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Power Efficient Object Detector with an Event-Driven Camera
for Moving Object Surveillance on an FPGA

Masayuki SHIMODA†a), Nonmember, Shimpei SATO†b), and Hiroki NAKAHARA†c), Members

SUMMARY We propose an object detector using a sliding window
method for an event-driven camera which outputs a subtracted frame (usu-
ally a binary value) when changes are detected in captured images. Since
sliding window skips unchanged portions of the output, the number of tar-
get object area candidates decreases dramatically, which means that our
system operates faster and with lower power consumption than a system
using a straightforward sliding window approach. Since the event-driven
camera output consists of binary precision frames, an all binarized convo-
lutional neural network (ABCNN) can be available, which means that it al-
lows all convolutional layers to share the same binarized convolutional cir-
cuit, thereby reducing the area requirement. We implemented our proposed
method on the Xilinx Inc. Zedboard and then evaluated it using the PETS
2009 dataset. The results showed that our system outperformed BCNN sys-
tem from the viewpoint of detection performance, hardware requirement,
and computation time. Also, we showed that FPGA is an ideal method for
our system than mobile GPU. From these results, our proposed system is
more suitable for the embedded systems based on stationary cameras (such
as security cameras).
key words: event-driven camera, object detector, all binarized convolu-
tional neural network, FPGA

1. Introduction

Object detection systems are used to infer locations and ob-
ject classes in a picture. Recently, they have been increas-
ingly required in a variety of embedded systems such as
robots, security cameras, and drones. However, when incor-
porated into embedded systems, it is essential to restrict the
device size, reduce power consumption, and provide real-
time processing performance.

Convolutional neural networks (CNNs) are widely
used for computer vision tasks [1]–[3]. In these cited works,
it can be seen that CNNs outperform conventional tech-
niques. Recently, a variety of object detectors based on
CNNs have been proposed. These systems can be roughly
divided into two types. The first type includes a detection
component for object area candidates and a classification
component that is achieved using a CNN. In its represen-
tative method, which is known as regions with CNN fea-
tures (R-CNN) [4], the object region proposal component is
achieved by selective search [5], and the classification com-
ponent is obtained using a CNN. Since the system consists
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of two parts, its primary disadvantage is that it requires time
and effort to adjust all parameters for two components re-
spectively. However, since each part only has to perform
one task, both can be small. Also, an advantage of the sys-
tem is that if it is necessary to detect new classes, then only
the classification part needs to be updated. The second type
is a single-shot detector that consists of a CNN and infers
locations and classes simultaneously (representative meth-
ods are SSD [6] and YOLO9000 [7]). Although it computes
detection and classification at a time, it requires a massive
amount of hardware and computation time.

1.1 Proposal

We propose an object detector using a sliding window with
an event-driven camera that outputs a diff-picture (usually
binary value) when change is detected in the captured im-
ages. When an event-driven camera is used to operate a
security camera with a fixed position and viewing angle,
the camera only outputs a diff-picture (binary value) when
change is detected. Focusing on this feature and an ob-
ject detection system, we find that our proposed method im-
proves computation time and reduces power consumption.

When considering the implementation of a camera-
based object detector, we determined that larger systems,
such as single-shot detectors, are unsuitable. In contrast,
since a detection system that consists of two parts can be
realized on a smaller circuit than a single-shot detector, this
model would be more suitable for our purposes. Therefore,
our proposed system uses a system that consists of two parts.

In a previous work related to object detector with an
event-driven camera [8], it was that expanding the RISC-V
for CNN made it possible to improve computation time and
energy gains. However, since CPUs are unsuitable for real-
time processing, we implement the CNN on an FPGA.

