemon will run pods, depending the
PodSpec information obtained from the apiserver on the
master. A pod is a group of containers that share same net
namespace and cgroups, and is the basic execution unit in a
Kubernetes cluster.

When a service is created, the master will schedule
where to run pods and kubelets on the nodes will launch
them accordingly. At the same time, the masters will send
out requests to cloud provider API endpoints, asking them to
set up external cloud load balancers. The proxy daemon on
the nodes will also setup iptables DNAT [13] rules. The In-
ternet traffic will then be evenly distributed by the cloud load
balancer to nodes, after which it will be distributed again by
the DNAT rules on the nodes to the designated pods. The
returning packets will follow the exact same route as the in-
coming ones.

This architecture has the followings problems: 1) Hav-
ing cloud load balancers whose APIs are supported by the
Kubernetes daemons is a prerequisite. There are numer-
ous load balancers that are not supported by the Kubernetes.
These include the bare metal load balancers for on-premise
data centers. In such cases, users are required to set up the
routing manually depending on the infrastructure. However,
this approach significantly degrades the portability of con-
tainer clusters. 2) Distributing the traffic twice, first on the
external load balancers and second on each node, compli-
cates the administration of packet routing. Imagine a sit-
uation in which the DNAT table on one of the nodes mal-
functions. In such a case, only occasional timeouts would
be observed, which would make it very difficult to find out
which node was malfunctioning.

In short, 1) Kubernetes is optimized only for limited
environments where the external load balancers are sup-
ported, and 2) the routes incoming traffic follow are very
complex. To address these problems, we propose a con-
tainerized software load balancer with ECMP redundancy
for environments without a cloud load balancer.

3.2 Proposed Architecture: A Portable Load Balancer

Figure 2 shows the proposed Kubernetes cluster architec-
ture, which has the following characteristics: 1) Each load
balancer itself is run as a pod by Kubernetes. 2) Load bal-
ancer configurations are dynamically updated based on in-
formation about running pods. The proposed load balancer
can resolve the conventional architecture problems, as fol-
lows: Since the load balancer itself is containerized, the load
balancer can run in any environment including on-premise
data centers, even without external load balancers that is
supported by Kubernetes. The incoming traffic is directly
distributed to designated pods by the load balancer. It makes
the administration, e.g. finding malfunctions, easier.
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Fig. 2 Kubernetes cluster with proposed load balancer. The proposed
architecture includes software load balancers in container cluster itself
thereby removing the dependency on external cloud load balancers.

We designed the proposed load balancer using three
components, ipvs, keepalived, and a controller. These com-
ponents are placed in a Docker container image. The ipvs is
a Layer-4 load balancer capability, which is included in the
Linux kernel 2.6.0 released in 2003 or later, to distribute in-
coming Transmission Control Protocol (TCP) traffic to real
servers† [4]. For example, ipvs distributes incoming Hy-
pertext Transfer Protocol (HTTP) traffic destined for a sin-
gle destination IP address, to multiple HTTP servers (e.g.
Apache HTTP or nginx) running on multiple nodes in order
to improve the performance of web services. Keepalived is
a management program that performs health checking for
real servers and manages ipvs balancing rules in the kernel
accordingly. It is often used together with ipvs to facilitate
ease of use. The controller is a daemon that periodically
monitors the pod information on the master, and it performs
various actions when such information changes. Kubernetes
provides ingress controller framework as the Go Language
(Golang) package to implement the controllers. We have im-
plemented a controller program that feeds pod state changes
to keepalived using this framework.

3.3 Proposed Architecture: Load Balancer Redundancy

While containerizing ipvs makes it runnable in any envi-
ronment, it is essential to discuss how to route the traf-
fic to the ipvs container. We propose redundant architec-
ture using ECMP with BGP for load balancer containers us-
able especially in on-premise data centers. We first explain
overlay network briefly to understand requirements for the
architecture in (1), then present the proposed architecture
with ECMP redundancy in (2). (As a complement, we also
present an alternative architecture using VRRP for a com-
parison in Appendix A, which we think is not as good as the
architecture using ECMP.)

