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SUMMARY We propose a parallel precomputation method for real-
time model predictive control. The key idea is to use predicted input values
produced by model predictive control to solve an optimal control prob-
lem in advance. It is well known that control systems are not suitable for
multi- or many-core processors because feedback-loop control systems are
inherently based on sequential operations. However, since the proposed
method does not rely on conventional thread-/data-level parallelism, it can
be easily applied to such control systems without changing the algorithm
in applications. A practical evaluation using three real-world model predic-
tive control system simulation programs demonstrates drastic performance
improvement without degrading control quality offered by the proposed
method.
key words: parallel precomputation, input value prediction, approximate
computing, model predictive control, real-time system

1. Introduction

Control systems are ubiquitous in real-world applications.
This is because a wide range of products, such as electronic
devices in houses, automobiles, aircraft, and manufacturing
equipment for petrochemical plants make extensively use
automatic control technologies. For instance, modern auto-
mobiles contain a number of automatic controllers that are
used for fuel saving, emissions reduction, and driver assis-
tance such as in anti-lock brake systems. Clearly, improve-
ments in control systems can play an important role in facil-
itating people in performing everyday tasks.

Figure 1 shows a feedback control system consisting of
a controller, plant (controlled object), sensor, and actuator.
The input values of the controller (denoted as reference r(t))
represent an objective state of the plant and the sensed data
(denoted as system state x(t)) indicate the current state of
the plant. The output of the controller (denoted as system
input u(t)) is fed to the actuator for controlling the plant.
One of the main objectives of this control is to minimize the
difference between r(t) and x(t) in real time.

MPC (model predictive control) is a control method
and has attracted considerable attention in recent years in the
area of control technology, since it can be effectively applied
to complex nonlinear systems. The model used in MPC is
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Fig. 1 Block diagram of feedback control system.

generally intended to represent the behavior of a complex
dynamical system (or plant) by predicting the changes in
x(t). Based on this predicted behavior, MPC finds the op-
timum u(t). This approach provides the ability to account
for system dynamics by predicting system future behavior.
Although MPC can potentially be used in a wide range of
applications, the additional complexity of its algorithm hin-
ders its application to satisfy the real time constraint. To
predict the behavior of a system, it is required to solve op-
timization problems for each sampling time. The compu-
tational complexity of the optimization problem in MPC
with N variables is O(N3) [1]. This is the main reason MPC
has been mainly applied only in the processing industry at
facilities such as chemical plants and oil refineries, which
require second-order real-time operations. Since advanced
nonlinear complex control systems, e.g., automatic driving
systems and submarine cable laying systems, tend to re-
quire millisecond- and nanosecond-order sampling time for
critical real-time control, the implementation of an ultra-
high-performance MPC execution platform is a consider-
able challenge. Another advantage of high speed MPC ex-
ecution is to provide the capability of applying a fine-grain
complex optimization strategy to improve control quality in
a given sampling time.

On the other hand, after the microprocessor had
reached the limit of the operating frequency improvement in
early 2000, multi-core processors have become mainstream
and shifting to the many-core era [2], [3]. In on-chip parallel
processing, the degree of parallelism significantly impacts
performance improvement in general. In the control sys-
tem, however, the sequential process is dominant for the en-
tire process because there is dependency for the input value
to start the process given in time series. Therefore, extract-
ing traditional thread- and data-level parallelism from MPC
applications is inherently difficult.

To address this issue, we propose a parallel precompu-
tation method of MPC applications on many-core proces-
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sors. We attempt to effectively use computational resources
(cores) by taking into account the theory behind MPC. The
contributions are as follows.

• We analyze MPC source codes developed for real con-
trol systems and observe unavoidable sequential opera-
tions that come from the MPC algorithm nature occupy
about 70% of total execution, i.e., the maximum speed-
up we can expect is only 1.4X even if an infinite number
of cores is assumed. This result clearly shows that cur-
rent many-core parallel execution platform cannot satisfy
real-time constraint for future critical MPC applications.

• We then investigate required computation time to improve
control quality at a given sampling time. An aggressive
parameter tuning (increasing the number of partitions to
solve MPC optimization problem explained in Sect. 2.5)
for temporally fine-grained strategy is assumed. It is ob-
served that such parameter tuning significantly improves
control efficiency by achieving MPC execution speed-up.

• To bridge the performance gap, we propose a parallel pre-
computation method for MPC applications. The key idea
behind this method is to predict x(t), which will be fed to
the controller as input in the future. In addition, predic-
tion accuracy of input value can be improved by introduc-
ing a dedicated thread (IPNP) for value prediction. Such
input value prediction makes it possible to apply aggres-
sively parallel precomputation to exploit the many-core
potential.

• Execution performance and control quality of proposed
method are evaluated by using three actual MPC con-
trol applications. The results show that our approach can
achieve almost linear scalability to the number of cores
used. It is also demonstrated that such performance gain
can be translated to control quality (defined in Sect. 2.3)
improvement in the range from 1.2X to 6.2X.

To our knowledge, this is the first attempt at accel-
erating the execution of MPC by efficiently using many-
core processors. The organization of this paper is as fol-
lows. In Sect. 2, the theory and implementation of MPC
are explained to clarify the basic feature which is a trade-
off between control quality and computation time, and the
bottlenecks of sequential execution. Section 3 presents the
proposed parallel precomputation method, and Sect. 4 dis-
cusses the potential for performance improvement. Sec-
tion 5 presents related work, and finally, Sect. 6 concludes
the paper.

