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SUMMARY Peer assessments, in which people review the works of
peers and have their own works reviewed by peers, are useful for assessing
homework. In conventional peer assessment systems, works are usually al-
located to people before the assessment begins; therefore, if people drop
out (abandoning reviews) during an assessment period, an imbalance oc-
curs between the number of works a person reviews and that of peers who
have reviewed the work. When the total imbalance increases, some peo-
ple who diligently complete reviews may suffer from a lack of reviews and
be discouraged to participate in future peer assessments. Therefore, in this
study, we adopt a new adaptive allocation approach in which people are
allocated review works only when requested and propose an algorithm for
allocating works to people, which reduces the total imbalance. To show the
effectiveness of the proposed algorithm, we provide an upper bound of the
total imbalance that the proposed algorithm yields. In addition, we extend
the above algorithm to consider reviewing ability. The extended algorithm
avoids the problem that only unskilled (or skilled) reviewers are allocated
to a given work. We show the effectiveness of the proposed two algorithms
compared to the existing algorithms through experiments using simulation
data.
key words: peer assessment, task allocation, allocation algorithm

1. Introduction

Peer assessments, in which people review the works of peers
and have their own works reviewed by peers, are useful for
reviewing homework. Especially, peer assessments are ef-
fective when assessing essay-type homework which is dif-
ficult to review automatically, and when the number of par-
ticipants is large, such as in a massive open online course
(MOOC), in which people can attend various lectures on the
Internet. Lecturers and teaching assistants (TAs) alone are
unable to review large volumes of works [1]–[3].

However, some reports indicate that people are not
willing to participate in peer assessments; one reason is
that people are disheartened by the lack of reviews [4], [5].
Therefore, we need to develop methods of peer assessment
that allow people to receive sufficient feedback based on the
number of reviews to increase the number of people who
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participate in peer assessments.
A major reason for the existence of insufficient review

numbers is that peers dropout without reviewing allocated
works [4], [6]. In existing peer assessment systems, each
person is usually asked to review a predefined number of
works, and works are allocated to people before the peer as-
sessments start. If a certain number of people drop out of the
review process, an imbalance occurs between the number of
works a person reviews (termed the “reviewing number”)
and the number of peers who review the work of the same
person (termed the “reviewed number”). When the total im-
balance increases, people who diligently finish reviews may
suffer from a lack of reviews and be discouraged to partici-
pate in future peer assessments. Note that we focus on the
assignment tasks that is not so difficult and time-consuming
to review for the people who complete the task. We assume
dropout occurs because people don’t have motivation. To
resolve dropout due to the task difficulty is out of our scope.

To address the above problem, we develop a new adap-
tive allocation approach in which people are allocated works
only when requested. People can request one work to review
at any time; they can request second and subsequent works
to review only after they have finished the review of the pre-
viously requested work. This rule is more suitable for a re-
alistic situation in which some people drop out during peer
assessments.

Under the above approach, our goal is to reduce the
sum of the absolute values of the differences between the
reviewing number and reviewed number of each person,
termed RR imbalance (reviewing-reviewed imbalance). We
propose an allocation algorithm called the RRB (reviewing-
reviewed balanced) allocation algorithm, which reduces the
RR imbalance, which means that it is highly possible that
the work of one person will be reviewed as many times as
that same person reviews the works of others. It can be ex-
pected that this algorithm resolves dissatisfaction about the
lack of reviews and incentivizes people to review the works
of their peers.

To demonstrate the usefulness of the RRB algorithm,
we theoretically prove that the RRB algorithm guarantees
an upper bound of the RR imbalance, which does not de-
pend on the number of people; instead, it depends on the
maximum reviewing number among people. In practical sit-
uations, the maximum reviewing number usually does not
increase, even if the number of people grows. Therefore,
our results show that the average difference between the re-
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viewing number of each person and the reviewed number
decreases as the number of people increases. This property
is desirable in MOOC settings from the viewpoint of fair-
ness among people.

However, unfairness still remains up to the amount of
the upper bound. To reduce the RR imbalance, extra effort
is required. For instance, in MOOC settings, lecturers and
TAs could perform extra reviews for people whose review-
ing number is above their reviewed number at the end of the
peer assessment. In this case, the obtained upper bound can
be used to estimate the number of reviews the lecturers and
TAs need to perform.

In addition, we also consider people’s reviewing ability
in addition to the RR imbalance. We assume that a scalar re-
viewing ability value for each person are given in advance,
similar to the existing research [7]. When the average re-
viewing ability value of the reviewers allocated to a work
varies, it means that the least (or most) skillful reviewers
concentrate on only one work. Hence, we want to make
this average value be balanced among works. Therefore, we
extend RR imbalance to a metric, called ARR imbalance
(ability-aware reviewing-reviewed imbalance), to measure
the imbalance of the average ability of the reviewers. We
propose an allocation algorithm, called ARRB (the ability-
aware reviewing-reviewed balanced allocation algorithm) to
minimize the ARR imbalance.

To show the effectiveness of the proposed two algo-
rithms, we experimentally compare the performance with
that of the existing nonadaptive allocation through experi-
ments using simulation data.