Although major cloud providers do not currently pro-
†The term, real servers refers to worker servers that will re-

spond to incoming traffic, in the original literature [4]. We will
also use this term in the similar way.

Fig. 3 The network architecture of an exemplified container cluster sys-
tem. A load balancer (lb) pod (the white box with “lb”) and web pods are
running on nodes (the blue boxes). The traffic from the internet are for-
warded to the lb pod by the upstream router using the node network, and
the distributed to web pods using the overlay network.

vide BGP peering services for their users, the authors expect
they start such services, once this approach is proven to be
beneficial. Therefore we focus our discussions on verifying
that our proposed load balancer architecture is feasible at
least in on-premise data centers. For the cloud environment
without BGP peering service, we can still launch our pro-
posed load balancer without ECMP redundancy by sending
out API request to automatically set up a route to the load
balancer, from inside the ipvs container.

(1) Overlay Network

In order to discuss load balancer redundancy, the knowledge
of the overlay network is essential. We briefly explain an ab-
stract concept of overlay network that is common to existing
overlay network including flannel [25] and calico [24].

Figure 3 shows schematic diagram of network archi-
tecture of a container cluster system. Suppose we have a
physical network (node network) with IP address range of
10.0.0.0/16 and an overlay network with IP address range of
172.16.0.0/16. The node network is the network for nodes
to communicate with each other. The overlay network is
the network setups for containers to communicate with each
other. An overlay network typically consists of appropriate
routing tables on nodes, and optionally of tunneling setup
using ipip or vxlan. The upstream router usually belongs
to the node network. When a container in the Fig. 3 com-
municates with any of the nodes, it can use its IP address
in 172.16.0.0/16 IP range as a source IP, since every node
has proper routing table for the overlay network. When a
container communicates with the upstream router that does
not have routing information regarding the overlay network,
the source IP address must be translated by Source Network
Address Translation (SNAT) rules on the node the container
resides.

The SNAT caused a problem when we tried to co-host
multiple load balancer pods for different services on a single
node and let them connect the upstream router directly. This
was due to the fact that the BGP agent used in our experi-
ment only used the source IP address of the connection to
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distinguish the BGP peer. The agent behaved as though dif-
ferent BGP connections from different containers belonged
to a single BGP session because the source IP addresses
were identical due to the SNAT. We propose the architec-
ture that solves this problem in (2).

(2) Redundancy with ECMP

Figure 4 shows our proposed redundancy architecture with
ECMP for software load balancer containers. The ECMP
is a functionality a router often supports, where the router
has multiple next hops with equal cost (priority) to a desti-
nation, and generally distribute the traffic depending on the
hash of the flow five tuples (source IP, destination IP, source
port, destination port, protocol). The multiple next hops and
their cost are often populated using the BGP protocol. The
notable benefit of the ECMP setup is the fact that it is scal-
able. All the load balancers that claims as the next hop is
active, i.e., all of them are utilized to increase the perfor-
mance level. Since the traffic from the internet is distributed
by the upstream router, the overall throughput is determined
by the router after all. However, in practice, there are a lot of
cases where this architecture is beneficial. For example, if a
software load balancer is capable of handling 1 Gbps equiv-
alent of traffic and the upstream router is capable of handling
10 Gbps, it still is worthwhile launching 10 of the software
load balancer containers to fill up maximum throughput of
the upstream router.

We place a node with the knowledge of the overlay net-
work as a route reflector, to deal with the complexity due to
the SNAT described in (1). A route reflector is a network
component for BGP to reduce the number of peerings by
aggregating the routing information [30]. In our proposed
architecture we use it as a delegater for load balancer con-
tainers towards the upstream router.