2. MPC (Model Predictive Control)

2.1 Theory

MPC is a control method that determines system inputs
based on the prediction of the future behavior of a plant [4].
Figure 2 illustrates the theory behind MPC. The x(tn),
which represents the current state of the plant, is fed to the

Fig. 2 Overview of model predictive control.

controller at every sampling time denoted as STn. The
controller is required to calculate the associated u(tn) be-
fore the next x(tn+1) arrives; otherwise, it fails the require-
ment of real-time operation. In other words, MPC has
to determine u(tn) by solving the optimal control problem
G(x(tn)) for each sampling period. The most important fea-
ture of MPC is that an optimal control problem is solved
by considering the plant’s future behavior throughout a time
range called the prediction horizon T. For instance, at time
t1 in Fig. 2, the controller receives the system state x(t1),
and G(x(t1)) process starts calculating its associated opti-
mal system input u(t1). In this process, the controller at-
tempts to find the optimal set of system inputs denoted as
u∗(t1), u∗(t2), ..u∗(t1 +T − 1), which make the plant transit to
the target state in minimum time, by predicting the value of
the system state denoted as x∗(t2), x∗(t3), ..x∗(t1 + T ) for pre-
diction horizon [t1, t1+T ]. Finally, u∗(t1) is used as u(t1). At
the next time step t2, u(t2) is calculated in the same manner
for [t2, t2 + T ].

MPC can precisely control the behavior of nonlinear
systems by accurately formulating a dynamic model of the
plant. We consider a general nonlinear system to be con-
trolled and define it as:

ẋ(t) = f (x(t), u(t), t) (1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the vector
of system inputs. Using Eq. (1), the optimal control problem
G(x(t)) is formulated as follows [4]:

Minimize

φ(x∗(t + T ), t + T ) +
∫ t+T

t
L(x∗(τ), u∗(τ), τ)dτ

subject to

ẋ∗(τ) = f (x∗(τ), u∗(τ), τ)

x∗(t) = x(t)
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Fig. 3 Benchmark applications which simulate MPC control systems.

xmin ≤ x∗(τ) ≤ xmax

umin ≤ u∗(τ) ≤ umax

where τ (t ≤ τ ≤ t + T ) is a variable and x∗(τ) and u∗(τ) are
functions of that variable, L() is the stage cost during T , and
φ() is the termination cost. Designers carefully formulate
L() and φ() based on the physical behavior of the system.
When the system state value at a certain time t is given, the
objective function is minimized in the range of evaluation
interval, [t, t + T ]. The stage cost expresses penalties for the
undesirable behavior of a system. Ideally, MPC should have
infinite T (T = ∞) for the proof of stability in the whole
control system. However, it is impossible to find a general
solution for the optimal control problem for T = ∞. Instead,
MPC takes φ() that attempts to approximate the cost of the
interval [t + T,∞) into account.

MPC cannot mathematically prove whether a nonlinear
system with constraints will stabilize or not [5]. In MPC, the
proof of stability is equal to find a general solution for the
optimal control problem in the case of infinite T . Although
it is known that stability of unconstrained nonlinear systems
can be guaranteed [6], almost existing real-world systems
are suffered from some constraints. Mathematical prove of
stabilization of MPC is still an open problem as other opti-
mal control methodologies in the field of control theory, so
that researchers attempt to apply MPC and tune its imple-
mentation on a one by one [7], [8].

2.2 Benchmark Applications

We have developed three real-world MPC simulation C pro-
grams which simulate nonlinear spring, arm-type pendu-
lum, and tandem cold mill control systems in Fig. 3 (a), (b)
and (c). We have chosen them to include various types
of realistic MPC applications that require millisecond-order
critical responses. A fast solution method of MPC, which
is called C/GMRES (Continuation and Generalized Mini-
mum RESidual method [9]), is adopted to three control sys-
tems. All C programs are automatically generated from
Mathematica programs in which all control systems are de-
scribed based on each state equation considering physical
behavior by using AutoGen [10]. We carefully have formu-
lated every state equation with experts of modern control

Table 1 Parameters list for benchmark applications

Benchmark
Nonlinear Arm-type Tandem

spring pendulum cold mill

Prediction horizon 1000[ms] 500[ms] 100[ms]
Sampling time 10[ms] 1[ms] 1[ms]
Simulation time 20[s] 10[s] 35[s]

Initial state x = 2
θ1 = π h1 = 3.4[mm]
θ2 = π σ f0 = 20[MPa]

Target state x = 0
θ1 = 0 h1 = 3.4[mm]
θ2 = 0 σ f0 = 20[MPa]

Control performance 1
settling time

1
settling time

1
variance

theory. As for details, refer to the appendix† to be men-
tioned later in Appendix A.

Table 1 shows key parameters list for these benchmark
applications. The nonlinear spring control system is in-
tended to stop at a position of equilibrium by applying an
external force to a free vibration spring with a weight. The
initial static state is a positive position (x = 2), and the tar-
get state is to stop on the balanced position (x = 0). The
arm-type pendulum control system tries to make two arms
stand upright. The inner arm is only controlled by a DC
motor. In the initial state, both arms are hanging down
(θ1 = θ2 = π), and the MPC tries to make them the target
state (θ1 = θ2 = 0). The tandem cold mill is a metal form-
ing process in which metal is passed through several pairs
of rolls to reduce thickness and to make the thickness uni-
form at low temperature. This simulation program focuses
on one stand, though a tandem cold mill control system gen-
erally has several stands. The purpose of this program is to
keep the thickness and tension constant. Hence, the initial
state is same as the target state (h1 = 3.4, σ f0 = 20).

2.3 Performances Definition

In a control system, the final goal is to stabilize the desired
state. This means control performance is one of the most
important factor as an evaluation index. The other important
factor is computation time, which is influenced by the con-
trol method, its algorithm, and hardware specification of the

†Since they are not open source benchmark applications,
we disclose the state equations to ensure reproducibility of the
experiment.
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execution platform. We define control performance and
computation performance as evaluation indexes.