Realization of an object detector dedicated to bitmap
leads to a reduction in computation. More specifically, when
performing sliding window, use of binary data can reduce
the number of object area candidates by order of magnitude
since it only detects an area if the ratio of white pixels (the
detected pixels of the moving object) inside the bounding
box exceeds the preset threshold. Since the input data of
a binarized CNN (BCNN) are usually RGB three-channel
color images, its first convolutional layer computes in in-
teger precision. On the other hand, since the event-driven
camera output is binary, a BCNN can be replaced with
an ABCNN, in which the input of all convolutional layers
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is binarized. Realization of all binarization leads to area
reduction since a single binarized convolutional circuit is
shared among all convolutional layers. Because of this, our
proposed method is capable of reducing energy consump-
tion and area usage in comparison with conventional object
detection systems.

This paper makes the following contributions:

1. We suggest an object detector using a sliding window
with an event-driven camera. Since the sliding win-
dow is performed on binary images, the number of ob-
ject candidates to be classified decreases dramatically,
which means that our system achieves high power effi-
ciency and small area requirement.

2. We investigate the detection performance on PETS
2009 dataset. The results show that our system out-
performed BCNN-based system in term of f-score.

3. We implement the ABCNN-based and the BCNN-
based system on FPGAs and compare them. Com-
pared with BCNN-based one, hardware requirement
and computation time are dramatically improved.

4. We realize our proposal for an FPGA and a mobile
GPU and compare them in term of speed, power, and
power efficiency. The results show that FPGA is more
suitable for our proposal than mobile GPU.

This paper is an update version of past works [9] and [10].

2. Related Work

2.1 Type of Situations

There are two scenarios under which object detection is
performed. The first one is the situation where the detec-
tion is performed using moving camera, such as self-driving
cars [11], [12], [12]–[14], a robot [15], and so on. Due to
the moving camera, the situation does not allow us to per-
form background subtraction. Therefore, some works use
semantic segmentation instead to obtain high precision.

The second one is the situation where object detec-
tion is performed using a stationary camera such as surveil-
lance cameras. For any specific environments, many models
are proposed, such as pedestrian detection [16], vehicle re-
identification (Re-Id) [17]–[19], vehicle detection [20], [21],
attribute recognition [22], action detection [23], change
detection [24]–[26], vessel detection in maritime scenar-
ios [27], [28]. While their works realize high accuracies and
robustness, the detection models become bigger and more
complex, and then some of them are not suitable for embed-
ded systems. Our target situation is the second one, and we
propose an object detector system for embedded systems.
Because of performing object detection on bitmap images,
while realizing efficient power-consumption compared with
conventional ones, our proposal cannot be applied to some
applications like attribute recognition.

2.2 Type of Object Detection Systems

For object detection realizations, there are two methods di-

vided roughly: single shot detectors and two-component
systems.

A single shot detector consists of a big CNN only, and
localization and classes are inferred simultaneously [6], [7],
[29]–[31]. Although such CNN ones accept to both detec-
tion and learning at a time, the computation time and area
become too large to implement on embedded systems.

The other is a system which consists of both an area
extractor and a classifier. An area extractor, such as se-
lective search [5], sliding window, region proposal net-
work (RPN) [30] extracts target object area candidates, and
the extracted areas are fed into the classifier, such as support
vector machine (SVM) [32]. Before CNN is successful for
wide areas, the classifier classifies the extracted areas based
on hand-crafted features [33]–[38]. After that, CNNs [1]–
[4], [39] are often used as classifier. Since such area ex-
tractors propose a lot of candidates, the computation of their
classifier dramatically increases. A region of interest filter-
ing using saliency detection [40] and optimized sliding win-
dow [41] are proposed to decrease the number of proposed
windows. In this paper, we realize object detector using
two-component type. Since our proposed system requires
the object detector to run on a bitmap, many candidates dra-
matically decreases, and its classifier can be smaller.