The remainder of this paper is organized as follows.
In Sect. 2, we introduce the related works. We describe the
problem definitions in this research in Sect. 3. In Sect. 4,
we describe the RRB algorithm and ARRB algorithm. In
Sect. 5, we prove the upper bound of the RR imbalance by
the RRB algorithm. We present the experimental results in
Sect. 6, and finally, we conclude this work and suggest fu-
ture work in Sect. 7.

2. Related Work

2.1 Allocation Methods in Peer Assessment

Crowdsourcing has attracted much attention, and stud-
ies on crowdsourcing and peer assessment are closely re-
lated [8]. Many task allocation methods have been proposed
for crowdsourcing [9]–[12]; however, there have been few
proposals for task allocation methods in peer assessments.
The difference between task allocations for crowdsourcing
and those for peer assessment is the strength of the incen-
tive provided; crowdsourcing can use clear incentives, such
as money, that are unavailable in peer assessment situations.
Consequently, dropout is more likely to occur in peer as-
sessments; thus, peer assessment research must consider the
effect of dropout.

Est’vez-Ayres et al. [13] proposed an allocation mech-
anism to avoid lack of reviews due to dropout and con-

firmed its usefulness through a simulation. They assumed
that some people were willing to review other works even
when their reviewing number exceeded their reviewed num-
ber. We do not assume such optimistic person characteristics
in this study.

Han et al. [7] proposed an allocation method that min-
imizes the differences between the sums of the reviewing
ability value of the reviewers allocated to work, based on
an algorithm called “Longest Processing Time”. They as-
sumed that a person’s reviewing ability value is given and,
like our work, aimed to find allocations to achieve fair re-
views. However, they did not consider dropout.

2.2 Methods for Improving the Quality of Reviews in Peer
Assessments

A method of automatically assessing review content (auto-
mated meta-reviewing) that prompts the reviewer to correct
and improve review content has been proposed [14]. In ad-
dition, another method was proposed in which the revie-
wee scores the reviewer on his or her review content [15].
Increasing the quality of the rubrics (reviewing standards)
used in peer assessments leads directly to improved review
quality; therefore, some studies have verified the effect of
rubrics [2], [16]. In addition, many studies exist that ag-
gregate reviewer scores in peer assessments; these studies
apply quality control research in the context of crowdsourc-
ing [3], [17]–[20]. The above studies are orthogonal to our
study; hence, we can combine their methodologies and re-
sults with ours.

3. Problem Setting

Initially, we explain our problem setting intuitively through
Fig. 1. In this research, to deal with realistic situations in
which some people drop out during the peer assessment pro-
cess, we propose an allocation algorithm that uses an adap-
tive allocation approach. Under this approach, a new work
is allocated to a person only when he or she requests one,
and he or she can request an additional work to review only
after he or she has finished the review of the previous work.
In addition, we assume that people always complete the re-
quested review. This assumption is considered to be valid
because people who are not willing to review do not request
a work in the first place.

In Fig. 1, we assume that there are five people, a, b, c, d,
and e, and each vertex represents a person. First, a requests
a work; then, the work of d is allocated to a. This allocation
is denoted by the directed edge from a to d. We assume
that no one can review his or her own work and that each
person can review a given work only once. After the first
allocation, the next allocation occurs when another person
requests a work, and then, a directed edge is drawn. These
steps are repeated under an adaptive allocation approach.

Let V be a set of people, Ei be the edge set and Gi

be the graph created up to the i-th allocation. Note that
E0 = ∅. The RR imbalance (reviewing-reviewed imbalance)
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Fig. 1 Example of adaptive allocation behavior.

in graph G1, which consists of single edge, is the sum of all
the absolute values of the differences between the reviewing
number (outdegree) and the reviewed number (indegree) as
follows: |1 − 0| + |0 − 0| + |0 − 0| + |0 − 1| + |0 − 0| = 2.
Now, let us assume that there are seven allocations during
this peer assessment. The final RR imbalance in graph G7 is
|2 − 2| + |2 − 0| + |1 − 0| + |1 − 2| + |1 − 3| = 6. In this study,
we propose an allocation algorithm that reduces the RR im-
balance at the end of a peer assessment. We also propose an
allocation algorithm to minimize the ARR imbalance that
considers reviewing ability value in addition to RR imbal-
ance. Note that, most of the existing peer assessment utilize
a nonadaptive approach, namely, determining the number of
reviews per person and allocating works to all people before
peer assessment begins. In our comparison experiments, we
apply two algorithms under such a nonadaptive approach as
the compared methods.

Some definitions are provided below. Let a person do-
ing the i-th request under the adaptive allocation approach
be xi ∈ V . A work by a person yi(� xi) ∈ V is allocated
to xi before a person xi+1 can request a work. This alloca-
tion is represented by a directed edge from xi to yi. In the
graph Gi, let the set of people whose works are allocated to
person v ∈ V be Ni(v) and N̄i(v) = V \ {Ni(v) ∪ {v}}; then,
yi+1 ∈ N̄i(xi+1). Moreover, use N′i (v) to denote the set of
people who review the work of person v ∈ V . The review-
ing number (outdegree) of person v in graph Gi is defined
as δ+i (v)(= |Ni(v)|), and the reviewed number (indegree) is
defined as δ−i (v)(= |N′i (v)|).

