
982
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

PAPER Special Section on Data Engineering and Information Management

Multiple Regular Expression Pattern Monitoring over Probabilistic
Event Streams

Kento SUGIURA†a), Nonmember and Yoshiharu ISHIKAWA†, Member

SUMMARY As smartphones and IoT devices become widespread,
probabilistic event streams, which are continuous analysis results of sens-
ing data, have received a lot of attention. One of the applications of prob-
abilistic event streams is monitoring of time series events based on regular
expressions. That is, we describe a monitoring query such as “Has the
tracked object moved from RoomA to RoomB in the past 30 minutes?” by
using a regular expression, and then check whether corresponding events
occur in a probabilistic event stream with a sliding window. Although we
proposed the fundamental monitoring method of time series events in our
previous work, three problems remain: 1) it is based on an unusual as-
sumption about slide size of a sliding window, 2) the grammar of pattern
queries did not include “negation”, and 3) it was not optimized for multiple
monitoring queries. In this paper, we propose several techniques to solve
the above problems. First, we remove the assumption about slide size, and
propose adaptive slicing of sliding windows for efficient probability calcu-
lation. Second, we calculate the occurrence probability of a negation pat-
tern by using an inverted DFA. Finally, we propose the merge of multiple
DFAs based on disjunction to process multiple queries efficiently. Exper-
imental results using real and synthetic datasets demonstrate effectiveness
of our approach.
key words: probabilistic event streams, regular expressions, pattern
matching, sliding windows

1. Introduction

It has become important to process probabilistic event
streams because of the development of sensing technologies
and machine learning. Machine learning techniques, par-
ticularly supervised learning, can recognize the real world
events from raw sensing data, such as accelerometer of
smartphones [1] and RFID and Wi-Fi signals [2]. Although
recognized events are useful and intuitive, the uncertainty
of classification is a crucial problem for utilization. In other
words, analysis results of machine learning include errors
because of some reasons, such as sensing noises and unpre-
dictable incidents in the real world. We consider such non-
definite event streams as probabilistic event streams. For
instance, Fig. 1 shows a probabilistic event stream of indoor
location tracking. The probabilities indicate the possibility
of presence at corresponding locations. That is, the uncer-
tainty of classification is expressed by probabilistic distribu-
tions at every time step.

To utilize probabilistic event streams, existing meth-
ods proposed monitoring of time series events based on a

Manuscript received June 26, 2019.
Manuscript revised November 4, 2019.
Manuscript publicized February 3, 2020.
†The authors are with Graduate School of Informatics, Nagoya

University, Nagoya-shi, 464–8601 Japan.
a) E-mail: sugiura@db.is.i.nagoya-u.ac.jp

DOI: 10.1587/transinf.2019DAP0009

Fig. 1 A probabilistic event stream

regular expression [3]–[9]. In other words, they challenge
complex event processing [10], [11] over probabilistic event
streams. Although machine learning can recognize raw
sensing data as the real world events, each event relates to
only one time step. Since a probabilistic event cannot rec-
ognize continuous event occurrence directly, existing work
tried to detect a time series event that is an event sequence
with a specific order [12], [13]. For example, consider a time
series event that is “a tracked object moves from RoomA to
RoomB” in Fig. 1. In this case, the following regular expres-
sion shows such a time series event:

q = 〈a+ .∗ b+〉,
where a and b are abbreviations of RoomA and RoomB, re-
spectively. Note that a wild card (a dot symbol) indicates
any event symbol, and so pattern q accepts any route from
RoomA to RoomB.

The existing work [7] uses a sliding window with reg-
ular expressions to describe monitoring queries. A sliding
window limits the maximum duration w between the first
event occurrence and the last one to prevent too long time
series events from detecting. Furthermore, a sliding win-
dow can change its update frequency l according to user’s
requirements. Let us continue the above example. Consider
that a user wants to detect movement events q in the past
30 minutes and update detection results at every 5 minutes.
When a unit of time is 5 minutes in Fig. 1, window and slid-
ing sizes are w = 6 and l = 1, respectively. Note that we
denote a certain time window as [ts : te] in this paper. Thus,
a sliding window changes such as [1 : 6], [2 : 7], and [3 : 8].

Existing work [3]–[7], [9], however, does not calculate
the appropriate probabilities of time series events for mon-
itoring queries. In a definite event stream, matching results
(i.e., matches) show the occurrence of specified time series
events. On the other hand, since matches show only the
possibility of occurrence of time series events in probabilis-
tic event streams, we have to check whether a time series

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

SUGIURA and ISHIKAWA: MULTIPLE REGULAR EXPRESSION PATTERN MONITORING OVER PROBABILISTIC EVENT STREAMS
983

event occurs or not in a window. Consider the previous ex-
ample. When we answer the query “has a tracked object
moved from RoomA to RoomB in the past 30 minutes?”, we
need to calculate the occurrence probability of such a move-
ment in each time window. However, almost all existing
methods focused on the detection of matches and did not
propose the calculation methods for the probabilities of time
series events. For instance, when we apply the above query
to Fig. 1, existing methods detect some matches from [1 : 6]
as follows:

m1 = 〈a1, .2, .3, .4, b5〉 P(m1) = 0.36,

m2 = 〈a1, .2, .3, .4, .5, b6〉 P(m2) = 0.36, and

m3 = 〈a2, .3, .4, b5, b6〉 P(m3) = 0.216.

Although each match has its occurrence probability, it is the
probability of a specific movement from RoomA to RoomB. It
is difficult for a user to infer the occurrence of a time series
event from these matches because they are correlated and
may take small probabilities with Kleene closures [9].

We thus propose an efficient method to calculate the
probabilities of time series events with a sliding window.
The proposed method does not detect matches but calculates
the probabilities of time series events in a sliding window
directly. Let us continue the above example. We calculate
the occurrence probability of pattern q in window [1 : 6] by
using our approach:

P[1:6](q) � 0.75.