There are two control performances we use de-
pending on benchmark applications. One is defined as
1/settling time, where the settling time means the time re-
quired for the response curve to reach and stay within a
range of ±5%. Figure 4 (a) shows that system state converg-
ing near the reference value at the settling time and never
over ±5% after that. In nonlinear spring and arm-type pen-
dulum systems, since initial state and target state are differ-
ent as shown in the Table 1, 1/settling time is used for con-
trol performance. The other is defined as 1/variance, where
the variance is defined as:

variance =

∑N
i=1(xref − xi)2

N

where xref is the reference value, xi is the system state at
sampling step i, N is the total number of sampling-time win-
dows, and variance indicates the mean square difference be-
tween reference and system state in Fig. 4 (b). In tandem
cold mill system, the purpose of control is to keep initial
state. Hence, 1/variance is used for control performance.
Computation performance is defined as 1/computation time
in all applications, where the computation time means the
time from getting system state x(t) to finishing a calculation
of optimal control problem and then outputting associated
system input u(t).

2.4 Limitation of Traditional Parallel Execution

We now discuss the difficulty in parallelizing numerical cal-
culations in MPC by using traditional data- and thread-level
parallelism. In the optimal control problem, the predicted
system input u∗(t) is discretized by a suitable partitioning

Fig. 4 Control performance

Fig. 5 Trade-off control performance and computation performance.

(hereinafter called partition number) as follows:

t = τ0 < τ1 < . . . < τn = t + T

The T is divided into n subintervals [τi, τi+1], 0 ≤ i ≤ n − 1.
On each subinterval, it is required to compute the trajecto-
ries xi(t) by solving the following ordinary differential equa-
tion (ODE):

ẋi(t) = f (xi(t), ui(t), t)

xi+1(t) = xi(t) + ẋi(t)(τi+1 − τi)

Note that every ODE calculates xi+1(t) by using xi(t) (and
ẋi(t)) as the initial values. Therefore, each subinterval has
a dependency relationship with the previous one. Since the
numerical calculation in MPC is in the form of sequential, it
is fundamentally hard to parallelized. With the performance
evaluation of benchmark applications given in Sect. 2.2, the
computation time of this sequential parts accounts for about
70% of the entire computation time on average. This means
the maximum speedup we can expect is only 1.4X (≈ 1/0.7)
even if an infinite number of cores is assumed. For in-
stance, 4X computation performance improvement is sim-
ply required on a real-time control system that has a four-
times higher sampling rate of system state x(t), and the po-
tential of traditional parallel executuions does not reach to
the requirement. This is the main reason many-core proces-
sors cannot be easily applied to such control systems.

2.5 Impact of Improving Computation Performance

High-speed MPC executions contribute to improving the
control performance even at a given sampling rate that can
be satisfied real-timeliness in an MPC implementation. En-
larging the partition number that discretizes the prediction
horizon T makes it possible to apply a temporally fine-
grained optimization for system control. Figures 5 (a), (b),
and (c) show control performance sensitivity to the parti-
tion number for three benchmark applications described in
Sect. 2.2. The left y-axis in each graph shows settling time
or variance (depends on the application), i.e., the lower val-
ues, the higher control performance. It is observed that
the control performance can be improved by means of in-
creasing the partition number for all cases. In the nonlinear
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spring and tandem cold mill control, the settling time and
variance are continuously reduced, roughly 20% reduction
by increasing the partition number from 10 to 170 in the
nonlinear spring and from 25 to 400 in the tandem cold mill
control. In the arm-type pendulum control, the settling time
drastically decreases when the partition number reaches to
75 and 275, about 20% and 35% reduction, respectively.
Such stepwise improvement comes from the behavior of
free-motion and motor-controlled arms. To reach the objec-
tive state, both arms have to be stabilized at an appropriate
angle and timing. Once the system control misses an oppor-
tunity to stabilize the two arms, it takes a long time to find
the next suitable situation. Such behavior tends to produce
a kind of sweet spots in terms of the partition number.

Although increasing the number of partitions provides
better control performance, such improvements require the
significant cost in terms of computation time. The right y-
axis in each graph in Figs. 5 reports computation time re-
quired. All results are normalized to the case for processing
the smallest number of partitions. We see from the graphs
that the computation time linearly increases in proportion
to the partition number in all applications. To achieve the
20% or 35% of the settling time or variance reduction as
mentioned above in three benchmark applications, from the
range of 3X to 15X computation cost is required. It is clear
that the 1.4X small performance improvement achieved by
the traditional thread- and data-level parallel acceleration
cannot provide enough capacity to cover such computation
performance requirement.

3. Parallel Precomputation with Input Value Predic-
tion for MPC

3.1 Concept

In on-chip parallel processing, the degree of parallelism
generally has a strong impact on the potential for compu-
tation performance improvement. In MPC systems, how-
ever, sequential operations dominate the entire process, as
explained in Sect. 2.4. Meanwhile, to control advanced sys-
tems with high efficiency, the demands of MPC applications
are becoming more severe. To deal with the issue and ex-
pand the applicability of many-core processors to control
systems, we propose a many-core execution method that al-
lows for accelerating MPC executions. MPC systems have
the following two features.

1. Particular processes are executed in time series indepen-
dently. This means that each process can start when
the associated input values for the controller (the system
state values from corresponding sensors in the system)
become available.

2. In each process, MPC accurately predicts the behav-
ior of the target plant (the system state values from the
system) then finds the optimum strategy to control the
actuators.