We explain the above definitions using Fig. 1. In
Fig. 1, we assume five people, a, b, c, d, and e; thus, V =
{a, b, c, d, e}. Initially, person a requests a work, and the
work of person d is allocated to a; therefore, x1 and y1 are a
and d, respectively. The edge set E1 of the graph G1(V, E1)
contains only one directed edge from a toward d. In addi-
tion, N1(a) = {d}, N̄1(a) = {b, c, e} and N′1(a) = {}, and the
node a has an outdegree of 1 and an indegree of 0; conse-
quently, δ+1 (a) = 1 and δ−1 (a) = 0.

Let the reviewing ability value of a person v ∈ V be a
nonnegative real number w(v), and a larger value represents
a better reviewing ability. In this work, for simplicity, we
assume that the reviewing ability value is given as in [7].
Note that estimating the reviewing ability value is out of the
scope of this research.

In this study, we first aim at achieving fair assessment
based on the number of reviews. Our goal is to reduce the
RR imbalance when the last allocation is done during the

peer assessment period. The RR imbalance is defined as
the sum of the absolute values of the difference between the
reviewing number and the reviewed number for all people.
That is, when the t-th allocation is finished, RR imbalance
It(V) can be calculated by the following equation:

It(V) =
∑

v∈V
|δ+t (v) − δ−t (v)|

Next, we extend RR imbalance considering reviewing
ability. We denote the average of the reviewing ability val-
ues of the people who review v ∈ V’s work as Wt(v) and the
average value of Wt(v) of all people as Ŵt(V). Our goal is
to minimize ARR imbalance, the sum of the RR imbalance
and the absolute sum of the difference between Wt(v) and
Ŵt(V) for all people. The ARR imbalance I′t (V) when the
t-th allocation is finished is given by the following equation.

I′t (V) =
∑

v∈V
|δ+t (v) − δ−t (v)| + λ ·

∑

v∈V
|Wt(v) − Ŵt(V)|

Note that

Wt(v) =
∑

v′∈N′t (v)

w(v′)/|N′t (v)|

Ŵt(V) =
∑

v∈V
Wt(v)/|V |

Here, λ is a nonnegative real number parameter. To empha-
size the number of reviews rather than the review quality, λ
should be decreased, while to emphasize review quality over
review quantity, λ should be increased.

4. Algorithm

In this section, we propose an allocation algorithm to reduce
the RR imbalance, termed RRB, and the algorithm to reduce
the ARR imbalance, termed ARRB. A theoretical analysis
of the RRB algorithm is given in Sect. 5, and experiments to
evaluate the performance of the RRB and ARRB algorithms
are presented in Sect. 6.

4.1 RRB (Reviewing-Reviewed Balanced Allocation Al-
gorithm)

The RRB algorithm adopts a greedy approach to reduce the
RR imbalance. We propose an algorithm that yi+1 is deter-
mined according to the following formula. Note that yi+1 is
selected randomly when multiple candidates exist.
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Fig. 2 Example of RRB behavior.

yi+1 ∈ arg max
v∈N̄i(xi+1)

(δ+i (v) − δ−i (v))

We provide an intuitive explanation of the above algo-
rithm using Fig. 2. In this figure, it is assumed that there
are five people, a, b, c, d, and e, whose requesting order is
〈a, d, b, a, c, d, c〉. First, the difference between the review-
ing number and the reviewed number of each person is 0;
therefore, the work is randomly allocated to a. Let us as-
sume that the work of e is randomly selected. Next, because
the difference between the reviewing number and reviewed
number of a is the maximum, the work of a is allocated to d.
Subsequently, a’s difference between reviewing number and
reviewed number becomes 0, while for d, the difference be-
comes 1. Therefore, the work of d is preferentially allocated
in the next step. In Fig. 2, the above allocation is repeated,
showing intuitively how the RRB algorithm aims to reduce
the RR imbalance.

4.2 ARRB (Ability-Aware Reviewing-Reviewed Bal-
anced Allocation Algorithm)

Next, we extend the RRB to an algorithm that reduces the
ARR imbalance. Here, W′t (v) represents the average review-
ing ability value of the reviewers who reviews v ∈ V’s sub-
mission and the reviewer xi+1. ŵ(V) represents the average
reviewing ability values of all people. We propose an al-
gorithm that allocates yi+1 to xi+1 based on the following
formula. Note that yi+1 is selected randomly when multiple
candidates exist.

yi+1 ∈ arg max
v∈N̄i(xi+1)

(δ+i (v) − δ−i (v) − λ · |W ′i (v) − ŵ(V)|)

where

W ′i (v) =
∑

v′∈N′i (v)∪{xi+1}
w(v′)/(|N′i (v)| + 1)

ŵ(V) =
∑

v′∈V
w(v′)/|V |

Ideally, instead of ŵ(V), we would use Ŵt(V) to obtain
the ARR imbalance; however, Ŵt(V) can be determined only
after all allocations are complete. Thus, ŵ(V) is used as an
approximated value.