That is, the occurrence probability of a movement from
RoomA to RoomB is about 75% over window [1 : 6]. Un-
like in the case of matches, this probability helps a user to
infer the occurrence of time series events.

Although we proposed the fundamental solution for a
monitoring query in our previous work [14], we extend the
proposed method in this paper.

• We extend the problem definition of a monitoring query
to accept user-specific slide size. Moreover, we adap-
tively apply a slicing technique [15], [16] for efficient
processing according to a slide size. (Sect. 4)
• To deal with negation in pattern queries, we propose the

calculation method based on an inverted deterministic
finite automaton (DFA). (Sect. 5)
• To process multiple queries simultaneously, we merge

queries into one regular expression by using disjunc-
tion. Since a naı̈ve approach cannot calculate occur-
rence probabilities of each query separately, we pro-
pose the two-step integration of DFAs. (Sect. 6)

This paper is constructed as follows. First, we define
basic concepts to discuss the proposed method in Sect. 2.
In Sect. 3, we explains a probability calculation method for
time series events in a sliding window. Sections 4, 5, and
6 describe the above contributions, respectively. Then, we
evaluate the proposed method by experiments in Sect. 7. We
introduce the related work in Sect. 8 and conclude the paper
in Sect. 9.

2. Preliminaries

In this section, we explain the basic concepts of pattern
matching in a probabilistic event stream. First, we introduce
the definitions of a probabilistic event stream and a query
pattern. Then, we define the probability of a time series
event within a window by using the possible world seman-
tics. Finally, we define pattern monitoring queries with a
sliding window.

2.1 Probabilistic Event Streams

First, we define a probabilistic event as a component of a
probabilistic event stream.

Definition 1. A probabilistic event et is a probabilistic dis-
tribution to express the occurrence of an event at time step t.
Let Σ be an universal set of event symbols. Each event sym-
bol α ∈ Σ has an occurrence probability P(et = α), and the
probabilities satisfy the following properties.

∀α ∈ Σ, 0 ≤ P(et = α) ≤ 1 (1)

∀α, β ∈ Σ, α � β→ P(et = α ∧ et = β) = 0 (2)

P(
∨
α∈Σ

et = α) =
∑
α∈Σ

P(et = α) = 1 (3)

�

In the rest of the paper, we abbreviate et = α as αt for
simplicity.

We define a probabilistic event stream in terms of prob-
abilistic events.

Definition 2. A probabilistic event stream PES =

〈e1, e2, . . .〉 is an infinite sequence of probabilistic events.
�

For instance, we can represent the probabilistic event
stream in Fig. 1 as PES = 〈e1, e2, e3, e4, e5, e6, e7, . . .〉,
where Σ = {a, b, c, d, e}.

2.2 Query Pattern and Matches

We define the grammar of query patterns.

Definition 3. Let α, ε, and “.” be an event symbol in Σ,
an empty symbol, and a wildcard (i.e., an arbitrary symbol),
respectively. A query pattern is generated by the following
grammar:

q ::= α | ε | . | q q | q ∨ q | q∗ | q+ | (q) | ¬q (4)

�

In other words, we assume that query patterns are specified
by regular expressions [17].

We define a match as a concrete event sequence for a
query pattern.

984
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

Definition 4. A match m = 〈αts , . . . , αte〉 is a sequence of
event symbols that fits a specified query pattern. Let m.ts

and m.te be the start and end time step of match m, respec-
tively. The probability of match m is calculated as follows:

P(m) =
m.te∏

t=m.ts

P(αt) (5)

�

2.3 Probabilities of Time Series Events in a Window

We define the occurrence probability of a time series event
in a certain window.

First, Definition 5 defines possible worlds of a proba-
bilistic event stream in a window.

Definition 5. Let PES [t−w+1:t] = 〈et−w+1, et−w+2, . . . , et〉 be
a subsequence of PES in a window, and let Σt be the set
of event symbols that have positive occurrence probabilities
at time step t. Given a probabilistic event stream PES and
a window with size w, the set of possible worlds Ω[t−w+1:t]

is the universal set of event sequences that can occur in
PES [t−w+1:t], and it is specified by the cartesian product of
every Σt in a window.

Ω[t−w+1:t] = Σt−w+1 × Σt−w+2 × · · · × Σt (6)

The probability of each possible world ω = 〈αt−w+1, . . . , αt〉
∈ Ω[t−w+1:t] is calculated as follows:

P(ω) =
t∏

t′=t−w+1

P(αt′) (7)

�

For instance, when we apply window [1 : 3] to the
probabilistic event stream in Fig. 1, the set of possible
worlds Ω[1:3] has 125 event sequences including:

ω1 = 〈a1, a2, b3〉, P(ω1) = 0.018,

ω2 = 〈a1, a2, c3〉, P(ω2) = 0.162, and

ω3 = 〈a1, c2, b3〉, P(ω2) = 0.0045.

We define a probability space for a probabilistic event
stream by using possible worlds.

Definition 6. Let 2X be the power set of X. Given a win-
dowed stream PES [t−w+1:t], the probability space is defined
as (Ω[t−w+1:t], 2Ω[t−w+1:t] , P). Note that P is a probability mea-
sure and satisfies the following properties:

P(Ω[t−w+1:t]) = 1 (8)

X ∈ 2Ω[t−w+1:t] , P(X) =
∑
ω∈X

P(ω) (9)

�

Definition 7 defines the occurrence probability of a
time series event.