These two points are essential to the construction of the

proposed method for accelerating MPC execution. As ex-
plained above, MPC inherently has the ability to predict in-
put values for execution that will be fed into the controller
in the future. The main idea behind our approach is to use
the predicted input values not only for control optimization
but also for process-level precomputation. Our approach has
two advantages. (1) When a real-time restriction is severe
on a certain execution environment, our method can achieve
high performance processing by using more cores. (2) Even
though a real-time restriction has been satisfied, control per-
formance can be improved by increasing the partition num-
ber and compensating for an increase in computation time
by our method.

3.2 Parallel Precomputation

The execution of each process in real-time MPC has to
be completed before the next input arrives, as shown in
Fig. 6 (a), where x(tn) is the input at time tn for the con-
troller, and STn and u(tn) are the sampling-time window and
output to the actuator associated with x(tn), respectively. As
explained in Sect. 2.1, G(x(tn)) is solved in each STn. Fig-
ure 6 (b) shows the case with the conventional sequential ex-
ecution method. In this scenario, we assume that the execu-
tion in each STn takes almost double the maximum amount
of time allowed. Although it is possible to apply conven-
tional thread-level parallel execution, we cannot expect a
significant computation performance improvement due to
the lack of parallelism. Since there exist the 70% sequen-
tial ODE calculations in MPC execution as explained in
Sect. 2.4, a 4-core platform illustrated in Fig. 6 (c) can yield
up to 1.4X (≈ 1/0.7) increase in speed that is insufficient to

Fig. 6 Overview of parallel precomputation.
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achieve real-time operation.
Figure 6 (d) presents a conceptual representation of the

proposed method, assuming a dual-core processor for sim-
plicity. We represent the features of our method by parame-
ter z, which is the degree of precomputation in terms of the
number of sampling-time windows. This is an indicator of
how long in advance each process can start before the cor-
responding actual input arrives. Since z = 1 in Fig. 6 (d),
G(x(tn)) of precompute threads starts at tn−1 on core-1. Al-
though the actual input value for STn (it means x(tn)) is not
available at that time, we use a predicted input value (x∗(tn)),
which has been computed in a previous sampling-time win-
dow. Core-2 similarly starts G(x(tn+1)) at time tn by using
the predicted input value x∗(tn+1).

A straightforward implementation of the proposed pre-
computation is to keep using the predicted input values for
system control, i.e., an optimal control problem is solved
by using previously predicted input values and its execution
results are fed to consecutive precomputations as newly pre-
dicted ones. Since the dynamic behavior model constructed
in MPC is quite accurate but not a perfect prediction, such
prediction chain causes an accumulative error problem, fi-
nally failing to control the system. To overcome this is-
sue, we introduce a dedicated thread to break the predic-
tion chain, called input-predicting non-precompute (IPNP)
thread, that uses not the predicted inputs but the real sensor
values obtained from the target system. The IPNP solves
the optimal control problem and just update predicted val-
ues, i.e., the output of IPNP u(t) is not transferred to the sys-
tem actuator. Precompute threads that use predicted input
values are prohibited to update predicted values. IPNP and
precompute threads are executed in parallel. For instance, in
Fig. 6 (d), IPNP thread is executed based on an actual sensor
value x(tn−1) at time tn−1 and produce predicted input values
x∗(tn+2) and x∗(tn+3), which are used in precompute threads
at time tn+1 (G(x(tn+2))) and tn+2 (G(x(tn+3))).

3.3 Computation Performance Improvement

With our method, each process is executed on a single core,
so that its computation time is the same as MPC latency (the
time period spent for the execution of G(x(t))) with the con-
ventional sequential method. However, the effective com-
putation time (the time period from getting x(t) until fin-
ishing the execution of G(x(t))) is reduced almost half if
we set the precomputation parameter z = 1, resulting in
a two-fold speedup over the conventional single-core exe-
cution method. This improvement of computation perfor-
mance makes it possible to satisfy the real-time operation
constraints, namely that u(t) is generated before the next in-
put arrives.

In case of a more performance-critical MPC applica-
tion, aggressive precomputation can be possible. Poten-
tially, the proposed method can start a precomputation when
the first prediction of associated input values is carried out.
For instance, in Fig. 2, x∗(t2), x∗(t3), . . . , x∗(t1 + T ) are pre-
dicted by solving G(x(t1)). This means that even G(x(t1+T ))

Fig. 7 The effective computation time with aggressive parallel precom-
putation (z = 3).

can be executed speculatively at any time after the gener-
ation of x∗(t2), x∗(t3), . . . , x∗(t1 + T ) in ST1. This feature
allows us to increase z. Figure 7 gives an overview of ag-
gressive precomputation as an example (z = 3), where we
assume a more performance-critical MPC application than
that in Fig. 6 (d). Since the required sampling-time window
is a fourth that for the system considered in Fig. 6 (a), even
the two-fold increase in speed achieved with the proposed
execution method (Fig. 6 (d)) fails the requirement of real-
time operation. By using four cores and starting the exe-
cution of each process three sampling-time windows in ad-
vance, as shown in Fig. 7, we can achieve a four-fold in-
crease in speed; thus, satisfying the real-time operation re-
quirements. Note that z + 1 cores are needed for precompu-
tation like pipeline execution since actual computation time
does not change as stated above and one more core is needed
for IPNP thread. In conventional execution method, compu-
tation time is “MPC latency”, meanwhile the effective com-
putation time is “MPC latency − (z ∗ ST )”. The effective
computation time can be shortened in a quarter in Fig. 7. We
can denote the improvement of computation performance as
Speedup = z + 1. Theoretically, regardless of the prediction
accuracy, we can achieve perfect scalability, which is one of
the most important metrics of many-core systems.

3.4 Implementation

We have implemented the proposed execution framework
presented in Fig. 6 (d) by using Pthreads. Figure 8 shows
the data flow in our implementation. The IPNP thread intro-
duced in Sect. 3.2 operates as follows.