By using the route reflector, we can have the following
benefits. 1) Each node can accommodate multiple load bal-
ancer containers. This was not possible when we tried to di-

Fig. 4 The proposed architecture of load balancer redundancy with
ECMP. The traffic from the internet is distributed by the upstream router
to multiple of lb pods using hash-based ECMP (the solid green line) and
then distributed by the lb pods to web pods using Linux kernel’s ipvs (the
solid red line). The route to an IP address for a service (we call this address,
service IP) is advertised to the route reflector (the dotted red line) and then
advertised to the upstream router (the blue dotted line) using iBGP. For the
green lines, a service IP address is used. The red lines use the IP addresses
of the overlay network. The blue line uses the IP addresses of the node
network.

rectly connect load balancers and the router through SNAT.
2) The router does not need to allow peering connections
from random IP addresses that may be used by load balancer
containers. Now, the router only need to have the reflector
information as the BGP peer definition.

Since we use standard Linux boxes for route reflectors,
we can configure them as we like; a) We can make them be-
long to overlay network so that multiple BGP sessions from
a single node can be established. b) We can use a BGP agent
that supports dynamic neighbor (or dynamic peer), where
one only needs to define the IP range as a peer group and
does away with specifying every possible IP that load bal-
ancers may use.

The upstream router does not need to accept BGP ses-
sions from containers with random IP addresses, but only
from the router reflector with well known fixed IP address.
This may be preferable in terms of security especially when
a different organization administers the upstream router. Al-
though not shown in the Fig. 4, we could also place another
route reflector for redundancy purposes.

4. Implementation

Here we discuss the implementation of the experimental
system to prove the concept of our proposed load balancers
with ECMP redundancy in detail.

4.1 Experimental System Architecture

Figure 5 shows the schematic diagram of proof of con-
cept container cluster system with our proposed redun-
dant software load balancers. All the nodes and route
reflector are configured using Debian 9.5 with self com-
piled linux-4.16.12 kernel. We also used a conventional
Linux box with the same OS for the upstream router.
For the Linux kernel to support hash based ECMP rout-

Fig. 5 An experimental container cluster with proposed redundant soft-
ware balancers. The master and nodes are configured as Kubernetes’s mas-
ter and nodes on top of conventional Linux boxes, respectively. The route
reflector and the upstream router are also conventional Linux boxes. For
the green lines, a service IP address is used. The red lines use the IP ad-
dresses of the overlay network. The blue line uses the IP addresses of the
node network.
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ing table we needed to use kernel version 4.12 or later.
We also needed to enable kernel configuration option
CONFIG IP ROUTE MULTIPATH [28] when compiling,
and set the kernel parameter fib multipath hash policy = 1
at run time. In the actual production environment, a pro-
prietary hardware with the highest throughput is often used
for the upstream router, but we could still test some of the
required advanced functions by using a Linux box.

Each load balancer pod consists of an exabgp con-
tainer and an ipvs container. The ipvs container is respon-
sible for distributing the traffic destined to an IP address
that a service uses (service IPs) toward web (nginx) server
pods. The IP address for nginx pods and load balancer pods
are dynamically assigned upon launch of themselves from
172.16.0.0/16 address range. The ipvs container monitors
the availability of web server pods and manages the load
balancing rule appropriately. The exabgp container is re-
sponsible for advertising the route toward the service IP to
the route reflector. The route reflector aggregates the routing
information advertised by load balancer pods and advertise
them to the upstream router.

Exabgp is used in the load balancer pods because of
the simplicity in setting as static route advertiser. On the
other hand, gobgp is used in the router and the route reflec-
tor, because exabgp did not seem to support add-path [29]
needed for multi-path advertisement and Forwarding Infor-
mation Base (FIB) manipulation [26]. The gobgp supports
the add-path, and the FIB manipulation through zebra [27].

The route reflector is configured using a Linux box
with gobgp and overlay network setup. The requirements
for the BGP agent on the route reflector are dynamic-
neighbours and add-paths features. The configurations for
the route reflector is summarized in Appendix C. The con-
figurations for the router is also summarized in Appendix B.

4.2 Ipvs Container

The proposed load balancer needs to dynamically reconfig-
ure the ipvs balancing rules whenever pods are created or
deleted. Figure 6 is a schematic diagram of ipvs container
to show the dynamic reconfiguration of the ipvs rules. Two
daemon programs, controller and keepalived, running in the
container are illustrated. The keepalived manages Linux
kernel’s ipvs rules depending on the ipvs.conf configuration
file. It can also periodically health check the liveness of a
real server, which is represented as a combination of the IP
addresses and port numbers of the target pods. If the health
check to a real server fails, keepalived will remove that real
server from the ipvs rules immediately. The interval of the
health check is typically 1 to several seconds and is arbitrar-
ily determined by users.