2.3 Quantized CNN and Implemental Circuit for FPGAs

Since full precision CNNs require vast amounts of compu-
tation and memory, low precision CNNs are proposed [42]–
[53]. Among them, binarized CNNs (BCNNs) [43] which
constrain the value to +1 or −1 provide dramatically lower
storage size and bandwidth, while maintaining compara-
ble accuracies to full precision networks. Additionally,
Intel [54] shows FPGAs offer order of magnitude effi-
ciency improvements over optimized BCNN software CPU
and GPU implementations using Alexnet [3] and VGG [2].
Therefore, To realize dedicated circuit for quantized CNN
on FPGAs, there are many works [55]–[64], and some of
them use high-level synthesis (HLS) tools such as Xilinx
Vivado HLS [65], Xilinx SDSoC [66] and Intel FPGA SDK
for OpenCL [67], [68]. To realize high power efficiency cir-
cuit, we employ BCNN and the circuit based on [60]. Due to
binarization, all parameters can be stored in on-chip mem-
ory. Also, since we realize all binarized CNN, the circuit
based on [60] can be shared binarized among all convolu-
tional layers, and then it provides high power efficiency.

3. Object Detector Using Sliding Window

Figure 2 shows the overall architecture of an object detector
using a sliding window and an event-driven camera. This
system extracts the object region candidates by applying
a sliding window to the picture output by an event-driven
camera. Since the event-driven camera outputs are binary,
the sliding window determines whether an object region
has been detected by the proportion of white pixels inside
the bounding box. The extracted pictures are resized to
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Fig. 1 Event-driven camera behavior

Fig. 2 Overview of an object detector system using a sliding window

Table 1 Comparison between event-driven and frame-driven cameras [8]

Scenario Frame-driven camera Event-driven camera

Image sensor power consumption 1.1mW @30fps 100µW @50fps
Image size 632,446 bits 8,192 bits
Image sensor energy for frame capture 66.7 µJ 2.0 µJ

40 × 40 size and applied to the ABCNN. All binarization
was found to improve both the area and computation time.
If the ABCNN infers the detected object as human, then it
draws a box on the proposed region. Since more than one
bounding box is commonly drawn against a single detected
object, non-maximum suppression [4] is used to reduce the
extras to a single box.

The ARM on the FPGA creates an imitation of the
event-driven camera outputs that are then applied to the slid-
ing window to detect the object regions. Then, the proposed
regions are sent to the ABCNN on the FPGA (or GPU)
where computation is performed. The inference results are
sent to the ARM on the FPGA which draws a bounding box
on the corresponding proposed region if the result is desig-
nated as human. Finally, by non-maximum suppression, the
excess bounding boxes are reduced to a single box. In this
paper, we investigate the FPS and power consumption of the
system using both an FPGA and a GPU.

3.1 Event-Driven Camera

Figure 1 shows the behavior of an event-driven camera,
which is a camera that only outputs a picture when captured
image changes. Such cameras extract contrast differences
between two successive frames. If no object motions are
detected, then the camera does not output anything. Once
motions are observed, the camera subtracts the background
with the reference image stored in pixel memory, converts
the input into binary form by using a preset threshold, and

Fig. 3 Sliding window on an event-driven camera

then outputs the binary images. Use of an event-based sen-
sor leads to a reduction in input/output (IO) energy when
compared with a frame-based camera. One of the more
practical use scenarios of an event-driven camera is secu-
rity monitoring. In this study, we realize the camera artifi-
cially by BackgroundSubtractorMOG2 of openCV3, since
the cameras are not available for purchase now. As for de-
tail of event-driven camera performance, Table 1 compares
with frame-driven one. Since it reduces the amount of data
crossing the costly analog-to-digital border, the power con-
sumption of the event-driven camera is more than ten times
lower.

3.2 Sliding Window

One of the commonly used object region proposed methods
is called the sliding window. Figure 3 shows an overview of
this method. As can be seen in the figure, the bounding box
moves along the x- and y-axis by preset dx and dy respec-
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tively from top left to down right on the picture, and then
the areas inside the box are cropped as object area candi-
dates. Since the extractor generates a large number of win-
dows to be classified, it requires high computational power.
However, when an event-driven camera is used, the sliding
window is performed on a bitmap, and then candidate re-
gions are only proposed when the ratio of white pixels ex-
ceeds a certain threshold. It leads to a significant reduction
in many proposed candidates. In the case of the PETS 2009
dataset, the number of RGB picture candidates is normally
in the hundreds. However, when a binary grayscale picture
is used, the number drops to between zero and 20.