Definition 7. Let Ω[t−w+1:t](q) be the set of possible worlds
that include a match of query pattern q as a subsequence.
Given a windowed stream PES [t−w+1:t] and pattern q, the
occurrence probability of a time series event of pattern q
is calculated as follows:

P[t−w+1:t](q) = P(Ω[t−w+1:t](q)) (10)

=
∑

ω∈Ω[t−w+1:t](q)

P(ω)

�

We continue the above example. Given pattern q =
〈a+ .∗ b+〉, the set of corresponding possible worldsΩ[1:3](q)
includes ω1 and ω3. We can calculate the probability of a
time series event by summing up their probabilities.

P[1:3](q) = P(Ω[1:3](q))

= P(ω1) + P(ω3) + · · ·
= 0.0705

2.4 Problem Definition

We define pattern monitoring queries with a sliding window.

Definition 8. Let PES , Q, w, and l be a probabilistic
event stream, query patterns, a window size, and a slid-
ing size, respectively. A pattern monitoring query requires
(PES ,Q, w, l) as input and continuously outputs every oc-
currence probability of a pattern qi ∈ Q at each sliding win-
dow:

{{P[1:w](q1), P[1:w](q2), . . . },
{P[1+l:w+l](q1), P[1+l:w+l](q2), . . . },
{P[1+2l:w+2l](q1), P[1+2l:w+2l](q2), . . . }, . . . }.

(11)

�

For example, if an input set is (PES in Fig. 1, {q =

〈a+ .∗ b+〉}, w = 6, l = 1), the proposed method calculates
every probability of q at each window and outputs as fol-
lows:

{{P[1:6](q) � 0.75}, {P[2:7](q) � 0.66}, . . . }. (12)

In our previous work [14], we do not deal with a slid-
ing size as a parameter. That is, slide size l is fixed to 1.
Although we optimized the proposed method in such a set-
ting, a sliding size is usually tuned by a user. For example,
consider indoor location tracking. If a location event occurs
at every second, we need window size w = 3600 to monitor
the occurrence of a certain time series event past one hour.
In such a case, however, we do not need to update a window
at every second (i.e., l = 1). To monitor time series events, it
is sufficient to update a window with longer intervals, such
as at every minute (i.e., l = 60). We thus extend the prob-
lem definition in this paper, and optimize query processing
in this setting.

SUGIURA and ISHIKAWA: MULTIPLE REGULAR EXPRESSION PATTERN MONITORING OVER PROBABILISTIC EVENT STREAMS
985

3. Probability Calculation Based on Probabilistic
Transition Matrices

In this section, we describe a calculation method for the
probabilities of time series events in a time window. In the
following, we explain enumeration-based and DFA-based
approaches.

We assume that a windowed stream PES [t−w+1:t] is re-
tained as an array at each time step. That is, every proba-
bilistic event et ∈ PES [t−w+1:t] is accessible during calcula-
tion.

3.1 Naı̈ve Approach

We explain the enumeration-based approach to calculate the
probability of a time series event in a window. As shown in
Definition 7, P[t−w+1:t](q) is the sum of the probabilities of
possible worlds that include a match of q as a subsequence.
Thus, we can calculate P[t−w+1:t](q) by enumerating all the
possible worlds in a window and extracting matching ones.

However, this naı̈ve method is inefficient. The number
of possible worlds increases O(|Σ|w) with the universal set of
event symbols Σ and window size w. As we need exponen-
tial computation time whenever a window slides, this naı̈ve
method is inappropriate for stream processing.

3.2 DFA-Based Approach

We propose an efficient calculation method based on a DFA.
This method does not enumerate possible worlds but calcu-
lates the sum of their probabilities of arrival at each state in
a DFA. Note that we proposed the basic idea of this method
in our previous work [8], [14].

First, we construct a DFA that accepts matching pos-
sible worlds. Since each matching possible world ω ∈
Ω[t−w+1:t](q) includes a match of pattern q as a subsequence,
we can describe them by a regular expression 〈.∗ q .∗〉. Thus,
we can construct a corresponding DFA by using basic meth-
ods, such as the Thompson’s construction and the subset
construction [17]. For instance, Fig. 2 shows a DFA of a
regular expression 〈.∗ q .∗〉 with pattern q = 〈a+ .∗ b+〉.

Given a DFA that accepts matching possible-worlds
Ω[t−w+1:t](p), we can avoid enumerating all the possible-
worlds. When we input a probabilistic event stream to a
DFA, all the possible worlds arrive at any one of states be-
cause of the deterministic property of DFAs. That is, the
probability of arrival at a specific state is identical to the
sum of the probabilities of arriving possible worlds. Since
all the matching possible-worlds arrive at any one of the fi-
nal states, the probability of arrival at the final states is the

Fig. 2 DFA of 〈.∗ a+ .∗ b+ .∗〉

occurrence probability of a time series event.
We calculate the probabilities of arrival at each state by

using probabilistic transition matrices. The following ma-
trix is an example of a probabilistic transition matrix for the
DFA in Fig. 2:

Tp(et) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P(¬at) P(at) 0

0 P(¬bt) P(bt)
0 0 P(.)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (13)

In transition matrices, rows and columns correspond depar-
ture and arrival states, respectively. We set each transition
probability by an input event. For instance, we generate the
following transition matrix by using e1 in Fig. 1:

Tp(e1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.40 0.60 0

0 0.95 0.05
0 0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (14)

To calculate the probabilities of arrival at each state
Vp, we initialize the probability of arrival at the initial
state to 1.0, and then product transition matrices in a win-
dow. For instance, consider the calculation of P[1:6](q)
where the probabilistic event stream in Fig. 1 and pattern
q = 〈a+ .∗ b+〉 are given. First, we initialize the probabilities
of arrival at each state:

Vinit =
[

1.0 0 0
]
. (15)

Next, we calculate the probabilities of arrival at each state
over window [1 : 6] by multiplying Vinit and probabilistic
transition matrices together:

Vp(PES [1:6]) = Vinit

6∏
t=1

Tp(et) (16)

�
[

0.12 0.13 0.75
]
. (17)

As Vp(PES [1:6]) shows that the probability of arrival at the
final state (i.e., state 2 in Fig. 2) is 0.75, the occurrence prob-
ability of a time series event is as follows:

P[1:6](q) � 0.75. (18)

When we answer pattern monitoring queries with a
slicing window, we apply the DFA-based method to every
query for each time window. That is, we prepare DFAs
of every query and calculate the vector-matrix products for
each windowed probabilistic stream. However, we can cal-
culate the occurrence probabilities of time series events
more efficiently in some parameter settings. We propose
an efficient calculation for a sliding window in Sect. 4 and
multiple queries in Sect. 6.