IT.1: Obtain the current system state x from the sensors.

IT.2: Solve the MPC optimal problem with the real inputs.

IT.3: Update the predicted value table by overwriting with
the predicted system states x∗ calculated in IT.2.

The predicted value table has only one predicted values x∗(t)
for each t and is implemented in software. Although the ta-
ble ideally holds predicted values at all sampling time steps,
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Fig. 8 Data flow in proposed method with IPNP thread

size of the table will be infinite in systems that need to be
controlled endlessly. To reduce the table size, we have to
consider (1) how far the predicted values are required in ad-
vance and (2) how long the values need to be kept. Regard-
ing (1), IPNP thread produces z+1 predicted values for pre-
compute threads to be executed near future, e.g., the IPNP
thread G(x(tn−1)) predicts two values (x∗(tn+2) and x∗(tn+3))
in Fig. 6 (d). The answer for (2) is until finishing the each
process with associated input values. For example, during
the IPNP thread G(x(tn−1)) calculates, precompute threads
(G(x(tn)) and G(x(tn+1))) are not completed. The table have
to keep z + 1 predicted values (x∗(tn) and x∗(tn+1)). Hence,
the total number of memory entry required to implement
the predicted value table can be expressed as 2 × (z + 1).
For example, if a system requires z = 10 precomputation to
satisfy real-timeliness and two 8-byte variables are used to
represent the system status, the total capacity of the table is
2 × (10 + 1) × 16 = 352 bytes, which is negligibly small.
Predicted values are written into the table with the index of
t mod 2×(z+1) at sampling time t by the IPNP thread. Since
precompute threads use the most recently predicted values,
every IPNP thread greedily writes predicted values into the
table, i.e., no synchronization is required between the IPNP
and precompute threads.

The precompute threads that generates signals to con-
trol the actuator works as follows.

ST.1 Obtain x∗s from the predicted value table.
ST.2 Speculatively solve the MPC optimization problem

with the predicted input values.
ST.3 Output u to the actuator.

Note that during initial steps until the z + 1 step, conven-
tional sequential threads were executed instead of precom-
pute threads to solve a cold start problem of predicted value
table.

4. Performance Evaluation

4.1 Methodology

One of the main discussion points for parallel precomputa-
tion is the trade-off between computation performance and
control performance. Regardless of the prediction accuracy,
computation time becomes shorter in proportion to the pre-
computation parameter z (or the number of cores) and con-
trol performance can be improved by changing the partition

number as shown in Sect. 2.5. If the input prediction is in-
accurate, as the computation time is shortened, the quality
of actuator control may be deteriorated, so the settling time
and variance increase. Therefore, the parameter z is an im-
portant knob to adjust this trade-off.

Firstly, we clarify the improvement of computation per-
formance when given a certain number of cores. Although
computation time can be shortened according to z, addi-
tional computation time (overhead) is needed for the ex-
tra procedures such as read from predicted value table in
the proposed method. Hence, we evaluate the computa-
tion time with the overhead. Secondly, we evaluate how
much the prediction accuracy deteriorates according to the
number of cores by measuring the absolute values of the
difference between sensor values and predicted values. Fi-
nally, we demonstrate the control performance efficiency of
our parallel precomputation framework by assuming a given
sampling time.

To clarify the accuracy sensitivity to parameter z and
the overhead of computation time, we conduct computa-
tion and control performance analysis by implementing the
proposed method on three MPC benchmark applications
(Sect. 2.2) by using Pthreads. The computational environ-
ment is Intel Xeon Phi with 8-GB GDDR memory, and we
use a native execution model that directly executes appli-
cations on an Intel Xeon Phi co-processor without a Linux
Host computer. Intel Xeon Phi is unsuitable considering ac-
tual embedded processors because it has many cores and
even one core of Xeon Phi exhibits higher performance (fre-
quency is nearly 1 GHz) than embedded processors such
as ARM, for real-time applications (frequency is nearly
200 MHz). The main point of this section, however, is to
clarify the effectiveness of our method. Since the bench-
marks are simulation programs, the execution platform has
no effect on control performance. Assuming an embedded
many-core processor, the cache size is smaller than Phi, and
it is not equipped with high-performance NoC. However,
since the MPC code size and working set size are small,
almost all memory accesses hit the cache even in embedded
processors. Also, there is very little inter-thread communi-
cation (predicted value table access only), so the difference
in NoC performance does not affect. Therefore, even assum-
ing an embedded processor, I think that the same tendency
as Phi’s result can be observed in this experiment.

4.2 Experimental Result

Computation Performance Improvement
Figure 9 (a), (b) and (c) show computation time sen-

sitivity to the number of cores in three benchmark appli-
cations respectively. The y-axis shows whole computation
time of MPC calculation normalized by single-core execu-
tion (denoted by sc). The mc-conv means multi-core execu-
tion using conventional data-/thread-level parallelism which
assumes Amdahl’s law speedup with 70% sequential pro-
cessing accounts as described in Sect. 2.4. The ideal indi-
cates the perfect scalability where normalized computation
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Fig. 9 Computation time sensitivity to the number of cores.