Usually, to deal with various scale objects, an input pic-
ture is resized as the bounding box moves. However, in the
case of a stationary camera, since most of the captured ob-
jects are close to the same size, we did not resize the input
picture in our experiments.

4. Binarized CNN (BCNN)

Recently, Courbariaux et al. proposed a CNN whose weights
and activation are binarized [43]. The binarized neuron
model is given as follows:

s =
n∑

i=1

wb
i xb

i + w0

zb = fsign(s),

where xb, wb, zb ∈ {−1,+1} and w0 denotes a bias which
corrects the input data deviation in integer precision (nor-
mally BCNNs require batch normalization (BN) [69]. How-
ever, [60] shows that neurons using BN are equal to neurons
which have integer-precision bias), and fsign(Y) denotes the
signed activation function as follows:

fsign(x) =

⎧⎪⎪⎨⎪⎪⎩
+1 if x ≥ 0

−1 otherwise.

For implementation on it, since an FPGA cannot rep-
resent −1 directly, we map a logical zero to −1. In this
case, since the binarized multiplication can be realized by
an XNOR gate, the hardware area is dramatically reduced
compared to a floating-point unit. Additionally, the bina-
rized weights and activation lead to a comparative reduction
in the required memory bandwidth. Thus, by using a BCNN,
area and performance are further reduced and improved
respectively.

4.1 Internal FC Layer Replacement with a Binarized Av-
erage Pooling Layer

Conventionally, most CNN parameters are focused on the
FC layers, which requires a significant amount of memory.
To reduce memory size, we replace the FC layers with a
binarized average pooling layer [70]. We show how such
a layer can infer correctly without the use of internal FC
layers. A binarized average pooling operation with a K × K

kernel is given as follows:

yi, j =
1

K2

K−1∑

v=1

K−1∑

u=1

xi+u, j+v,

where x is a binary input value, K is a kernel size and y is
a binary output value. Here a majority operation is implied.
The binarized average pooling layer is set next to the last
convolutional layer. If the size of the feature map output by
the last convolutional layer is L × L, then the kernel size of
the binarized average pooling is set to L×L. In this case, the
output of the average pooling is 1D. These features are then
applied to the FC layer, which maps them to classes. In our
proposed method, we use this technique to reduce memory
utilization.

5. All Binarized CNN (ABCNN)

An ABCNN is a BCNN in which the first convolutional
layer is done in binary form as well. Since it does not require
a multi-bit precision convolutional layer to process the input
data, all computations can be done in binary. To realize an
ABCNN, it is necessary to use another method to decom-
pose the input data into binary form. ABCNNs reduce re-
source and power energy while increasing performance and
providing a comparable level of accuracy, compared with
BCNNs.

6. Implemented Circuit

Figure 4 shows the overall circuit [70]. The design consists
of buffer parts for parameters, binarized convolutional cir-
cuit part, binarized max-pooing circuit part, and binarized
average pooling circuit part (BCNN design also includes in-
teger convolutional circuit part). Firstly, all parameters such
as weights and biases area loaded into on-chip buffers from
DDR3. After that, the processor sends an input image to the
design, and the binarized convolution/max pooling/average
pooling operations are performed (in the case of BCNN de-
sign, the integer convolution operation is performed). The
output goes to the on-chip memory, to be read to compute

Fig. 4 Overall architecture
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Fig. 5 Pipelined 2D convolutional circuit

Fig. 6 Pipelined binarized 2D convolutional circuit

the next layer operation. Since the on-chip BRAMs real-
ize the memory part of the architecture, this circuit provides
increased power efficiency. As for ABCNN design, since a
binarized convolutional circuit can be shared among all con-
volutional layers, the overall circuit is smaller than BCNN
one.