5. Theoretical Analysis for the RRB Algorithm

In this section, we show that when the maximum outdegree

of graph Gi is k and the number of people exceeds k2+k+1,
the RRB algorithm ensures that the upper bound of the RR
imbalance in the graph Gi is O(k2). The upper bound does
not depend on the total number of people n; it depends only
on the maximum number of reviews performed by any one
reviewer. When an enormous number of people exist, such
as in an MOOC, k is expected to be considerably smaller
than n because one person cannot review works by every-
one. In other words, the proposed algorithm should be ex-
tremely effective on MOOCs. Although we assume that the
number of people is larger than k2 + k + 1, this is equivalent
to the assumption that the total number of people is larger
than the square of the reviewing number of any one person.
It is natural to use this assumption when many people are
participating. In the following section, after presenting two
lemmas, we prove our assertion of the upper bound.

Lemma 1: For a vertex subset V ′ ⊆ V of graph Gi, suppose
that the following inequality holds for all vertices v ∈ V ′:

δ+i (v) − δ−i (v) ≤ 0

We define the set of edges from V \ V ′ to V ′ as EI ⊆ Ei and
the set of edges from V ′ to V \ V ′ as EO ⊆ Ei. Then, the
following equation is satisfied:

Ii(V
′) = |EI | − |EO|

Proof 1: From the assumption, |δ+i (v) − δ−i (v)| = δ−i (v) −
δ+i (v) ≥ 0 is satisfied for any v ∈ V ′. Therefore, the RR
imbalance on V ′ is as follows:

Ii(V
′) =
∑

v∈V ′
δ−i (v) − δ+i (v) =

∑

v∈V ′
δ−i (v) −

∑

v∈V ′
δ+i (v)

Here, we define the edge set in V ′ as E′ ⊆ Ei, and the fol-
lowing two equations are satisfied:

∑

v∈V ′
δ−i (v) = |E′| + |EI |

∑

v∈V ′
δ+i (v) = |E′| + |EO|

Hence, Ii(V ′) = (|E′| + |EI |) − (|E′| + |EO|) = |EI | − |EO| �
Lemma 2: The maximum outdegree maxv∈V {δ+i (v)} in Gi

is defined as ki. Assuming that n > k2
i + ki + 1, the case

that the RR imbalance increases with the i+ 1-th allocation,
or Ii+1(V) > Ii(V), is limited to the following case, and the
increment is 2.

δ+i (xi+1) − δ−i (xi+1) ≥ 0 and δ+i (yi+1) − δ−i (yi+1) = 0
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Proof 2: We separate the cases as follows:

0. δ+i (xi+1) − δ−i (xi+1) < 0 & δ+i (yi+1) − δ−i (yi+1) > 0
1. δ+i (xi+1) − δ−i (xi+1) ≥ 0 & δ+i (yi+1) − δ−i (yi+1) > 0
2. δ+i (xi+1) − δ−i (xi+1) < 0 & δ+i (yi+1) − δ−i (yi+1) ≤ 0
3. δ+i (xi+1) − δ−i (xi+1) ≥ 0 & δ+i (yi+1) − δ−i (yi+1) < 0
4. δ+i (xi+1) − δ−i (xi+1) ≥ 0 & δ+i (yi+1) − δ−i (yi+1) = 0

Adding the edges (xi+1, yi+1) means that δ+i (xi+1) and
δ−i (yi+1) are incremented by 1. That is, δ+i (xi+1) − δ−i (xi+1)
increases by 1 and δ+i (yi+1)−δ−i (yi+1) decreases by 1. There-
fore, it is obvious that the RR imbalance decreases for case
0. Next, in cases 1 and 2, the RR imbalance does not change
because either |δ+i (xi+1) − δ−i (xi+1)| or |δ+i (yi+1) − δ−i (yi+1)|
increases by 1, but the other decreases by 1. In case
3, because the RRB algorithm chooses a yi+1 that meets
δ+i (yi+1) − δ−i (yi+1) < 0, we require the condition that
δ+i (v) − δ−i (v) ≤ δ+i (yi+1) − δ−i (yi+1) < 0 for any v ∈ N̄i(xi+1).
That is, |δ+i (v) − δ−i (v)| ≥ 1 for any v ∈ N̄i(xi+1). Here, be-
cause |Ni(xi+1)| ≤ ki, |N̄i(xi+1)| ≥ n−ki−1, the RR imbalance
on N̄i(xi+1) satisfies the following inequality:

Ii(N̄i(xi+1)) ≥ n − ki − 1 (1)

In contrast, the number of edges from Ni(xi+1) to N̄i(xi+1) is
at most k2

i because |Ni(xi+1)| ≤ ki; therefore, the following
inequality holds by Lemma 1:

Ii(N̄i(xi+1)) ≤ k2
i (2)

From the above two inequalities (1 and 2), n − ki − 1 ≤ k2
i .

However, this contradicts the assumption of Lemma 2 n >
k2

i + ki + 1. Therefore, case 3 cannot occur.
In addition, the RR imbalance increases by two in case

4. Thus, we complete the proof of Lemma 2. �

Theorem 1: We assume that n > k2
i + ki + 1. After the i-th

allocation based on the RRB algorithm is completed, the RR
imbalance in graph Gi satisfies the following condition:

Ii(V) ≤ 4k2
i − 4ki + 2

Proof 3: We provide an outline of the proof and prove The-
orem 1 using mathematical induction. First, using Lemma 2,
we show two conditions where the RR imbalance increases
during the i + 1-th allocation. Then, we divide the person
sets into {xi+1}, Ni(xi+1) and N̄i(xi+1) and consider the num-
ber of edges between sets and in each set to derive the upper
bound of the RR imbalance.