Every second, the controller monitors information con-
cerning the running pods of a service in the Kubernetes clus-
ter by consulting the apiserver running in the master through
its API. Whenever pods are created or deleted, the controller
notices the change and automatically regenerate an appro-
priate ipvs.conf and issue SIGHUP to keepalived within a

Fig. 6 Implementation of ipvs container. The controller checks the pod
status every second. Upon a change of the status, the controller updates the
ipvs.conf and sends SIGHUP to keepalived. The keepalived updates the
load balance table in the kernel correctly.

second. Then, keepalived will reload the ipvs.conf, and
modify the kernel’s ipvs rules correctly depending on the
result of the health check.

When a pod is terminated, existing connections are re-
set by the node kernel. The SYN packets sent to a pod af-
ter termination, but before the ipvs rule update, will be an-
swered with ICMP unreachable by the node. In these cases,
the client sees connection errors. In order to avoid the con-
nection errors to be seen by a human, HTTP client programs
are required to re-initiate the connection. However, since
the load balancer rule update is within a second, these errors
can be regarded as the tolerable rare exceptions even without
such re-initiations.

The actual controller [16] is implemented using the
Kubernetes ingress controller [3] framework. By importing
existing Golang package, “k8s.io/ingress/core/pkg/ingress”,
we could simplify the implementation, e.g. 120 lines of
code. Keepalived and the controller are placed in the docker
image of ipvs container. The ipvs is the kernel function and
namespace separation for container has already been sup-
ported in the recent Linux kernel.

Configurations for capabilities were needed when de-
ploying the ipvs container: adding the CAP SYS MODULE
capability to the container to allow the kernel to load
required kernel modules inside a container, and adding
CAP NET ADMIN capability to the container to allow
keepalived to manipulate the kernel’s ipvs rules. For the
former case, we also needed to mount the “/lib/module” of
the node’s file system on the container’s file system.

4.3 BGP Software Container

In order to implement the ECMP redundancy, we also
containerized exabgp using Docker. Figure 7 (a) shows
a schematic diagram of the network path realized by the
exabgp container. We used exabgp as the BGP advertiser as
mentioned earlier. The traffic from the Internet is forwarded
by ECMP routing table on the router to the node that hosts
a load balancer pod, then routed to that pod by the set of
routing rules in Fig. 7 (b). And then the ipvs forwards them
to IP addresses of nginx pods. The IP address of any pod
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Fig. 7 (a) Network path by the exabgp container. (b) Required settings
in the exabgp container. (a): The packets from Internet to a service IP in
10.1.1.0/24 is routed to the load balancer pod (green arrows) by the set of
routing rules shown in (b). And then the ipvs forwards them to IP addresses
of nginx pods (red arrows). The IP address of any pod is dynamically
assigned from 172.16.0.0/16 when the pod is started. (b): (1) The node IP
address, 10.0.0.106 is used as next-hop for the IP range 10.1.1.0/24 used by
a service in BGP announcement. (2) In order to route the packets toward
the IP used by the service to a container, a routing rule to the dev docker0 is
created in the node net namespace. (3) A routing rule to accept the packets
as local is also required.

is dynamically assigned from 172.16.0.0/16 when the pod is
started.

Figure 7 (b) summarises some key settings required for
the exabgp container to route the traffic to the ipvs container.
In BGP announcements the node IP address, 10.0.0.106 is
used as the next-hop for the IP range 10.1.1.0/24. Then on
the node, in order to route the packets toward 10.1.1.0/24 to
the ipvs container, a routing rule to the dev docker0 is cre-
ated in the node net namespace. A routing rule to accept the
packets toward those IPs as local is also required in the con-
tainer net namespace. A configuration for exabgp is shown
in Appendix D.