Fig. 10 Absolute values of the difference between sensor values and predicted values.

time can be reduced 1/N (N is the number of cores) and
implies the upper limit of the direct benefit by parallel pro-
cessing. The mc-prop-ipnp is computation time including
overhead with our proposed method. Our method can need
at least three cores because one core is used for IPNP thread
and minimum z = 1 requires two cores. The parameter z
can be increased according to the number of cores, and it
presupposes that z∗sampling time does not exceed the MPC
latency. Although our method with a such z can be executed
theoretically, the computation time is 0 (computation per-
formance is ∞). It is clear that overhead is negligible for
every application. Hence, when a certain MPC application
is given, if we can use enough number of cores our method
achieve desired computation performance improvement. In
other words, mc-prop-ipnp can almost achieve perfect scal-
ability (normalized computation time = 1/(N−1)) at a large
number of cores. This method, unlike previous related work,
is adopted to any MPC applications without changing algo-
rithm, and not only part of MPC execution time but whole
computation time can be reduced like an ideal improvement
of parallel processing. Even when shorter sampling-time is
required, real-time restriction can be satisfied by the pro-
posed method.
Control Performance Improvement

To clarify the input value prediction accuracy based on
MPC algorithm, we got the log information of sensor val-
ues and predicted values at every z. Figure 10 (a), (b) and
(c) show the absolute values of the difference between sen-
sor values x(tn) and predicted values x∗(tn) for all applica-
tions. Each plot point indicates the maximum difference

values (i.e., max(|x(tn) − x∗(tn)|), where 1 ≤ n ≤ N, N is
the total number of sampling-time windows.) at a certain z.
Although Fig. 10 only show the part of state value in each
application, it is clear that every difference value increases
together with z. This trend is also seen in other state values
of every application. For example, the difference values are
relatively small in the small number of cores, and then sud-
denly increase exponentially in Fig. 10 (b). Since it depends
on each system that how much difference can be tolerated,
we comprehensively evaluate the proposed method by mea-
suring control performance.

Figures 11 (a), (b) and (c) show normalized control per-
formance associated with the combination of the number
of cores and the partition number (concatenated by the hy-
phen). For instance, “(4-30)” denotes that quad cores are
used with the partition number of 30. All results are normal-
ized to the control performance achieved by the single-core
execution sc which is used as a baseline in this evaluation.
The evaluation results reported in Fig. 5 is also plotted in this
figure as sc-pn. The number of cores in the x-axis combina-
tion is determined to compensating for an increase in execu-
tion time. For example, when the partition number is 100, it
takes 7.5X computation time as showed in Fig. 5 (a). In such
case, 8X computation performance improvement (z = 7) is
required, so that 9 cores needed. That is why the combina-
tion in Fig. 11 appears irregular.

As shown in Fig. 11, the appropriate configuration of
the number of core and partition number (mp-prop-ipnp)
can provide about a maximum of 1.2x, 6.2x, and 1.2x
improvement in control performance for each benchmark
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Fig. 11 Control performance improvement by using the proposed method and changing partition
number.

program, respectively. This means that higher control per-
formance can be achieved by increasing the number of
cores. This improvement can not be achieved by the con-
ventional parallelized, since computation performance im-
provement is limited up to 1.4x as shown in Fig. 9 and par-
tition number cannot be increased. The results indicate that
our method provides a new opportunity to improve control
performance by means of increasing partition number when
real-time restriction is severe in a certain execution environ-
ment. In large number of cores, e.g., (18-425) in Figs. 11 (b),
the system state vibrates or diverges denoted by no-bar of
mp-prop-ipnp; as a result, the system cannot be stable within
the simulation time. It is because the effect of inaccurate
prediction appears according to increasing parameter z.

Figures 11 (a) (c) show that our method have a neg-
ative effect and it gradually has a large impact on control
performance on a large number of cores. The difference be-
tween mc-prop-ipnp and sc-pn means control performance
degraded due to the proposed method. In tandem cold mill,
especially the system becomes unstable at (7-150). Since
the benefit of increasing the partition number outweigh the
negative effects, these control performance is improved in
the range of a small number of cores.

As for the arm-type pendulum control system,
Fig. 11 (b) shows higher control performance of mc-prop-
ipnp than sc-pn. Although predicting input values make
control performance worse intuitively, this is not always
true. There are cases that exploiting predicted input values
accelerates control performance. The breakdown of 6.222x
control performance improvement at (7-150) in Fig. 11 (b)
is: 1.3x (≈ 6.4/4.8) by increasing the number of partitions
and 4.8x (1.3x∗4.8x≈ 6.2x) by using the predicted input val-
ues instead of the real inputs. MPC attempts to globally op-
timize the plant control by locally optimizing an objective
function in each finite interval (prediction horizon). There
is a possibility in such optimization scheme that “error” on
input values improve or degrade the control performance,
and this is a theoretical nature of MPC. That is why pre-
dicted input values possibly contribute to performance im-
provement. This can be seen in Fig. 11 (b). In our scheme,
the input value prediction causes the “error”. The “error”
affects in an enhancement of the control performance from

(5-100) to (17-400), meanwhile, it produces the opposite re-
sults over (18-425).

The proposed method has low responsiveness because
it does not adjust to real behavior after an optimal control
problem starts. Regardless of the purpose and noise, the pro-
posed method cannot adapt to unpredicted behavior. For ex-
ample, the proposed method could not stabilize the tandem
cold mill control system even at 2x speedup when the input
rotation velocity Vr0 changes irregularly. However, this also
implies the possibility of the proposed method adapting to a
system that includes a disturbance if MPC includes distur-
bance behavior model. Solving this problem and robustness
improvement are future works.

5. Related Work

There have been a number of studies on the application of
MPC to real-world systems (i.e., gasoline engines and pro-
cessors for thermal and energy management) [8], [11]. Since
MPC can be applied in nonlinear complex systems, it has the
potential to become a major control methodology in future
high-performance embedded systems. In this section, we
categorize acceleration techniques of MPC executions and
clarify the advantages of our precomputation method over
other methods.