We begin our proof of Theorem 1 by mathematical in-
duction on the number of allocations i. The proposition
clearly holds when i = 1. We assume that the proposition
holds in the case of i = l(≥ 2). 1 ≤ kl ≤ kl+1; thus, the
condition when 4k2

l − 4kl + 2 ≤ 4k2
l+1 − 4kl+1 + 2 is satisfied.

Then, when the RR imbalance does not increase in the l+1-
th allocation—that is, when Il+1(V) ≤ Il(V) is satisfied—the
following condition is met:

Il+1(V) ≤ Il(V) ≤ 4k2
l − 4kl + 2 ≤ 4k2

l+1 − 4kl+1 + 2

Therefore, from Lemma 2, we should consider only the fol-
lowing equation:

Fig. 3 Grouping for proof of Theorem 1.

δ+l (xl+1) − δ−l (xl+1) ≥ 0 & δ+l (yl+1) − δ−l (yl+1) = 0 (3)

In addition, if δ+l (xl+1) = kl, then kl+1 = kl + 1 holds.
From Lemma 2, the RR imbalance increment is at most 2.
Consequently, the following holds:

Il+1(V) ≤ (4k2
l − 4kl + 2) + 2

≤ 4(kl + 1)2 − 4(kl + 1) + 2

= 4k2
l+1 − 4kl+1 + 2

Therefore, we need to consider only the following case:

δ+l (xl+1) ≤ kl − 1 (4)

Since the vertex set of graph Gl is {xl+1} ⊕ N̄l(xl+1) ⊕
Nl(xl+1) (see Fig. 3), Il(V) = Il({xl+1}) + Il(N̄l(xl+1)) +
Il(Nl(xl+1)). Subsequently, the values on the right side of
the expression can be calculated individually.

1 Il({xl+1}): We consider the edge sets E1, E2, and E3
in Fig. 3. From conditions (3) and (4), the following
condition holds:

Il({xl+1}) = |δ+l (xl+1) − δ−l (xl+1)|
= δ+l (xl+1) − δ−l (xl+1)

≤ δ+l (xl+1) ≤ kl − 1

2 Il(N̄l(xl+1)): We consider the edge sets E2, E4, and
E5 and the edges in N̄l(xl+1) in Fig. 3. From condi-
tion (3), the RRB algorithm selects a y+1 that meets
δ+l (yl+1) − δ−l (yl+1) = 0. Then, because the RRB al-
gorithm chooses a v ∈ N̄l(xl+1) with the maximum
δ+l (v) − δ−l (v), the following condition holds:

∀v ∈ N̄l(xl+1), δ+l (v) − δ−l (v) ≤ 0 (5)

Therefore, from Lemma 1, the RR imbalance on
N̄l(xl+1) is less than |E4| (the number of edges from
Nl(xl+1) to N̄l(xl+1)). From condition (4),
|Nl(xl+1)| ≤ kl − 1 holds. Then, because the maximum
outdegree is kl, the following is satisfied:

Il(N̄l(xl+1)) ≤ |E4| ≤ kl(kl − 1) (6)

3 Il(Nl(xl+1)): We consider the edge sets E1, E3, E4, and
E5 and the edges in Nl(xl+1) in Fig. 3. We utilize the
fact that the RR imbalance on Nl(xl+1) is less than the
sum of the outdegree and indegree in Nl(xl+1)—which
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can be written as follows:

Il(Nl(xl+1)) =
∑

v∈V
|δ+l (v)− δ−l (v)| ≤

∑

v∈V
(δ+l (v)+ δ−l (v))

From condition (4), because |Nl(xl+1)| ≤ kl − 1, the out-
degree is less than kl(kl−1), and the indegree is the sum
of the edges from {xl+1}, Nl(xl+1) and N̄l(xl+1).

a. Edges from {xl+1} (E1): From condition (4), the
number of edges is less than kl − 1.

b. Edges between Nl(xl+1): From condition (4),
|Nl(xl+1)| ≤ kl − 1. Then, the number of edges
is less than (kl − 1)(kl − 2) because no self-loop
occurs.

c. Edges from N̄l(xl+1) (E5): From condition (5) and
Lemma 1, the following is satisfied:

Il(N̄l(xl+1)) = |E4| − (|E2| + |E5|) ≥ 0

Therefore, from condition (6), |E5| ≤ |E2|+ |E5| ≤
|E4| ≤ kl(kl − 1) holds.

Hence, the sum of the indegree is less than (kl − 1) +
(kl−1)(kl−2)+kl(kl−1) = 2k2

l −3kl+1. Then, the sum of
the outdegree and indegree is less than kl(kl−1)+2k2

l −
3kl + 1 = 3k2

l − 4kl + 1, and Il(Nl(xl+1)) ≤ 3k2
l − 4kl + 1.

