IEICE TRANS. INFE. & SYST., VOL.E102-D, NO.8 AUGUST 2019

1569

[LETTER

An Efficient Block Assignment Policy in Hadoop Distributed File
System for Multimedia Data Processing

Cheolgi KIM'®, Daechul LEE", Jachyun LEE", Nonmembers, and Jachwan LEE™, Member

SUMMARY Hadoop, a distributed processing framework for big-data,
is now widely used for multimedia processing. However, when processing
video data from a Hadoop distributed file system (HDFS), unnecessary net-
work traffic is generated due to an inefficient HDFS block slice policy for
picture frames in video files. We propose a new block replication policy to
solve this problem and compare the newly proposed HDFS with the origi-
nal HDFS via extensive experiments. The proposed HDFS reduces network
traffic, and increases locality between processing cores and file locations.
key words: Hadoop, Hadoop distributed file system, video processing,
group of pictures

1. Introduction

In recent years, distributed processing systems for large
data processing have evolved rapidly. MapReduce frame-
works [1] in Hadoop Distributed File Systems (HDFS) [2]
and Spark [3] are examples. These frameworks are used not
only for processing text data, but also for processing un-
structured data, such as images and videos. HDFS divides
a file into blocks of predetermined size (the default value is
64MB), and distributes them to the data nodes of the clus-
ter. When processing these blocks in the cluster, each node
processes the data in a way that leverages the locality using
the MapReduce framework.

Meanwhile, codecs, tools for encoding/decoding
video, are further improving processing by increasing the
compression rate. A codec with a high video compression
rate is capable of minimizing a file size without losing im-
age quality. The MPEG-4 AVC codec is one of the most
advanced codecs to date. MPEG4 video consists of the I-
frame, which can be decoded by itself, and the B-frame
and P-frame, which depend on neighboring frames, like the
I-frame, for decoding. The Group of Pictures (GOP) in
MPEG-4 is a group of I-frames, B-frames, and P-frames that
can be fully decoded by themselves.

To process large amounts of video data, there have been
many attempts [4], [5] to use clustered computers for dis-
tributed processing. However, when processing video us-
ing HDFS and MapReduce, there is a problem if the GOP
is at the boundary of two HDFS blocks that are stored on
different nodes. Due to this discrepancy between semantic
video data and HDFS block slicing policy, a network trans-

Manuscript received January 22, 2019.
Manuscript publicized May 21, 2019.
"The authors are with Korea Aerospace University, Goyang-
city, Korea.
a) E-mail: cheolgi@kau.ac.kr
b) E-mail: jlee@kau.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2019EDL8016

fer is needed to get information from the I-frame in remote
nodes, which negates the design advantage of HDFS local-
ity policy. In this paper, we propose a new block replication
method to solve this problem.

In Sect.2, we discuss video transcoding and HDFS,
forming the background for this study. In Sect.3, we de-
scribe the problem that occurs in HDFS video processing,
and suggest a new solution. For evaluation, we have modi-
fied the original HDFS codes, and compare it with the orig-
inal HDFS when processing videos in Sect.4. Finally, we
offer conclusions in Sect. 5.

2. Background
2.1 Video Transcoding

As stated, the GOP consists of multiple picture frames inter-
dependent upon each other, as shown in Fig. 1. To decode
a P- or B-frame in a GOP, other frames in the same group
are required. If a system has only a part of the GOP, it can-
not have the decoded pictures until the others are obtained.
P-frames are encoded by referring to pre-existing I- or P-
frames in the GOP, while B-frames depend on neighboring
frames in the front and back of the GOP.

2.2 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) supports scal-
ability and availability to storage in the commodity servers.
In HDFS, a file is divided into blocks, and each block is
replicated and stored across multiple machines. HDFS has
a master/slave architecture; with the NameNode perform-
ing the role of the master, and DataNodes acting as slaves.
A NameNode manages the filesystem namespace and the
metadata for files and directories. A DataNode stores real
data blocks. Client applications that need a file in the

Block 0 Block 1

I 1 I

[X N J E{ﬁﬁ [X N J
Group of pictures

Fig.1 The structure of the group of pictures.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

1570

HDEFS can directly communicate with the DataNode after
the NameNode transfers metadata containing the location
of other corresponding data blocks.