4. Adaptive Slicing for Efficient Calculation

When we use a sliding window for time series event mon-
itoring, we need duplicate matrix products in the probabil-
ity calculation. For instance, consider that (PES in Fig. 1,
{q = 〈a+ .∗ b+〉}, w = 5, l = 2) is given. As the first and

986
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

Fig. 3 Slicing a stream with slide size l = 3

the second windows are [1 : 5] and [3 : 7], respectively, we
calculate the occurrence probabilities of q in these windows
based on the DFA-based approach.

Vp(PES [1:5]) = Vinit

5∏
t=1

Tp(et) (19)

�
[

0.13 0.31 0.56
]

∴ P[1:5](q) � 0.56 (20)

Vp(PES [3:7]) = Vinit

7∏
t=3

Tp(et) (21)

�
[

0.73 0.07 0.20
]

∴ P[3:7](q) � 0.20 (22)

However, Eqs. (19) and (21) include duplicate products∏5
t=3 Tp(et).

Thus, we apply a slicing technique [15], [16] to omit
redundant matrix products. A slicing technique is used for
window-aggregate in data stream processing, and it consists
of two phases: an update phase and a reduce phase. Figure 3
shows these phases in a slicing technique graphically. In the
update phase, we slices a window into small chunks, and
then computes partial aggregates incrementally at each time
step. When a stream reaches the end of a certain window,
the reduce phase calculates the window aggregate by using
partial ones of corresponding chunks. Note that the optimal
chunk size is derived by the existing work [15]; we can use
slide size l as the optimal chunk size.

In the case of the above example, we slice a window
into chunks with chunk size 2. That is, Eqs. (19) and (21)
become the following equations, respectively.

Vp(PES [1:5]) = Vinit

2∏
t=1

Tp(et)
4∏

t=3

Tp(et)
5∏

t=5

Tp(et)

(23)

Vp(PES [3:7]) = Vinit

4∏
t=3

Tp(et)
6∏

t=5

Tp(et)
7∏

t=7

Tp(et)

(24)

The equations shows that we can reuse the results of ma-
trix products such as

∏4
t=3 Tp(et). To calculate these equa-

tions with a slicing technique, the update phase calculates
the products between transition matrices (i.e., partial aggre-
gates), such as

∏4
t=3 Tp(et), at each time step. When a stream

reaches the end of a certain window, such as t = 5 in this
case, the reduce phase calculate the corresponding equation
by using the calculated products of transition matrices.

4.1 Adaptive Slicing

Although a slicing technique is an useful calculation strat-
egy, we should not use it anytime for our probability calcu-
lation. A slicing technique assumes that update of chunks
and reduce of partial aggregates have the same computa-
tion cost. In our case, however, the computation costs are
different. Let n be the size of an objective DFA. In the up-
date phase, as we calculate the probabilistic transition ma-
trix of the newest chunk, we need a matrix-matrix product
with O(n3). On the other hand, we calculate vector-matrix
products with O(n2) in the reduce phase. This different com-
putation costs may make a slicing technique inefficient. In
other words, if an input query construct a gigantic DFA, the
DFA-based method without a slicing technique may more
efficient.

Thus, we calculate the computation costs with/without
a slicing technique, and then adaptively apply the most ef-
ficient one in them. We consider the computation costs are
based on the number of unit operations (i.e., float multipli-
cation operators). Let |PES | be the length of a finite event
stream. In the DFA-based method without a slicing tech-
nique, we calculate the arrival probabilities for all the win-
dows at each time step. As it is a vector-matrix product, we
need n2 float multiplications for each window. Since we deal
with �w/l�windows simultaneously, the overall computation
cost is as follows:

Costnaive =
wn2

l
|PES |. (25)

In the slicing approach, we update one partial aggregate at
each time step. As it is a matrix-matrix product, the num-
ber of float multiplications is n3. Moreover, in the slicing
approach, we need reducing of partial aggregates to output
windows. Since the number of windows is �|PES |/l� and
the number of chunks is �w/l�, the entire computation cost
becomes as follows:

Costslicing = n3|PES | + wn2

l2
|PES |. (26)

That is, we can determine whether to use a slicing tech-
nique by using the following equation:

Costnaive > Costslicing. (27)

This equation is simplified as follows:

w

l

(
1 − 1

l

)
> n. (28)

SUGIURA and ISHIKAWA: MULTIPLE REGULAR EXPRESSION PATTERN MONITORING OVER PROBABILISTIC EVENT STREAMS
987

Since all the parameters (i.e., w, l, and n) are specified by a
user, we can choose an appropriate approach before starting
computation.