Figure 5 shows a convolutional circuit in integer preci-
sion [71]. The convolutional circuit consists of a DSP48E,
adder trees, a bias adder, and a write controller. Since con-
volutional operations access the same value lead to multiple
memory accesses, the circuit uses a shift register and store
values outside the memory. In this study, the first convolu-
tion of the BCNN is realized by this circuit.

Figure 6 shows a binarized convolutional circuit [60].
Figure 5 is similar to Fig. 6 except for using dedicated DSP
blocks, since the input of the circuit is binary, and then it al-
lows the DSP48E to be replaced with a bitwise XNOR gate.
After multiplication, the architecture is the same as that of
the integer convolutional circuit. It realizes all convolutional
layers except for the first layer of the BCNN.

For BCNN design, we improved the circuit in order to
make it possible to compute MACs in parallel. Figure 7
shows the parallel kernel computation circuit. Since the ker-
nel number of each layer used in this paper is fixed at 64, we
create a convolutional circuit that has an even number of bi-
narized MACs and can compute in parallel, and then we also
confirmed this improvement does not affect the area signif-
icantly. The integer convolutional circuit parallelization is
four, and the binarized one is two.

Figure 8 shows a binarized max pooling layer circuit.
Since a binarized max pooling operation is realized by the
logical OR, a binarized max pooling circuit is realized by a
line buffer and bitwise OR gates.

Fig. 7 Parallel pipelined binarized 2D convolutional circuit

Fig. 8 Binarized max pooling circuit

Fig. 9 Binarized average pooling circuit

Figure 9 shows an average pooling layer circuit. A bi-
narized average pooling is realized by a 1’s counter and a
threshold circuit.

7. Experimental Results

7.1 Comparison of Accuracies

We evaluated our proposed system on PETS 2009
Dataset [72], which consists of videos of campus from
Kyushu University including many pedestrians. While the
dataset has videos from eight different views, we only use
S2L1, and the ground truth labels of MOT 2015 [73] are em-
ployed. Since there is currently no dataset available for the
output of an event-driven camera, it is necessary to make an
imitation dataset from the dataset. Accordingly, We applied
background subtraction to the dataset, then extract areas ran-
domly, and classified them. Our used models are shown in
Table 2 and Table 3. Table 4 shows precision, recall and F-
score for each CNN. Compared with a BCNN-based system,
while recall decreased by 0.48, precision increased by 0.29,
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Table 2 Used BCNN model

Layer Type #Output f.map Kernel size Padding

1 conv 64 3 1
2 conv 64 3 1
3 maxp 64 2 0
4 conv 64 3 1
5 conv 64 3 1
6 maxp 64 2 0
7 conv 64 3 1
8 conv 64 3 1
9 maxp 64 2 0

10 avgp 64 4 0
11 fc 3 1 0

Table 3 Used ABCNN model

Layer Type #Output f.map Kernel size Padding

1 conv 64 3 1
2 conv 64 3 1
3 conv 64 3 1
4 avgp 64 40 0
5 fc 2 1 0

Table 4 Evaluation of precision, recall, and f-score on pets2009 dataset

Models
IoU (0.3)

Precision Recall F-score

BCNN 0.14 0.93 0.24
ABCNN 0.43 0.45 0.44

Fig. 10 Detection result. While bounding boxes are represented as the
detection result of human. This figure shows that our system cannot detect
the humans who are behind any obstacles.

and f-score increased by 0.2. Since our system cannot de-
tect the humans who are behind any obstacles such as street
lights, as shown in Fig. 10, the decrease is caused. On the
other hand, since BCNN-based system proposes many back-
ground areas, its precision is dramatically decreased. Our
system achieved superior precision thanks to background
subtraction.