5. Evaluation

In order to verify the feasibility of the proposed load bal-
ancer architecture, we evaluated it with the following cri-
teria; (1) Basic functionality and Portability: We evalu-
ated the load balancer functionality using physical servers
in on-premise data center and compared performance level
with existing iptables DNAT and nginx as a load balancer.
We also carried out the same performance measurement in
GCP and AWS to show the containerized ipvs load bal-
ancer is runnable even in the cloud environment. (2) Re-

Fig. 8 (a) Benchmark setup. (b) Benchmark command line and output
example.

dundancy and Scalability: We evaluated ECMP functional-
ity by watching routing table updates on the router when the
new load balancer is added or removed. We also evaluated
the performance level by changing the number of load bal-
ancers. The following subsections explain the evaluation in
detail.

5.1 Basic Functionality and Portability

Throughput measurements were carried out in order to ex-
amine the basic functionality of the containerized ipvs load
balancer. Figure 8 shows the schematic diagram of the
throughput measurement and the benchmark command line.
We measured the performance of the load balancers us-
ing a benchmark program called wrk [17]. Multiple nginx
pods are deployed on multiple nodes as web servers in the
Kubernetes cluster. In each nginx pod, single nginx web
server that returns the IP address of the pod is running. We
then set up the ipvs, iptables DNAT, and nginx load bal-
ancers on one of the nodes, and performed the through-
put measurement changing the number of the nginx pods.
The throughput is measured by sending out HTTP requests
from the wrk towards a load balancer and by counting the
number of responses the benchmark host received as shown
in Fig. 8 (a).

Figure 8 (b) shows an example of the command-line for
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Fig. 9 (a) Hardware and Virtual Machine specifications. (b) Software
specifications.

wrk and the corresponding output. The command-line in
Fig. 8 (b) will generate 40 wrk program threads and allow
those threads to send out a total of 800 concurrent HTTP
requests over the period of 30 seconds. The output exam-
ple shows information including per-thread statistics, error
counts, throughput in [Request/sec] and data rate in [Trans-
fer/sec]

Figure 9 (a) shows hardware and virtual machine spec-
ifications for experiments in on-premise data center and
cloud environments. We used a total of eight servers; six
servers for Nodes, one for the load balancer and one for the
benchmark client, with all having the same hardware spec-
ifications. The software versions used for Kubernetes, web
server and load balancer pods used in our experiments are
also summarized in Fig. 9 (b).

Figure 10 (a) shows the throughput of the proposed
ipvs container load balancer. The performance of the nginx
and the iptables DNAT as the load balancers are also pre-
sented for comparison. As we increased the number of the
nginx pods (web servers) from 1 to around 14, the through-
put increased almost linearly and after which it saturated.
The increase indicates that the load balancer functions prop-
erly because it increased throughput by distributing HTTP
requests to multiple of the web servers. The saturated per-

Fig. 10 Throughput measurement results of the proposed load balancer
in on-premise data center (a), GCP (b), and AWS (c).

formance level indicates the maximum performance of the
load balancer, which could be determined either by network
bandwidth or CPU performance level of the load balancer
or the benchmark client. In this specific experiment, the
performance level was limited by the 1 Gbps bandwidth of
experimental network [23], which is revealed by packet level
analysis using tcpdump.† While nginx did not show any

†On average the data size of each request and the correspond-
ing response was in total about 636 [byte/req] including TCP/IP
headers, Ethernet header, and inter frame gaps. Multiplying that
with 190K [req/sec] and 8 [bit/byte] will result in 966.72 Mbps.
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benefit as the load balancer, the performance of the ipvs load
balancer container showed equivalent performance level as
the un-containerized iptables DNAT. This means that our
proposed ipvs container load balancer is at least as good as
the un-containerized iptables’ load balancing in the 1 Gbps
network.

Figure 10 (b) and Fig. 10 (c) show the load balancer
performance levels that are measured in GCP and AWS,
respectively. In the case of GCP, custom instance with
32Gbyte memory and with 8, 16, and 32 CPU are used. And
in the case of AWS instance type of c4.2xlarge, c4.4xlarge,
and c4.8xlarge are used. These are aimed to show that our
proposed load balancer can be run in cloud environments
and also functions properly.