5. Probability Calculation with Negation

Since negation is one of the regular expressions, we can cal-
culate the occurrence probabilities of negation patterns. In
other words, we can represent negation patterns by using
disjunction. A simple example is the negation of a certain
event symbol. Let Σ be {a, b, c, d, e} and consider the proba-
bility of et = ¬a. In this case, the negation of a is equivalent
to the disjunction of all the other event symbols:

¬a = b ∨ c ∨ d ∨ e. (29)

Thus, we can calculate the probability of et = ¬a as follows:

P(¬at) = P(bt ∨ ct ∨ dt ∨ et). (30)

Fig. 4 Conversion of a DFA based on negation

Fig. 5 Syntax tree of q = q1 ¬q2 q3

Fig. 6 Construction of an ε-NFA from Fig. 5

We can generalize the calculation of negation patterns
¬q by using the negation of a DFA. If a sequence does not
reach the final states of the DFA of q, such a sequence is
accepted by the DFA of ¬q. Let us continue the above ex-
ample. In the above example, the query pattern is q = 〈¬a〉.
Since q is the negation of pattern q′ = 〈a〉, first we construct
a DFA of q′ as shown in Fig. 4 (a). This DFA accepts se-
quences that have only one event a. The other sequences,
such as 〈b〉 and 〈a, c〉, are rejected and reach the states 0 or
2. Thus, we can construct a DFA of q = ¬q′ by inverting the
final states in Fig. 4 (a), as shown in Fig. 4 (b), and calculate
the occurrence probability of ¬q for any windows by using
the DFA in Fig. 4 (b).

We can construct a DFA with negation by using the
Thompson’s construction [17]. For instance, consider a pat-
tern q = q1 ¬q2 q3, where q1, q2 and q3 are subquery pat-
terns. To apply the Thompson’s construction, we generate
a syntax tree as shown in Fig. 5. This syntax tree shows
that we can invert the final states in the “negation” node
for subquery q2. In more detail, we consider subqueries
q1 = 〈.∗ b〉, q2 = 〈a〉, and q3 = 〈b .∗〉. That is, a query
pattern is q = 〈.∗ b ¬a b .∗〉. We already show the DFA of
¬q2 in Fig. 4 (b), and Figs. 6 (a) and (b) show corresponding
DFAs for q1 and q3, respectively. Note that the Thompson’s
construction uses NFAs in its algorithm, but we use these
DFAs in this example for simplicity. Since a conjunction
node connects the final states in a left child with the initial
state in a right child by using ε-transitions, we generate an
ε-NFA in Fig. 6 (c) from the syntax tree. Thus, we convert
this ε-NFA into a DFA by using the subset construction [17]
and use the converted DFA for probability calculation.

6. Simultaneous Multiple Query Processing

In some use cases, we want to query multiple patterns simul-
taneously. For example, consider indoor location tracking.
A certain user monitors that there is no objects in RoomA in
the past 30 minutes. Moreover, if any object enters RoomA,
the user may need to check whether an object visits RoomB
without going through a certain area, such as HallC. These
monitoring queries are represented as follows:

q4 = 〈.∗ a+ .∗〉 and (31)

q5 = 〈.∗ a+ ¬(.∗ c+ .∗) b+ .∗〉. (32)

In order to reduce the total number of states in DFAs
and achieve more efficient processing, multiple DFAs can
be merged into one DFA. In the literature of XML matching,
YFilter [18] proposed the use of a merged NFA for multiple
XML queries with the same prefix. Here, since pattern q4

is a prefix subsequence of q5 and their DFAs include the
same structure, we can reduce the total number of states by
merging these DFAs.

Although we can merge multiple queries by using dis-
junction, it disables the merged DFA from calculating oc-
currence probabilities. Let us continue the above example.
To integrate multiple DFAs, the simple solution is to de-

988
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

scribe original regular expressions as one regular expres-
sion by using disjunction. In the above case, we can con-
struct a merged DFA from the disjunction of q4 and q5 (i.e.,
q4 ∨ q5). Such a DFA, however, does not distinguish ac-
cepted sequences. That is, as a merged DFA accepts all the
sequences for q4 and q5, the calculated probability does not
distinguish the occurrence of q4 from that of q5.

To distinguish the occurrence probabilities of multiple
queries, we construct a merged DFA in two steps: 1) merg-
ing DFAs of each query q ∈ Q by using ε-transitions and
2) converting the merged ε-NFA into a DFA while distin-
guishing the final states of every query. That is, we hold the
correspondence between the final states in a merged DFA
and those of original DFAs. Note that we follow the dis-
junction rule of the Thompson’s construction [17] to merge
DFAs in the first step, and it makes a merged automaton
non-deterministic. For instance, we continue the above ex-
ample with q4 and q5. Figure 7 shows a merged ε-NFA of
q4 and q5. States {1, 2} and {3, 4, 5, 6} correspond to q4 and
q5, respectively. These states are connected via state 0 and
ε-transitions. We can translate an ε-NFA into an equivalent
DFA, as shown in Fig. 8, by reducing ε-transitions and merg-
ing states [17]. Note that each state in Fig. 8 represents the
subset of states in Fig. 7; state {2, 4} in Fig. 8 is equivalent
to states 2 and 4 in Fig. 7. That is, we can distinguish each
final state of the original DFAs in the merged one. In this
case, since all the final states in Fig. 8 includes state 2 (i.e.,
the final state of q4), the occurrence probability of q4 is the
sum of the probabilities of arrival at states {2, 4}, {2, 5}, and
{2, 6}. On the other hand, as only state {2, 6} includes state
6 (i.e., the final state of q5), the occurrence probability of q5

is the probability of arrival at state {2, 6}. If we calculate the
probabilities of arrival at each state in Fig. 8 with PES in
Fig. 1 and window [1 : 6], the results are as follows:

Vp(PES [1:6]) �
[{0, 1, 3} {2, 4} {2, 5} {2, 6}

0.12 0.03 0.61 0.25

]
.

(33)

Fig. 7 Merged ε-NFA of q4 = 〈.∗ a+ .∗〉 and q5 = 〈.∗ a+ ¬(.∗ c+ .∗) b+ .∗〉

Fig. 8 Equivalent DFA of Fig. 7

Thus, we can calculate the probabilities of q4 and q5:

P[1:6](q4) � 0.03 + 0.61 + 0.25 = 0.89 and (34)

P[1:6](q5) � 0.25. (35)

Note that simultaneous query processing is not always
efficient. In the above example, since query q5 includes
q4 as a prefix subsequence, we can construct a compressed
DFA. However, if queries have different prefix, the size of
a merged DFA may become larger than those of original
DFAs. Thus, we need to check whether a merging DFA re-
duces the number of states before starting computation.