Therefore, after the l-th allocation, the following con-
dition holds:

Il(V) ≤ kl − 1 + kl(kl − 1) + 3k2
l − 4kl + 1=4k2

l − 4kl

The RR imbalance increment is 2 from Lemma 2, and kl =

kl+1 because of condition (4); thus, the following condition
is satisfied after the l + 1-th allocation:

Il+1(V) ≤ 4k2
l − 4kl + 2 = 4k2

l+1 − 4kl+1 + 2

which concludes the proof of Theorem 1. �

Based on the above proof, when using the RRB algo-
rithm, the upper bound of the RR imbalance in the graph Gi

is O(k2), when the maximum outdegree of graph Gi is k and
the number of people exceeds k2+k+1. By Theorem 1, even
if the number of people is large, when k = 5, we can know
beforehand that the upper bound becomes 4·52−4·5+2 = 82.

6. Experiments

We experimentally compare the proposed algorithms un-
der the adaptive allocation approach to algorithms under the
existing nonadaptive allocation approach using simulation
data. First, we describe the data characteristics, and then,
we describe baselines and present the experimental results.

6.1 Simulation Data Based on Canvas Network Dataset

We use the simulation data based on the data published by
Canvas Network†. This data is comprised of de-identified

†https://dataverse.harvard.edu/dataset.xhtml?persistentId
=doi:10.7910/DVN/XB2TLU

Fig. 4 The number of reviewers for each number of reviews from the real
data.

data from March 2014 - September 2015 of Canvas Network
open courses.

In our experiments, we utilize those data whose class
ID is 770000832960949 and whose assignment ID is
770000832930436 (denoted as CN data 1) and those data
whose class ID is 770000832945340 and assignment ID
is 770000832960431 (denoted as CN data 2). Specifi-
cally, we extract the submission ID, the ID of the stu-
dent who commented on the submission (the reviewer
ID), and the volume of comments from the table called
submission comment f act.

In CN data 1, one reviewer performed 25 reviews just
before the end of peer assessment. We consider this value
as representing a lecturer or TA who reviewed the student
submissions whose reviewed number is insufficient. Thus,
we replaced the reviewing number of this reviewer with
3, the mode value of the reviewing number from the CN
data 1 dataset. In addition, no information is available for
reviewers who did not review any submission from table
submission comment f act. Therefore, we instead use the
value obtained by subtracting the total number of reviewer
IDs from the total number of submission IDs as the number
of reviewers whose reviewing number is 0.

In this study, we regard that the more comments a re-
viewer writes, the higher his reviewing ability is. Therefore,
we define the reviewing ability as follows: We take the av-
erage of the aggregated volume of comments for each re-
viewer and then set the reviewing ability value to 0.2, 0.4,
0.6, 0.8 and 1.0 based on the ascending order of the aggre-
gated average. Note that the numbers of reviewers with each
reviewing ability value are adjusted to be as equal as possi-
ble.

We call the CN data 1 complemented as mentioned
above as real data 1, and the complemented CN data 2 as
real data 2. Figure 4 shows a plot of the number of review-
ers for each number of reviews from the datasets real data 1
and real data 2.

In the Canvas Network data, because the submission ID
is not linked with the ID of the student, it is impossible to
determine whose submission a student reviewed. This situa-
tion occurs because of the anonymization process to prevent
data disclosure. Thus, it is impossible to calculate the ac-
tual RR imbalance and ARR imbalance using the real data.
Therefore, in this research, we measure the effectiveness of
the proposed methods through simulations.

In addition, it is not possible to read the strict reviewing
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Fig. 5 The number of reviewers for each number of reviews from the
synthetic data.

order from the Canvas Network data. Therefore, we con-
struct the reviewing order using the following two methods:

6.1.1 Construct the Reviewing Order Based on the Time
When the Comments Were Created

This method uses the timestamp in the table called
submission comment dim for when the comment was cre-
ated, that is, when the review is completed. We need the
time when the review is started to construct the accurate re-
viewing order, but in this method, we arrange the reviewer
IDs in decreasing order based on the available timestamp
instead. The data complemented based on this method are
considered to be the most realistic data used in this experi-
ment.

6.1.2 Construct the Reviewing Order Based on Reviewer
Transition Model

We set the probability that reviewer xi+1 is the same as the
previous reviewer xi to P, and arrange the reviewing IDs
according to this probability. Note that, when the previous
reviewer xi cannot review another submission, the reviewer
xi+1 is randomly selected regardless of xi. For example,
when P = 0, reviewer xi+1 is randomly chosen regardless
of the previous reviewer xi, and when P = 1, reviewer xi+1

is selected to be the previous reviewer xi.

6.2 Simulation Data Based on Synthetic Dataset

We use the simulation data based on the following two types
of synthetic data. The first dataset includes only those re-
viewers whose reviewing number is 3 (we term this the bi-
ased data), and the second dataset includes those reviewers
whose reviewing numbers are uniformly between 0 and 4
(we term this the flat data). In both datasets, the total num-
ber of students is 1000 (see Fig. 5). The biased dataset can
be regarded as an extreme example of data with the similar
tendency as that of real data 1, and the flat data can be re-
garded as an extreme example of data with the similar ten-
dency as that of real data 2. We set the reviewing ability
value to 0.2, 0.4, 0.6, 0.8, and 1.0 randomly as the numbers
of reviewers with each reviewing ability value are adjusted
to be equal. The reviewing order is generated based on the
reviewer transition model described in Sect. 6.1.2.