Both results show similar characteristics as the exper-
iment in an on-premise data center in Fig. 10 (a), where
throughput increased linearly to a certain saturation level
that is determined by either network speed or machine spec-
ifications. Since in the cases of cloud environments we can
easily change the machine specifications, especially CPU
counts, we measured throughput with several conditions of
them. From the first look of the results, since changing
CPU counts changed the load balancer’s throughput satu-
ration levels, we thought VM’s computation power limited
the performance levels. However, since there are cases in the
cloud environment, where changing the VM types or CPU
counts also changes the network bandwidth limit, a detailed
analysis is further required in the future to clarify which fac-
tor limits the throughput in the cases of these cloud environ-
ments. Still, we can say that the proposed ipvs load bal-
ancers can be run in GCP and AWS, and function properly.

5.2 Redundancy and Scalability

The ECMP technique is expected to make the load balancers
redundant and scalable since all the load balancer contain-
ers act as active. We examined the behavior of the ECMP
routing table updates, by changing the number of the load
balancers. After that, in order to explore the scalability, we
also measured the throughput from a benchmark client with
ECMP routes when multiple of the ipvs container load bal-
ancers are deployed.

Figure 11 shows the schematic diagram of the ex-
perimental setup and also summarizes hardware and soft-
ware specifications. Notable differences from the previous
throughput experiment in Fig. 8 are as follows; 1) Each load
balancer pods now consists of both an ipvs container and
an exabgp container. 2) The routing table of the benchmark
client is updated by BGP protocol through a route reflector.
3) The NIC of the benchmark client has been changed to
10 Gbps card since now we have multiple of ipvs container
load balancers that are capable of filling up 1 Gbps band-
width. 4) Some of the software have been updated to the
most recent versions at the time of the experiment.

First, we examined ECMP functionality by watching
the routing table on the benchmark client. Figure 12 (a)
shows the routing table entry on the router when a sin-

Fig. 11 (a) Benchmark setup. (b) Hardware and software specifications.

gle load balancer pod exists. From this entry, we can tell
that packets toward 10.1.1.0/24 are forwarded to 10.0.0.106
where the load balancer pod is running. It also shows that
this routing rule is updated by zebra.

When the number of the load balancer pods is in-
creased to three, we can see the routing table entry in
Fig. 12 (b). We have three next hops towards 10.1.1.0/24
each of which being the node where the load balancer pods
are running. The weights of the three next-hops are all 1.
The update of the routing entry was almost instant as we
increased the number of the load balancers.

Figure 12 (c) shows the case where we additionally
started new service with two load balancer pods with service
addresses in 10.1.2.0/24 range. We could accommodate two
different services with different service IPs, one with three
load balancers and the other with two load balancers on a
group of nodes (10.0.0.105, 10.0.0.106, 10.0.0.107). The
update of the routing entry was almost instant as we started
the load balancers for the second service.

As far as the route withdrawal is concerned, if an
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Fig. 12 ECMP routing tables.

exabgp is killed by SIGKILL or SIGTERM the kernel of
the node close the BGP connection by sending out a packet
with FIN flag to the peer gobgpd on the route reflector, and
thus the route is withdrawn immediately. The gobgp on the
route reflector also periodically check the BGP connection,
and if the peer exabgp container is unresponsive for more
than the specified duration, “Hold-time” setting in gobgpd,
it will also terminate the connection and withdraw the route.
The packets arriving within the duration will be dropped.
However, we can set up the “Hold-time” short enough so
that the retransmitted TCP packets from the client will be
forwarded correctly to functioning load balancers.