7. Experiments

In this section, we evaluate the effectiveness of our approach
by experiments. To evaluate our approach, we have imple-
mented the proposed method by using Java language. Our
experimental settings are summarized in Table 1.

7.1 Effect of Window-Based Detection

We evaluate the effectiveness of our approach by using the
real dataset. The real dataset is indoor location event streams
that are collected in the RFID ecosystem project [19]. In
this dataset, an indoor space is represented as a graph, and
the locations (i.e., nodes in a graph) of a tracked object are
estimated by RFID sensing data at every second. Since the
dataset includes definite event streams (i.e., truth locations),
we can detect correct time series events from them. Note
that the dataset has twelve probabilistic event streams, but
we omit the results of eleven streams in the paper because
they have the same tendency with introduced one.

In this experiments, we use pattern q = 〈(a ∨ b)3+〉
with window size w = 30 and slide size l = 1 where (a ∨ b)
indicates that a tracked object is in a certain room. Note
that αk+ means k or more occurrence of event α. Hence, the
above query means that a tracked object is in a certain room
over 3 seconds in the last 30 seconds.

We compare the proposed method (i.e., window-based
detection) with the match-based detection [4]–[7] and the
suffix-based detection [3]. In the match-based detection, we
detect a match with the maximum occurrence probability in
each window [t−w+ 1 : t] by using the existing method [7],
and then output its probability as the probability of a time
series event. On the other hand, Rè et al. [3] calculates the
occurrence probabilities of time series events at each time
step. Since we can calculate these probabilities by using
a suffix pattern 〈.∗ q〉 in our method, we show them as the
suffix-based detection.

Table 1 Experimental settings

Item Value

OS Ubuntu 18.04.2 LTS
CPU Intel(R) Xeon(R) CPU E5-2637 v4
RAM 128GB
JDK Oracle OpenJDK 12.0.1

SUGIURA and ISHIKAWA: MULTIPLE REGULAR EXPRESSION PATTERN MONITORING OVER PROBABILISTIC EVENT STREAMS
989

Fig. 9 Estimated occurrence probabilities

Table 2 Root mean square error

Method RMSE

Match-based 0.677
Suffix-based 0.688
Window-based 0.369

Our approach can detect time series events with high
probabilities. Figure 9 shows the accuracy of our approach
graphically. A gray solid line shows truth probabilities; that
is, a time series event occurs in a window when the line
reaches the top. Gray and black dotted lines are the results
of the match-based and the suffix-based detection, respec-
tively. As the probabilities of the existing methods are small,
we probably miss the occurrence of time series events, such
as the first room entry/exit event around [20 : 60]. In con-
trast to the existing methods, our approach (i.e., a black
solid line) can detect time series events with high probabil-
ities. Besides, as Table 2 shows the root mean square error
(RMSE) between the truth probabilities and the estimated
ones, the RMSE error significantly decreases by using the
proposed method.

7.2 Effect of Parameters

In this subsection, we evaluate the effect of the parame-
ters. Note that we do not evaluate probability calculation
for negation patterns (described in Sect. 5) because it does
not affect efficiency. In addition, we also omit the evalua-
tion of simultaneous query processing (described in Sect. 6)
because it affects only DFA size n. That is, the effect of
simultaneous query processing depends on the number of
reduced states by merging multiple DFAs.

In this experiments, we use a synthetic dataset. That is,
we generate a probabilistic event stream by simulation. The
stream has a million probabilistic events (i.e., |PES | = 106)
and each probabilistic event has a hundred event symbols
(i.e., |Σ| = 100). We use natural numbers as event symbols
(i.e., Σ = {1, 2, . . . , 100}) and set their occurrence probabil-
ities randomly. Since we prepare the synthetic dataset in
memory, the following experimental results do not include
storage I/O. Note that we use random occurrence probabili-

Table 3 Parameter settings

Parameter Range

window size: w
{500, 1000, 1500, 2000, 2500,

3000, 3500, 4000, 4500, 5000}
slide size: l {25, 50, 75, 100, 125, 150, 175, 200, 225, 250}
DFA size: n {11, 21, 31, 41, 51, 61, 71, 81, 91, 101}

Fig. 10 Throughputs over different window size w

ties as the worst-case setting. If the occurrence probabilities
of some events are zero, the throughputs may increase be-
cause transition matrices may be sparser. However, it does
not affect the experimental results significantly.

In this experiment, we measure the throughputs by us-
ing different values of each parameter. We summarize pa-
rameter settings in Table 3 and the default parameter values
are displayed in bold. Each DFA is constructed from sim-
ple regular expressions. To construct a DFA with a specific
size, we increase the number of natural numbers i ∈ Σ in
regular expression 〈.∗ i+ .∗〉. This regular expression gen-
erates a DFA with size n = i + 1. For instance, we use
q = 〈.∗ 1+ 2+ 3+ . . . 10+ .∗〉 to construct a DFA with size
n = 11. Note that the throughputs of our approach depends
on the number of states in a DFA as described in Eqs. (25)
and (26). Although more complex patterns may generate
complex DFAs, we can estimate how such DFAs affect the
efficiency from the number of their states.

We compare the throughputs of the DFA-based method
with/without a slicing technique. Since the naı̈ve method, as
described in Sect. 3.1, enumerates the exponential number
of possible worlds, it takes too long running time. Thus, we
omit it from the experiment. In the following, we denote
“without slicing” and “with slicing” to specify the results of
the DFA-based method without/with a slicing technique.