3. Motivation and Methodology
3.1 Block Replication Policy and the Problem

As mentioned above, the HDFS replicates and stores blocks
on multiple machines to provide fault tolerances. The de-
fault replication factor is set to 3. The NameNode deter-
mines all procedures for the replication of the blocks. If
the replication factor is set to 3, the default value, the first
replica is stored on the DataNode in the local rack, and the
two others are stored on the remote rack. This policy pre-
vents losing data when the entire rack fails, and allows the
use of the multiple racks’ bandwidth.

But there is a problem with this policy when process-
ing continuous data like compressed video files. Figure 1
shows a GOP lying at the boundary of two blocks, with the
boundary between the logical unit GOP and the physical
unit block out of alignment. Such a mismatch may cause
unnecessary network overhead. Suppose that the client pro-
cesses the frames in the beginning of Blockl. In order to
process the B-frames at the beginning of Block1, the meta-
data from the I-frame in BlockO is needed. If BlockO and
Blockl1 are stored in the same DataNode, the process run-
ning on that DataNode simply reads the necessary informa-
tion in Block0 from local storage. However, since the pol-
icy of block replication in HDFS is arbitrary, the probability
that successive blocks are stored in the same DataNode be-
comes lower as the cluster size increases. In most cases,
such continuity is not guaranteed. In this case, the Data-
Node for BlockO requests information about the block loca-
tion from the NameNode. After receiving the block location
information from the NameNode, the DataNode for BlockO
sends the necessary data to the DataNode that is request-
ing information in BlockO. This process is what increases
network overhead. This may not be a problem if there is
a small number of users processing compressed videos, but
this network overhead may make the network a bottleneck
point, and increase the processing latency. This issue be-
comes more problematic as the unit of GOP becomes larger,
which is a recent issue.

3.2 Our Methodology

As described in Sect.3.1, the block replication policy in
HDEFS does not utilize locality when dealing with data in
which continuity is important, thereby causing network traf-
fic. In this paper, we propose a method to reduce network
traffic and improve job performance by maintaining data
continuity when processing compressed moving pictures.
The new block replication policy we propose stores
consecutive blocks in each DataNode in the same quantity
as the replication factor. Figure 2 demonstrates this policy at
areplication factor set to 3; allowing the blocks stored in the

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.8 AUGUST 2019

/M aop
Video File P

| _ Block 2 | Block 3 | Block 4 [Biock 5 | Block 6 | |

[Block 2] Biock 3 | Block 4 |

DataNode2

DataNode3 [Block 3] Block 4 | Block 5 |

DataNode4 [Block 4] Block 5 [Block 6 |

[Hooks]

Fig.2 Block location illustration for the proposed replication policy.

Physical
NameNode Machine
1Gbit Ethernet SIS Machine

Switch

DataNode5

Data Data Data Data Data Data Data Data
Node | |Node Node | [Node Node| |Node Node| |Node
1 2 5 6 9 10 13 14
Data Data Data Data Data Data Data Data
Node | |Node Node | [Node Node| |Node Node| |Node
3 4 7 8 11 12 15 16

Fig.3 Testbed cluster for the experiment.

Table1 Hadoop cluster configuration parameters on virtualbox.
Properties Values
No. of Nodes 17 (1 NameNode and 16 DataNodes)

Intel Xeon E3-1240V3, 8 cores, 4GB RAM
CentOS 6.7, 64bit, 256GB SSD

1Gbit Ethernet, 1 core, 768MB RAM

CentOS 6.9, 30GB Disk

Apache Hadoop 2.4.1, JVM - OpendDK 1.7.0
Replication factor = 3 (default)

Block size = 64MB (default)

Virtual Box
Host Machines
Virtual Box
Guest Machines
Softwares

HDFS parameters

DataNodes to form a ring structure. For each DataNode, no
network traffic is required except when processing the first
frame of the block at the beginning of the node.

We modified the HDFS source code to replicate and
store the blocks as described above. In the next section, we
will compare and analyze the original HDFS and our pro-
posed replication policy through experimentation.

4. Experiments

Figure 3 and Table 1 shows the testbed for the experiments.
We set up the 17 nodes in our cluster running on virtual
machines using Virtualbox.

The goal of the experiments is to compare the resources
used to process the compressed video, focusing on network
traffic. The data to be processed is a 1024MB MPEG-4
video file. It is divided into 16 blocks, and each DataNode
contains three blocks. The default block size is 64MB and
replication factor is set to 3.