We also carried out throughput measurement to show
that our proposed architecture increases the throughput as
we increase the number of the load balancers. Figure 13 (a)
shows the results of the measurements. There are four solid
lines in the figure, each corresponding the throughput result
when there are one through four of the proposed load bal-
ancers. The saturated levels, i.e. performance levels depend
on the number of the ipvs load balancer pods (lb x 1 being
the case with one ipvs pods, and lb x2 being two of them
and as such). The performance level increases linearly as
we increases the number of the load balancers up to four of
the ipvs load balancers, but did not scale further. This was
because we used up CPU power of the benchmark client
since the CPU usage was 100% when there were more than
four load balancers. We expect that replacing the benchmark
client with more powerful machines, or changing the exper-
imental setup so that multiple benchmark clients can access
the load balancers through an ECMP router, will improve

Fig. 13 Scalability of portable load balancer with ECMP redundancy.

the performance level further.
Figure 13 (b) shows the throughput measurement re-

sults when we periodically changed the number of the load
balancers. The red line in the figure shows the number of
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Fig. 14 CPU usage of the ipvs and iptables DNAT.

the ipvs load balancer pods, which we changed randomly
every 60 seconds. The blue line corresponds to the result-
ing throughput. As we can see from the figure, the blue
line nicely follows the shape of the red line. This indicates
that new load balancers are immediately utilized after they
are created, and after removing some load balancers, the
traffic to them is immediately directed to the existing load
balancers.

Figure 13 (c) shows histogram of the ECMP update de-
lay, where we measured the delays until the number of run-
ning ipvs pods is reflected in the routing table on the bench-
mark client, as we change the number of the ipvs pods ran-
domly every 60 seconds for 20 hours. As we can see from
the figure, most of the delays are within 6 seconds, and the
largest delay during the 20 hours experiment was 10 sec-
onds. We can conclude that ECMP routing update in our
proposed architecture is quick enough.

5.3 Resource Consumption

Figure 14 compares the CPU usage for proposed load bal-
ancer (ipvs in a container) and iptables DNAT at the time of
the throughput measurement in the on-premise data center.
Since the CPU usage was higher for the ipvs in a container,
the proposed load balancer may be less efficient compared
with the iptables DNAT. However since single hardware can
accommodate 1 Gbps traffic with CPU usage of about 60%,
the authors regard this as a tolerable overhead. The authors
plan to improve the efficiency of the proposed load balancer
by developing a software load balancer using eXpress data
path (XDP) technology [32] in the future work and thereby
improving the performance levels of the portable load
balancer.

6. Conclusions

In this paper, we proposed a portable load balancer with
ECMP redundancy for the Kubernetes cluster systems that
is aimed at facilitating migration of container clusters for
web services. We implemented an experimental web clus-

ter system with multiple of load balancers and web servers
using Kubernetes and OSSs on top of standard Linux boxes
to prove the functionality of the proposed architecture. We
conducted performance measurements and found that the
ipvs based load balancer in container functioned properly
both in on-premise data center and cloud environments
while it showed the comparable performance levels as the
existing iptables DNAT based load balancer. We also car-
ried out experiments to verify the feasibility of ECMP re-
dundancy in on-premise data center, and revealed that it
functions properly with linear scalability up to four load
balancers.

The current limitations of this study are; 1) Currently,
BGP peering is not supported in GCP and AWS, and thus
redundancy is achieved only by route update through cloud
API upon the start of a load balancer. The authors expect
the cloud providers to support it in the future. 2) Most of the
experiments are in 1Gbps network environments. For fu-
ture work, we plan to carry out throughput measurement in
10Gbps network environments and also improve the perfor-
mance of a single software load balancer on standard Linux
box using XDP technology.
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Appendix A: Redundancy with VRRP

The authors have considered another redundant architecture
using the VRRP protocol. However, it turned out to be less
preferable than the proposed ECMP redundancy with fol-
lowing reasons; (a) Redundancy is in an active-backup man-
ner. (b) The VRRP protocols relied on multicast, which is
often not supported in the overlay network environments.
Here we explain our considerations.