Figure 10 shows throughputs over different window
sizes. When we do not use a slicing technique, window
size w significantly affects the efficiency. On the other hand,
a slicing technique makes throughput stable. As described
in Eqs. (25) and (26), w affects computation cost linearly.
However, when we set slide size l to 50, a major bottle-
neck with slicing is matrix-matrix products (i.e., the first
term in Eq. (26)), as described in the next paragraph. That
is, since the effect of w is minor in this parameter settings,
the throughput of a slicing technique is stable over differ-
ent window sizes. Note that a dotted line in Fig. 10 shows
the estimated switching point for slicing, but we explain the
detail in the next subsection.

990
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

Fig. 11 Throughputs over different slide size l

Fig. 12 Throughputs over different DFA size n

Figure 11 shows throughputs over different slide sizes.
When we do not use a slicing technique, the throughput im-
proves linearly. However, while the throughput with slicing
increases in small slide sizes (l ≤ 75), it becomes stable
over large slide sizes (l > 75). As described above, slide
size l reduces the computation cost. Although the effect of
l increases by the slicing technique, matrix-matrix products
(the first term in Eq. (26)) becomes a major bottleneck with
large slide sizes. Thus, the throughput with slicing does not
change in large slide sizes.

Figure 12 shows throughputs over different DFA sizes.
With the slicing technique, DFA size has more impact on
throughput because we need matrix-matrix products. On the
other hand, the throughput without slicing more moderately
decreases as DFA size increases because it uses only vector-
matrix products.

7.3 Effect of Adaptive Slicing

Next, we evaluate the effect of adaptive slicing. As de-
scribed in Sect. 4, we can determine whether to use a slicing
technique by using the proposed cost functions. In this sub-
section, we check the appropriateness of the cost functions
experimentally.

In Figs. 10, 11, and 12, dotted lines show the estimated
switching points for slicing. That is, we calculate each value
by using the following equation:

w

l

(
1 − 1

l

)
= n, (36)

where we set the default values to non-varying parameters
and round up the estimated values.

Each result shows that our cost functions work satis-
factorily for adaptive slicing. Although the switching points

are different from intersection points of line graphs, the dif-
ference is slight. This difference is caused from the sparsity
of transition matrices. As described above, we use simple
regular expressions to construct DFAs. Since such regular
expressions generate simple DFAs, transition matrices are
sparse. Thus, the real computation cost without slicing be-
comes smaller than the estimated one. On the other hand, we
calculate the products of transition matrices with a slicing
technique. As the multiplied matrices become denser, the
difference between the real computation and the estimated
one becomes smaller.

8. Related Work

We introduce the exiting methods that detect time series
events from probabilistic event streams. Note that event
recognition in probabilistic even streams [11] is divided
into automaton-based methods [3]–[9] and rule-based meth-
ods [20], [21], but we describe only the former because our
research is closely related to automata.

Almost all the existing methods try to detect appro-
priate matches from probabilistic event streams [4]–[7], [9].
To detect appropriate matches, the existing methods use
two criteria: an occurrence probability and the deviation
of information amounts. The methods of Shen et al. [4],
Kawashima et al. [5], Wang et al. [6] are probabilistic ex-
tension of the SASE’s approach [12], [22], which proposed
a detection method of time series events in definite event
streams, and use the occurrence probabilities of matches as
a criterion. Li et al. [7] follow this approach and propose
the efficient top-k pattern matching method with a sliding
widow. On the other hand, one of our previous work [9]
shows that the occurrence probabilities of matches become
a misleading criterion with Kleene closure (i.e., q∗ and q+),
and propose the use of the deviation of information amounts
for alternative criteria.

On the other hand, some existing methods consider the
probabilities of time series events. Rè et al. [3] calculate the
occurrence probabilities of time series events at each time
step. However, since they consider the occurrence of a time
series event not within window [t − w + 1 : t] but just at
time step t, their method is insufficient to answer monitoring
queries with a sliding window. Li et al. [7] also discussed
the calculation of the probability of a time series event by
using top-k matches, but calculated probabilities are approx-
imate values and need exponential computation time. In our
previous work [8], we proposed a grouping (i.e., clustering)
method of matches and calculated the probabilities of time
series events from grouped matches. However, our previ-
ous method assumes batch processing and is not suitable for
stream processing.

In comparison with these existing methods, the pro-
posed method can monitor time series events accurately
with a sliding window. Moreover, the proposed method can
monitor time series events efficiently by using a slicing tech-
nique and simultaneous multiple query processing.

SUGIURA and ISHIKAWA: MULTIPLE REGULAR EXPRESSION PATTERN MONITORING OVER PROBABILISTIC EVENT STREAMS
991

9. Conclusion

In this paper, we proposed the calculation method for pat-
tern monitoring queries with a sliding window. To calculate
probabilities efficiently, our method adaptively choose the
use of a slicing technique based on the proposed cost func-
tions. Moreover, we proposed the two step integration of
DFAs for simultaneous multiple query processing. We also
described the probability calculation with negation patterns,
and it enable a user to express query patterns more flexi-
bly. We evaluated the effectiveness of our approach by the
experiments based on the real and the synthetic datasets.

Our future work includes the introduction of more
complex conditions for pattern matching. In this paper, we
assume that a user specifies his/her monitoring queries by
using only regular expressions. However, as described in the
existing work in the literature of definite event streams [13],
[22], various conditions based on declarative language are
useful for complex event recognition. Although Agrawal et
al. [22] deal with such complex conditions by using the pro-
posed NFAb, we cannot apply their approach directly be-
cause a DFA is required to calculate probabilities in proba-
bilistic event streams.

Acknowledgments

This study was partly supported by KAKENHI (18H06461,
16H01722).

References

[1] Z.S. Abdallah, M.M. Gaber, B. Srinivasan, and S. Krishnaswamy,
“Activity recognition with evolving data streams: A review,” ACM
Comput. Surv., vol.51, no.4, pp.71:1–71:36, 2018.