6.3 Comparison Methods

As comparison methods, we utilize two algorithms under
a nonadaptive approach in which the number of submis-
sions that a student should review is typically fixed, and sub-
missions are allocated to students before assessment starts.
Most of the existing peer assessment methods adopt this ap-
proach.

To utilize nonadaptive approach, we need to set the
number of submissions allocated to one student, but that ac-
tual number in each real data is not available. For the simu-
lation of real data 1, the most natural approach may be to set
the number of submissions allocated to a student to 3 in the
comparison methods. Note that we assume that students can
request additional works after they complete reviewing the
allocated works like the existing work [13]. Therefore, we
suppose that a student whose reviewing number is 4 requests
an additional work, and an additional work is randomly al-
located for simulation.

For the simulation of real data 2, it is difficult to deter-
mine a fixed number of submissions that should be allocated
to a student; however, we also set the value to 3 in our exper-
iments. In addition, each synthetic data is an extreme case
of each real data; hence we set the number of submissions
that a student should review to 3. In this case, the descend-
ing order of dropout rate is considered to be the rate in the
flat data, real data 2, real data 1 and biased data datasets.
In particular, no one dropout data exists in the biased data
dataset.

The detail of the comparison methods are as follows:

6.3.1 Naive Allocation Algorithm in Nonadaptive Ap-
proach

This algorithm adopts random allocations assuming both the
reviewing number and the reviewed number for all students
are 3. Under the simulation, when a student’s actual review-
ing number is smaller than 3, works are randomly selected
from the works allocated in advance. In addition, for stu-
dents whose reviewing number is larger than 3, an additional
work is randomly selected from the works which are not al-
located beforehand. We denote this algorithm as Random.

6.3.2 Ability-Aware Allocation Algorithm in Nonadaptive
Approach

This algorithm approximately allocates as the dispersion be-
tween the total reviewing ability values of the reviewers al-
located to individual submissions becomes small, and sup-
posing that the reviewing number and the reviewed number
for all students are 3. This algorithm is based on an alloca-
tion algorithm called Longest Processing Time [7]; hence,
we denote this algorithm as LPT.



946
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

Fig. 6 Experimental results on the simulation based on real data complemented by the reviewer tran-
sition model when λ = 1.

Table 1 Experimental results on the simulation based on real data 1 us-
ing the time when the comments were created.

RRB ARRB Random LPT
RR imbalance 12 10 724 792
ARR imbalance 80.1 66.6 810.7 863.5

Table 2 Experimental results on the simulation based on real data 2 us-
ing the time when the comments were created.

RRB ARRB Random LPT
RR imbalance 12 14 90 94
ARR imbalance 18.9 19.9 98.2 100.7

6.4 Experimental Results

6.4.1 Simulation Based on Real Data with the Reviewing
Order in Sect. 6.1.1

We apply two algorithms and two comparison algorithms
to the real data 1 and real data 2 datasets whose reviewing
order is constructed based on the creation date and time of
the reviewing comments. In this experiment, the parame-
ter λ, which is used for the ARR imbalance and ARRB, is
set to 1. The results are shown in Tables 1 and 2. Small
values are preferable for both RR imbalance and ARR im-
balance; therefore, the above results show that the proposed
algorithms work more effectively than do the existing algo-
rithms. In addition, because the maximum reviewing num-
ber is 4 in the real data 1 and 2 datasets, the upper bound of
RR imbalance (as described in Sect. 5) is 50, and the results
are satisfied with this upper bound.

ARRB obtains results that are superior to RRB regard-
ing both RR imbalance and ARR imbalance on the real data
1 dataset. In contrast, RRB is superior to ARRB regarding
both RR imbalance and ARR imbalance on the real data 2
dataset. These results do not consist with the aim of RRB
and and ARRB. We compare and examine RRB and ARRB
in more detail in subsequent experiments.

6.4.2 Simulation Based on Real Data with the Reviewing
Order in Sect. 6.1.2

We use the real data 1 and real data 2 datasets whose re-

viewing order is constructed based on the reviewer transi-
tion model, in which the probability P is 0, 0.2, 0.4, 0.6, 0.8,
or 1. The parameter λ, which is used for ARR imbalance
and ARRB, is set to 1. For each method, we generate 100
reviewing order and apply the algorithms to these data. We
obtain the average value of RR imbalance and the average
value of ARR imbalance.

The results are shown in Fig. 6. The vertical axis rep-
resents the RR imbalance or the ARR imbalance, and the
horizontal axis represents the probability value P. The four
types of lines plotted in each figure represent the following.