Figure A· 1 shows the redundancy setup using the
VRRP protocol. In the case of VRRP, the load balancer
container needs to run in the node net namespace for the
following two reasons; 1) When fail over occurs, the new
master sends gratuitous Address Resolution Packets (ARP)
packets to update the ARP cache of the upstream router and
Forwarding Data Base (FDB) of layer 2 swicthes during the
transition. Such gratuitous ARP packets should consist of
the virtual IP address shared by the load balancers and the
MAC address of the node where the new master load bal-
ancer is running. Programs that send out gratuitous ARP

Fig. A· 1 An alternative redundant load balancer architecture using
VRRP. The traffic from the internet is forwarded by the upstream router
to a active lb node (the solid green line) and then distributed by the lb pods
to web pods using Linux kernel’s ipvs (the solid red line). The active lb
pod is selected using VRRP protocol (the blue dotted line). For the green
lines global IP address is used. The red lines use IP addresses of overlay
network. The blue line uses the IP address of node network.

with node MAC address should be in the node net names-
pace. 2) Furthermore, the active load balancer sends out pe-
riodic advertisement using UDP multicast packet to inform
existence of itself. The load balancer in backup state stays
calm unless the VRRP advertisement stops for a specified
duration of time. The UDP multicast is often unsupported in
overlay network used by container cluster environment, and
hence the load balancer needs to be able to use the node net
namespace. Running containers in the node net namespace
loses the whole point of containerization, i.e., they share the
node network without separation. This requires the users’
additional efforts to avoid conflict in VRRP configuration
for multiple services.

VRRP programs also support unicast advertisement by
specifying IP addresses of peer load balancers before it
starts. However, container cluster management system ran-
domly assign IP addresses of containers when it launches
them, and it is impossible to know peer IPs in advance.
Therefore the unicast mode is not feasible in container clus-
ter environment.

The other drawback compared with the ECMP case is
that the redundancy of VRRP is provided in Active-Backup
manner. This means that a single software load balancer
limits the overall performance of the entire container cluster.
Therefore we believe the ECMP redundancy is better than
VRRP in our use cases.

Appendix B: Gobgpd and zebra configurations on the
router

gobgp.conf:

global:

config:

as: 65021

router-id: 10.0.0.110

local-address-list:

- 0.0.0.0

use-multiple-paths:

config:

http://dx.doi.org/10.1145/2534169.2486026
http://dx.doi.org/10.1145/3149457.3149473
http://dx.doi.org/10.1145/3281411.3281443
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enabled: true

neighbors:

- config:

neighbor-address: 10.0.0.109

peer-as: 65021

add-paths:

config:

receive: true

zebra:

config:

enabled: true

url: unix:/run/quagga/zserv.api

version: 3

redistribute-route-type-list:

- static

The “use-multiple-paths” should be enabled for the
gobgpd to redistribute BGP multipath routes to Zebra.

zebra.conf:

hostname Router

log file /var/log/zebra.log

Appendix C: Gobgpd configuration on the route re-
flector

gobgp.conf:

global:

config:

as: 65021

router-id: 10.0.0.109

local-address-list:

- 0.0.0.0 # ipv4 only

use-multiple-paths:

config:

enabled: true

peer-groups:

- config:

peer-group-name: k8s

peer-as: 65021

afi-safis:

- config:

afi-safi-name: ipv4-unicast

dynamic-neighbors:

- config:

prefix: 172.16.0.0/16

peer-group: k8s

neighbors:

- config:

neighbor-address: 10.0.0.110

peer-as: 65021

route-reflector:

config:

route-reflector-client: true

route-reflector-cluster-id: 10.0.0.109

add-paths:

config:

send-max: 255

receive: true

The “dynamic-neighbors” section and the “peer-
groups” section set up dynamic neighbor settings to avoid
listing of every possible IP. The “add-paths” setting in the
“neighbors” section enables multi path advertisement for a
single network prefix.

Appendix D: Exabgp configuration on the load bal-
ancer container

exabgp.conf:

neighbor 10.0.0.109 {

description "peer1";

router-id 172.16.20.2;

local-address 172.16.20.2;

local-as 65021;

peer-as 65021;

hold-time 1800;

static {

route 10.1.1.0/24 next-hop 10.0.0.106;

}

}

The IP address of the load balancer pod (i.e. con-
tainer), “172.16.20.2”, is used for “router-id” and “local-
address”. This address is dynamically assigned when the
pod is started. The IP address of the node, “10.0.0.106”, is
used for “next-hop”. The node address is found out when
the pod starts.
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