7.2 Implementation Results

We implemented an ABCNN and a BCNN on FPGAs
and investigated their resulting areas and latencies, using
the GUINNESS [74] development environment based on
Chainer [75] that generates base circuit and Xilinx Inc. Vi-
vado SDSoC 2017.4 with a constraint of 100 MHz. For
BCNN implementation we used a Xilinx Inc. Zynq Ultra-
Scale+MPSoC zcu102 evaluation board, which is equipped
with a Xilinx Zynq UltraScale+ MPSoC FPGA (ZU9EG,

Table 5 Implementation on an FPGA (utilization of each platform).
Note that, the clock cycle is estimated by Vivado HLS.

BCNN ABCNN (proposal)

Platform ZCU102 Zedboard
18 Kbit BRAM 548 (30.04) 50 (17.86)
DSP48E 135 (5.36) 0 (0.00)
FF 23,852 (4.35) 14,599 (13.72)
LUT 28,892 (10.54) 11,301 (21.24)

Clock cycle 3,206,021 1,568,744

Fig. 11 Measurement of the FPGA power consumption.

Fig. 12 Measurement of the GPU power consumption using a power
monitor.

68,520 Slices, 269,200 FFs, 1,824 18Kb BRAMs, 2,520
DSP48Es), and for ABCNN implementation we use the
Xilinx Inc. Zedboard, which has the Xilinx Zynq FPGA
(XC7Z020, 53,200 LUTs, 106,400 FFs, 280 18Kb BRAMs,
220 DSP48Es). Table 5 shows an implementation result.
Compared with BCNN implementation, The #DSP48E de-
creased by 135, the #18 Kbit BRAM decreased by 498, the
#FF decreased by 9,253, the #LUT decreased by 17,591 and
the computation time is about 2 times faster per a proposed
area. Thanks to all binarization, our proposed one does not
require any DSP48E and big CNN, which means that our
system can be realized by the tiny circuit and be more suit-
able for embedded systems.

Next, we realized the proposed system with a soft-
ware emulated event-driven camera on both the FPGA and a
Jetson TX2 GPU (NVIDIA Corp.) to compare FPS and
power consumption. In this paper, we consider the dynamic
board power consumption as the system power consump-
tion. The power consumption of the FPGA is measured us-
ing a tester as shown in Fig. 11, and a power monitor de-
termined the GPU one as shown in Fig. 12. The Chainer
framework realizes the GPU system. The results are shown
in Table 6.

The static power consumption of the FPGA system is
3.08 W, and the runtime power consumption is 3.20 W.
As for the dynamic power consumption, the GPU system
power consumption was 2.1 W while the FPGA consumed
only 0.14 W, thus showing that our proposal reduced power
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Table 6 Evaluate event-based object detection system

Mobile GPU FPGA (proposal)

Platform Jetson TX2 Zedboard
Speed [avg. FPS] 1.8 3.5
Power [W] 2.1 0.14
Efficiency [FPS/W] 0.9 25.0

consumption by 1.96 power reduction. As for performance,
the GPU achieved an average of 1.8 FPS, whereas the FPGA
achieved an average 3.5 FPS. From these results, it is clear
that our proposed system was about 2 times faster than a
comparable GPU system, and that in terms of performance
per power consumption (FPS/W), the FPGA was 27.8 times
higher than the GPU. Therefore, our system provides high
power efficiency.

8. Conclusion

We proposed an object detection system using a sliding win-
dow with an event-driven camera. Thanks to background
subtraction performed in the camera, it is easy for a slid-
ing window to detect object area candidates, and it provides
both reduced power consumption and high-speed detection.
We evaluated our proposed system in term of detection per-
formance, hardware requirement, and power efficiency. The
results showed that our system outperformed BCNN system
from the viewpoint of all except for recall, and also showed
that FPGA is more suitable for our system than mobile GPU.
From these results, under the constraints of stationary cam-
era (such as in the case of a security camera), our proposed
system is more suitable than are conventional object detec-
tion systems.
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