[2] J. Xiao, Z. Zhou, Y. Yi, and L.M. Ni, “A survey on wireless in-
door localization from the device perspective,” ACM Comput. Surv.,
vol.49, no.2, pp.25:1–25:31, 2016.

[3] C. Ré, J. Letchner, M. Balazinska, and D. Suciu, “Event queries
on correlated probabilistic streams,” Proc. SIGMOD, pp.715–728,
2008.

[4] Z. Shen, H. Kawashima, and H. Kitagawa, “Lineage-based proba-
bilistic event stream processing,” Proc. 9th Int. Conf. Mobile Data
Management Workshops (MDMW), pp.106–113, 2008.

[5] H. Kawashima, H. Kitagawa, and X. Li, “Complex event processing
over uncertain data streams,” Proc. 5th Int. Conf. P2P Parallel Grid
Cloud Internet Comput. (3PGCIC), pp.521–526, 2010.

[6] Y.H. Wang, K. Cao, and X.M. Zhang, “Complex event processing
over distributed probabilistic event streams,” Comput. Math. Appl.,
vol.66, no.10, pp.1808–1821, 2013.

[7] Z. Li, T. Ge, and C.X. Chen, “ε-matching: Event processing over
noisy sequences in real time,” Proc. SIGMOD, pp.601–612, 2013.

[8] K. Sugiura, Y. Ishikawa, and Y. Sasaki, “Grouping methods for pat-
tern matching over probabilistic data streams,” IEICE Trans. Inf. &
Syst., vol.E100.D, no.4, pp.718–729, 2017.

[9] K. Sugiura and Y. Ishikawa, “Top-k pattern matching using an
information-theoretic criterion over probabilistic data streams,”
Proc. APWeb-WAIM Joint Conf. Web Big Data, LNCS 10366,
pp.511–526, 2017.

[10] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Comput. Surv.,
vol.44, no.3, pp.15:1–15:62, 2012.

[11] E. Alevizos, A. Skarlatidis, A. Artikis, and G. Paliouras, “Proba-
bilistic complex event recognition: A survey,” ACM Comput. Surv.,
vol.50, no.5, pp.71:1–71:31, 2017.

[12] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” Proc. SIGMOD, pp.407–418, 2006.

[13] A. Demers, J. Gehrke, and B. Panda, “Cayuga: A general purpose
event monitoring system,” Proc. CIDR, pp.412–422, 2007.

[14] K. Sugiura and Y. Ishikawa, “Regular expression pattern matching
with sliding windows over probabilistic event streams,” Proc. 6th
IEEE Int. Conf. Big Data Smart Comput. (BigComp), pp.1–8, 2019.

[15] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl,
“Cutty: Aggregate sharing for user-defined windows,” Proc. CIKM,
pp.1201–1210, 2016.

[16] J. Traub, P. Grulich, A.R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl,
and V. Markl, “Efficient window aggregation with general stream
slicing,” Proc. EDBT, pp.97–108, 2019.

[17] J.E. Hopcroft, R. Motwani, and J.D. Ullman, “Introduction to Au-
tomata Theory, Languages, and Computation, 2nd ed.,” Addison
Wesley, vol.32, no.1, 2001.

[18] Y. Diao, P. Fischer, M.J. Franklin, and R. To, “YFilter: Efficient
and scalable filtering of XML documents,” Proc. ICDE, pp.341–342,
2002.

[19] The RFID Ecosystem Project - Projects - University of Washington,
CSE: https://rfid.cs.washington.edu/projects.html (accessed: Sept.
10, 2018).

[20] A. Skarlatidis, A. Artikis, J. Filippou, and G. Paliouras, “A proba-
bilistic logic programming event calculus,” Theory Pract. Logic Pro-
gram., vol.15, no.2, pp.213–245, 2015.

[21] G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli, “Intro-
ducing uncertainty in complex event processing: Model, implemen-
tation, and validation,” Computing, vol.97, no.2, pp.103–144, 2015.

[22] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient
pattern matching over event streams,” Proc. SIGMOD, pp.147–160,
2008.

Kento Sugiura is a research associate in
Graduate School of Informatics, Nagoya Uni-
versity. He received the B.S., M.S., and Ph.D.
degrees from Nagoya University in 2013, 2015,
and 2018, respectively. His research interests
include data stream processing, uncertain data
management, and spatio-temporal data process-
ing. He is a member of DBSJ, IPSJ, and ACM.

Yoshiharu Ishikawa is a professor in
Graduate School of Informatics, Nagoya Uni-
versity. His research interests include spatio-
temporal databases, mobile databases, scientific
databases, data mining, and Web information
systems. He is a member of the Database So-
ciety of Japan, IPSJ, IEICE, JSAI, ACM, and
IEEE Computer Society.

http://dx.doi.org/10.1145/3158645
http://dx.doi.org/10.1145/2933232
http://dx.doi.org/10.1145/1376616.1376688
http://dx.doi.org/10.1109/mdmw.2008.12
http://dx.doi.org/10.1109/3pgcic.2010.89
http://dx.doi.org/10.1016/j.camwa.2013.06.032
http://dx.doi.org/10.1145/2463676.2463715
http://dx.doi.org/10.1587/transinf.2016dap0014
http://dx.doi.org/10.1007/978-3-319-63579-8_39
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1145/1142473.1142520
http://dx.doi.org/10.1109/bigcomp.2019.8679331
http://dx.doi.org/10.1145/2983323.2983807
http://dx.doi.org/10.1145/568438.568455
http://dx.doi.org/10.1109/icde.2002.994748
http://dx.doi.org/10.1017/s1471068413000690
http://dx.doi.org/10.1007/s00607-014-0404-y
http://dx.doi.org/10.1145/1376616.1376634