In each of the 16 virtual machines, the Java process
reads the local block and the previous block. If the previ-

LETTER

500 original-write
----original-read

450 modified-write
—modified-read

400
350
300

250

200

150

100

50

Total Network Traffic on Cluster (MB/sec)

[
123456 7 8 91011121314151617 1819 20 21 22 23 24 25
Time, Seconds

Fig.4 The I/O test results for 8GB data.

ous block is stored locally, only a small amount of network
traffic occurs, but in other cases, the NameNode and the
DataNode for that block generate additional network over-
head. Note that the amount of the data that each process
reads is 128MB.

Figure 4 shows the experiment results. In the case of
the original HDFS, all consecutive blocks are not adjacent.
It took 25 seconds on average to complete the entire job,
all 16 DataNodes generated network traffic, and the network
became a bottleneck. At 2 seconds, the network transfer rate
reached 450MB/sec, including both read and write. Because
the four physical machines were connected to a 1 Gbit Eth-
ernet switch, the total aggregated network bandwidth was
512MB/sec. Since network I/O occurs at the same time, we
can see the bottleneck in the network bandwidth from 4 sec-
onds to 5 seconds and 17 seconds to 19 seconds.

In the case of modified HDFS, for each DataNode, the
blocks are adjacent to each other in the same quantity as the
block replication factor. In this configuration, the network
did not become a bottleneck, and took 19 seconds on aver-
age to complete the entire job.

We also experimented with other conditions. We re-
sized the file size and block size. We measured the total
network traffic used by the job and divided the value of the
modified Hadoop by the value of the original Hadoop to ob-
tain a normalized value for each case. Figure 5 shows the ex-
periment results with various conditions. As you can see in
the graph, the values are about 0.5 to 0.6, which means that
when using the modified HDFS, it occurs 50% to 60% of
network traffic than the original one. This graph also shows
that our system works well in various conditions.

As we have seen above, when we process inter-
dependent data such as compressed video in the manner pre-
sented in this paper, network usage is lower than processing
according to the original HDFS policy. As a result, when
network bandwidth is not sufficient, job execution time can
be shortened by avoiding a network traffic bottleneck.

1571

Block Size
m32MB 64MB = 128MB

N

0.9
0.8
0.7

0.6
0.5
0.4
0.3
0.2
4GB 8GB

16GB

=]
o

Total Network Traffic(Normarlized Value)

File Size

)
=

g
wm

The experiment result with resized block size and file size.

5. Conclusion

In this paper, we have seen that processing video data on
HDEFS creates network overhead due to the metadata depen-
dency of the video file. To reduce this network overhead, we
proposed a new block replication policy. Our experiments
showed that storing consecutive blocks on the same node,
in the same quantity as the block replication factor, signif-
icantly reduced network traffic when processing video data
in the HDFS. Considering that network bandwidth is a lim-
ited resource in the distributed environment, if there were an
alternative HDFS that supported this replication policy, job
performance might improve in situations where data pro-
cessing continuity is important.

Acknowledgments

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science and ICT (NRF-
2014R1A1A1008439, NRF-2019R1H1A2039658, NRF-
2015M3C4A7065646) and partly supported by the GRRC
program of Gyeonggi province (No. GRRC-KAU-2018-
BOI1, “Study on the Video and Space Convergence Plat-
form for 360VR Services”), ITRC (Information Technol-
ogy Research Center) support program (IITP-2019-2018-0-
01423) and ICT R&D program of MSIP/IITP (B0101-16-
0663, Safety-critical Distributed Modular SW Platform).

References

[1] J. Deen and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, pp.107-113, 2008.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[3] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” HotCloud 10, 2010.

[4] R. Pereira, M. Azambuja, K. Breitman, and M. Endler, “An ar-
chitecture for distributed high performance video processing in the
cloud,” 2010 IEEE 3rd International Conference on Cloud Comput-
ing, pp.482-489, 2010.

[5] F. Lao, X. Zhang, and Z. Guo, “Parallelizing video transcoding using
Map-Reduce-based cloud computing,” 2012 IEEE International Sym-
posium on Circuits and Systems, pp.2905-2908, 2012.

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/cloud.2010.73
http://dx.doi.org/10.1109/iscas.2012.6271923