• RRB: Imbalance using RRB (blue)
• Random: Imbalance using Random (orange)
• ARRB: Imbalance using ARRB (green)
• LPT: Imbalance using LPT (red)

Figure 6 shows that the performance of the two pro-
posed algorithms greatly exceeds those of the two existing
algorithms. We can confirm that the upper bound of RR im-
balance discussed in Sect. 5 is established. We can also see
that the performances of the two proposed algorithms de-
teriorate when the probability P is high—that is, the same
reviewers continue reviewing. Note that we cannot find any
tendency as P changes because two nonadaptive compari-
son algorithms do not use the reviewing order for simula-
tion. Although the RRB algorithm tries to minimize the RR
imbalance and the ARRB algorithm tries to minimize the
ARR imbalance, there is no discernable performance dif-
ference between the two algorithms from the results shown
in Fig. 6 (a)(c)(d). However, we can observe that ARRB is
superior to RRB in Fig. 6 (b). This experiment suggests that
ARRB can reduce the ARR imbalance further than can RRB
while achieving an RR imbalance equally as good as that of
RRB.

6.4.3 Simulation Based on Synthetic Data with the Re-
viewing Order in Sect. 6.1.2

We conducted an experiment similar to the second exper-
iment but on the biased data and the flat data. The result
is shown in Fig. 7. We can confirm that the upper bound
of the RR imbalance described in Sect. 5 is established. In
the case of flat data, the proposed algorithm greatly out-
performs the existing algorithm, but in the biased data the
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Fig. 7 Experimental results on the simulation based on synthetic data complemented by the reviewer
transition model when λ = 1.

Fig. 8 Experimental results on the simulation based on real data and synthetic data complemented by
the reviewer transition model when the transition rate is P = 0.5.

proposed algorithm’s performance is inferior to that of the
existing algorithm. This result occurs because all the sub-
missions allocated before assessment are reviewed, that is,
there is no dropout; thus, the RR imbalance is always 0.
In fact, we can see from Fig. 7 (a) that the RR imbalance
remains at 0 with the Random algorithm. In addition, as
shown in Fig. 7 (b), the ARR imbalance is the smallest with
LPT. However, when many students have the same number
of reviews and only a few students with different reviewing
numbers exist, as in real data 1 (see Fig. 4 (a)), the results
using Random and LPT become worse (see Fig. 6 (a)(b)).
Therefore, under nonadaptive allocation, the Random and
LPT algorithms work effectively only in certain special situ-
ations. In addition, in Fig. 7 (a)(c), little performance differ-
ence between the two proposed algorithms can be observed,
and as Fig. 7 (b) and (d) show, ARRB is superior to RRB.

6.4.4 Experiments for λ in ARR Imbalance

We fixed the transition rate P to 0.5 and varied λ using the
values 0, 0.5, 1.0, 1.5, 2.0, and 2.5. We obtained the ARR
imbalance values for the two real and two synthetic datasets.
The results are shown in Fig. 8. In Fig. 8 (a)(b)(d), the pro-
posed algorithms are superior to the existing algorithms and
ARRB is superior to RRB, similar to the previous experi-
ments. In addition, as shown in Fig. 8 (c), the LPT algo-
rithms work effectively in the biased data, but this occurs
only in special situation as mentioned in the third experi-
ment. We also find that, when λ is larger, the difference
between ARR imbalance by ARRB and that by RRB tends

to become larger. This is because ARRB considers the fair-
ness in the reviewing ability and that is emphasized when λ
is large.

The results from all four experiments suggest that the
proposed algorithm outperforms the existing algorithms in
many cases. In addition, ARRB performs comparably to
RRB with respect to RR imbalance and achieves better per-
formance with respect to ARR imbalance.

7. Conclusion

In this study, we propose the allocation algorithms RRB and
ARRB to achieve fair peer assessment with respect to the
number and contents of reviews using an adaptive allocation
approach and considering a situation where dropout can oc-
cur during peer assessment. We analyze the RRB algorithm
theoretically and show its robustness. We also confirm the
usefulness of the proposed allocation algorithms through ex-
periments using simulation data. In future work, we plan to
study how to estimate the reviewing ability values from the
students’ past behavioral data and estimate the final eval-
uation scores using the scoring results of each submission
by students. Subsequently, we hope to propose a framework
that could be useful throughout the peer assessment process.
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[13] I. Estévez-Ayres, R.M.C. Garcı́a, J.A. Fisteus, and C.D. Kloos, “An
algorithm for peer review matching in massive courses for min-
imising students’ frustration,” J. UCS, vol.19, no.15, pp.2173–2197,
2013.

[14] L. Ramachandran, Automated assessment of reviews, North Car-
olina State University, 2013.

[15] L. de Alfaro and M. Shavlovsky, “Crowdgrader: A tool for crowd-
sourcing the evaluation of homework assignments,” Proceedings of
the 45th ACM technical symposium on Computer science education,
pp.415–420, 2014.

[16] D. Babik, E.F. Gehringer, J. Kidd, F. Pramudianto, and D. Tinapple,
“Probing the landscape: Toward a systematic taxonomy of online
peer assessment systems in education,” Educational Data Mining
(Workshops), 2016.

[17] N.B. Shah, J.K. Bradley, A. Parekh, M. Wainwright, and K. Ram-
chandran, “A case for ordinal peer-evaluation in moocs,” NIPS
Workshop on Data Driven Education, 2013.

[18] K. Raman and T. Joachims, “Methods for ordinal peer grading,”
Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp.1037–1046, 2014.
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