MPC Parallelization: Although the key concept of paral-
lel precomputation method for MPC has considered in [12],
it mainly lacks four critical points. First, the related paper
does not discuss the impact of real implementation. The au-
thors developed performance models and theoretically (not
physically on a real machine) estimated computation per-
formance. Second, since the used performance model does
not directly consist of the accuracy of input value predic-
tion, real impacts of prediction accuracy is not clear (the
authors indirectly analyzed the impact of prediction accu-
racy). Third, the discussed precomputation method cannot
solve the prediction-chain problem explained in Sect. 3.2,
the control performance is significantly degraded. Fourth,
only computation performance is discussed, i.e. no discus-
sion for control performance that is critical for control sys-
tem. Against to the previous research, our paper covers all
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of the critical points. We have introduced the IPNP thread to
break the prediction-chain, and have implemented the pre-
computation framework on a real machine. Our evaluation
results demonstrate that the IPNP thread based precomputa-
tion scheme can improve both computation and control per-
formance on a physical implementation.

A few related studies proposed parallelized MPC im-
plementations [13], [14]. Longo et al. proposed a par-
allel move-blocking MPC algorithm, in which multiple
small optimization problems are executed in parallel [13].
Soudbakhsh et al. used a sparse format of derived matri-
ces [14]. Unlike such methods, our method does not require
any algorithm-level modification, just executing specula-
tively with predicted input values. Combining the straight-
forward parallel implementation with our parallel precom-
putation method may have significantly improved MPC per-
formance, and evaluating such hybrid implementation is for
future work.

Algorithm optimization: Parallel-in-Time is well known
as a parallelization method of time-dependent process-
ing [15]. This method is applied to a wide range of sys-
tems such as ordinary differential equations (e.g., molecular
dynamics) [16], [17] and partial differential equations (e.g.,
hydrodynamics) [18], [19]. In addition, the method is often
applied in the field of high-performance computing which
have large size simulation problems [20]–[23]. However,
problems of this method have been pointed out in the past
and the positive effect can not always be obtained. Parallel-
in-Time requires to define an approximate calculation in-
stead of the original processing. Since it is very difficult to
define approximate calculations in a general form, the scope
of application is limited. Furthermore, since the cost of ap-
proximate calculation and the cost of this iterative calcu-
lation are required, this method is effective only when the
speedup can be sufficiently increased against to the original
processing. Namely, it is difficult to achieve high scalability.
On the other hand, our method can be applied to all kind of
system if it is controlled by MPC. In addition, our method
can achieve almost perfect scalability as shown in Fig. 9.

Hardware Acceleration: To improve MPC execution per-
formance, hardware-based acceleration methods have been
discussed. Dimitriou et al. proposed an application-specific
processor targeting MPC executions, in which a matrix co-
processor is implemented [24]. Wills et al. proposed a cus-
tom architecture and demonstrated the implementation as an
application specific integrated circuit (ASIC) [25]. Using
field-programmable gate array (FPGA) devices is another
alternative for hardware implementation [26]–[28]. Such
hardware-based accelerations can significantly improve per-
formance by sacrificing flexibility. Since the dynamic model
embedded in a controller depends on the target plant, MPC
execution platforms should support programmability. Un-
fortunately, ASIC implementation cannot satisfy such a re-
quirement. Although FPGAs have much better flexibility
than ASICs, the design cost is still much higher than a pure
software approach.

Speculative execution: Thread-level speculation (TLS) has
been extensively investigated in terms of software solu-
tions [29]. Speculative threads can be defined or identified
using software [30]–[35] or hardware [36]–[38]. To break
the data dependency chain, value prediction techniques have
also been extensively investigated [39]–[43]. Researchers
have also proposed architectural supports for efficient TLS
executions [44]–[48]. Against traditional TLS executions,
our method differs on two points. First, MPC involves re-
peatedly executing the optimization problem when new in-
put data arrive, and an instance of the optimization problem
is assigned to a thread. Thus, we do not need to consider
control dependency. Second, our method attempts to solve
data dependency by exploiting the predictability of the in-
put value that inherently exists in the MPC theory. Tradi-
tional TLS methods predict memory or register values then
speculatively execute a part of the sequential code. Unlike
traditional TLS methods, our method is quite simple.

Run-ahead execution: Run-ahead execution is a type of
precomputation method [49]–[54]. By pre-computing a ker-
nel code, we can prepare for efficient main thread execu-
tions, e.g., training branch predictor and prefetching data
from off-chip main-memory to on-chip caches. Even though
the concept of our method is similar to that of the run-ahead
method, our purpose was not preparing for the main thread
executions but accurately outputting the precomputed re-
sults for system control.

Approximate computing: Approximation is one of the
most promising approaches to achieve energy-efficient
real-world computing and many researchers have recently
demonstrated that the concept of approximation performs
well for vision computing [55]–[58]. They defined the crite-
ria to quantitatively represent the quality of computation for
each target application and attempted to reduce a number of
operations. Our method allows a reduction in precision, i.e.,
accepting not using perfectly predicted input values.

6. Conclusions and Future Work

We have proposed a high-performance many-core execution
method for accelerating MPC computation. The key idea is
to use predicted system state, which is produced with MPC
and precompute an optimal control problem. The results
of experiments using real-world MPC applications clearly
indicate the outstanding execution performance without lack
of control performance for a few benchmarks. In addition,
our method contributes to improving control performance
by changing the processing load of MPC and compensating
for an increase in execution time.

Future work is to establish a more effective method
of predicting input candidates. This method will be help-
ful for not only more aggressive precomputation but also
improving the robustness of the system including noise.
Also, since power consumption is a first-order function of
the design constraints in modern embedded systems, we
will also consider a low-power technique for real-time MPC
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applications.
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Appendix A: Appendix

A.1 Nonlinear Spring Control System

The nonlinear spring control system simulation program is
intended to stop at a position of equilibrium by applying an
external force to a free vibration spring with a weight. In
this program, the state value is x = [ẋ, v̇]T , and x indicates
the distance from a balanced position up to a certain weight.
The controller applies force u to reach the target value (bal-
anced position) from the initial value. A schematic of a non-
linear spring is shown in Fig. 3 (a). When the weight posi-
tion x is greater than zero, the spring is right-side balanced.
If x is less than zero, its position is too left from the target
balanced position. The initial static state is a positive posi-
tion (x = 2), and the target state is to stop on the balanced
position (x = 0). We formulate the equation of state for the
nonlinear spring system. The velocity of weight is expressed
as

ẋ = v

The acceleration of weight is then expressed as

v̇ = {1 − a0(x2 + v2)}v − x + u,

where u is an external force (system input in Fig. 1). The
inequality constraint is converted to equality constraint by
using a dummy variable d.

u2 + d2 − u2
max = 0

This means |u| ≤ umax and umax is set to 0.5.

A.2 Arm-Type Pendulum Swing-Up Control System

This section describes the details of an optimal control prob-
lem for an arm-type pendulum swing-up control system.
Figure 3 (b) shows the pattern diagram of the system. In
the initial state, both arms are hanging down (θ1 = θ2 = π),
and the MPC tries to make them stand upright, as in the tar-
get state (θ1 = θ2 = 0). We now formulate the equation of
state. The center of gravity of each arm (X1,Y1) is expressed
as {

X1 = l1 sin θ1

Y1 = l1 cos θ1
,

{
X2 = L1 sin θ1 + l2 sin θ2

Y2 = L1 cos θ1 + l2 cos θ2
(A· 1)

The kinetic energy W, potential energy U, and loss energy
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D are expressed as⎧⎪⎪⎨⎪⎪⎩
W =

∑2
i=1

{
1
2 mi

(
Ẋ2

i + Ẏ2
i

)
+ 1

2 Jiθ̇
2
i

}
U =

∑2
i=1 migYi, D =

∑2
i=1

1
2μiψ̇

2
i

(A· 2)

where mi is the mass of each arm, Ji is the moment of inertia
around the center of gravity, g is the gravitational accelera-
tion, μi is the viscous friction coefficient, and ψ is the relative
angle. In the optimal control problem based on Eqs. (A· 1)
and (A· 2), the objective function J is obtained as

J =
1
2

xT (t + T )S f x(t + T )

+

∫ t+T

t

(
1
2

xT (τ)Qx(τ) +
r1

2
u2(τ) − r2v(τ)

)
dτ

where the state values x are
[
θ1 θ2 θ̇1 θ̇2

]T
, S f and Q are

positive semi-definite matrices, and r1 and r2 are positive
real numbers. The constraint condition is defined as

u2 + v2 − u2
max = 0

where u is the input voltage to the motor and has a constraint
|u| ≤ u2

max. In this program, umax is 2.5V and v is a dummy
input for the constraint.

A.3 Tandem Cold Mill Control System

Tandem cold mill is a metal forming process in which metal
is passed through several pairs of rolls to reduce thickness
and to make the thickness uniform at low temperature. This
simulation program focuses on one stand, though a tandem
cold mill control system generally has several stands. The
purpose of this program is to keep the thickness and tension
constant when the sheet velocity changes. Figure 3 shows
the pattern diagram of the tandem cold mill control system.
Focusing a stand1, the entry-side thickness of the metal plate
is h0, roll gap is S1, exit-side plate thickness is h1, and rolling
load is Pi. Interstand tension σ f0 is controlled by adjusting
the rotation velocity VR0 . We now formulate the equation of
state for this system. State variables x and system input u
are expressed as

x = [x1, x2, x3, x4]T := [S1, Ṡ1, σ f0 ,VR0 ]T (A· 3)

u = [u1, u2]T := [uS1 , uVR0
]T

where uS1 is a command value that implies plate thickness
considering the tuning rate in the servo system. Similarly,
uVR0

is the velocity command value. The equation of state is
shown as follows:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x2

f2
f3

−(1/Tm)x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Kg/Tg 0

0 0
0 1/Tm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

uS1

uVR0

]

f2 = −Kg

Tg
x1 − 1

Tg
x2 − Kg

Tg

k
M0

Pi

f3 =
E
L
{h1

h0
(1 + fi)VR1 − (1 + fi−1)x4}

Table A· 1 Parameters for tandem cold mill system

Kg [-] AGC gain 10
Tg [s] Time constant of hydraulic servo 0.01
k [-] Tuning ratio 0.4
M0 [N/mm] Mill modulus 4.9 ∗ 106

Tm [s] Time constant of mill motor 0.003

where Pi and forwarding slip ratio fi are nonlinear functions
that have interstand tension and rotation velocity as input
values. In addition, Table A· 1 shows each parameter for
this system.

Pi := Pi(σ fi−1 , σ fi , hi, hi−1,VRi )

fi := fi(σ fi−1 , σ fi , hi, hi−1,VRi )

As mentioned above, the purpose of this control system is to
keep the thickness and tension constant; however, we can-
not monitor the thickness as an observed value in Eq. (A· 3).
Therefore, we also need to formulate thickness hi on stand i.
Considering hi is always controlled near target value hr

i , hi

can be approximately represented as hr
i + Δhi (Δhi denotes

the infinitesimal difference from the target value).

hi ≈ hr
i +

Pi(σ fi−1 , σ fi , hi, hi−1,VRi ) − M0(hr
i − Si)

M0 − (∂Pi/∂hi)|hi=hr
i

This function explicitly calculates hi. The input rotation
velocity is given in Fig. 3 (e.g., Vr0 is input for a stand1).
The target values are thickness hr

1 = 3.4 mm and tension
σr

f0
= 20MPa.
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