
1422
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

LETTER

Weber Centralized Binary Fusion Descriptor for Fingerprint
Liveness Detection

Asera WAYNE ASERA†, Nonmember and Masayoshi ARITSUGI††a), Senior Member

SUMMARY In this research, we propose a novel method to determine
fingerprint liveness to improve the discriminative behavior and classifica-
tion accuracy of the combined features. This approach detects if a finger-
print is from a live or fake source. In this approach, fingerprint images
are analyzed in the differential excitation (DE) component and the cen-
tralized binary pattern (CBP) component, which yield the DE image and
CBP image, respectively. The images obtained are used to generate a two-
dimensional histogram that is subsequently used as a feature vector. To
decide if a fingerprint image is from a live or fake source, the feature vector
is processed using support vector machine (SVM) classifiers. To evaluate
the performance of the proposed method and compare it to existing ap-
proaches, we conducted experiments using the datasets from the 2011 and
2015 Liveness Detection Competition (LivDet), collected from four sen-
sors. The results show that the proposed method gave comparable or even
better results and further prove that methods derived from combination of
features provide a better performance than existing methods.
key words: fingerprint classification, liveness detection, machine learning,
support vector machines, image processing

1. Introduction

Currently, biometric systems are widely used for authenti-
cation in applications, such as security, surveillance, and
forensic investigations. These systems rely on physical
human attributes or characteristics that are distinctive and
unique in individuals, such as the face and fingerprints. Al-
though biometric systems offer robust security, they exhibit
flaws and weaknesses. One of their weaknesses is known
as spoofing; they are vulnerable to some form of sophis-
ticated spoofing. Given that fingerprint-based systems are
commonly used, they are more susceptible and subjected
to attacks. The spoofing method is an attack that creates
a replica of a latent or real fingerprint; it has a success rate
of above 70% [1]. Therefore, it is important to further in-
vestigate preventative methods that can distinguish between
live and fake fingerprints. In the last decade, various meth-
ods have been proposed to combat spoofing. These methods
are known as liveness detection techniques.

In fingerprint liveness detection, methods incorporat-
ing machine learning as a component and local descrip-
tors have become popular [2]. Local descriptor methods are
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software-based methods; they analyze the information ob-
tained locally in an image by observing its statistical behav-
ior using histograms (frequencies of occurrence). They are
known to be excellent and stable to various kinds of alter-
ations and have gained particular attention because of their
potential capability [3].

Among the best and well-known local descriptors is
the local binary pattern (LBP) [4], which has been proven
to yield impressive results for fingerprint liveness detec-
tion [5]. It compares each pixel of the neighborhood with
the central pixel to generate a binary number. To calculate
the LBP value of the center pixel, the binary number is con-
verted into a decimal number. However, even with its ad-
vantages, some disadvantages still exist, such as, it involves
long histograms that can decelerate feature extraction, it is
sensitive to noise, and the central pixel containing important
information is not considered. Another simple and powerful
local descriptor is the Weber local descriptor (WLD) pro-
posed by Chen et al. [6]. This is inspired from Weber’s law
in psychophysics; it has two components, differential exci-
tation and orientation. In the differential excitation compo-
nent, the numerator is the intensity difference between the
target pixel and the average intensity of its neighbors; the
denominator is the intensity of the current pixel. The sec-
ond component is the orientation, or the gradient orientation
of the current pixel. Although it is a robust descriptor, its
orientation component only considers the four surrounding
pixels around the center pixel, which can lead to not fully
obtaining and representing the local information of the cen-
ter pixel. In addition, it is reasonable to hypothesize that
by integrating multiple features, the accuracy could be im-
proved. However, only a few methods utilize the combina-
tion or fusion features in fingerprint liveness detection.

In this paper, we propose the Weber centralized binary
fusion (WCBF), a new combination of feature descriptors
for fingerprint liveness detection. It is a novel combina-
tion of two existing and individual methods [7], [8] and is
inspired by the WLD. It also contains two components: dif-
ferential excitation and centralized binary pattern (CBP) [8].
CBP is a discriminative and highly efficient local descriptor.
In comparison to the orientation component of the WLD,
the CBP extracts local features better. The orientation com-
ponent of the WLD uses four surrounding pixels for the cal-
culation; however, CBP uses all of the surrounding pixels
including the central pixel for calculation. Therefore, for
a given fingerprint image, two components of the proposed
descriptor are computed and subsequently the extracted fea-
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tures are used to generate a two-dimensional (2D) histogram
to statistically represent the local information of the dif-
ferential excitation, and CBPs of the input image. To de-
cide whether the fingerprints are live or fake, the proposed
descriptor is processed using a machine-learning algorithm
known as SVM for training.

2. Weber Centralized Binary Fusion

2.1 Differential Excitation

In WLD, the original differential excitation ξ(xc) of a current
pixel xc is calculated as follows:

ΔI =
p−1∑
i=0

Δ(xi) =
p−1∑
i=0

(xi − xc) (1)

Gratio(xc) =
ΔI
I

(2)

ξ(xc) = arctan[Gratio(xc)] = arctan

[
ΔI
I

]

= arctan

⎡⎢⎢⎢⎢⎢⎣
∑p−1

i=0 Δ(xi)

xc

⎤⎥⎥⎥⎥⎥⎦ (3)

where xi is the i-th neighbor pixel of the current pixel xc, I
is the intensity of the current pixel xc, and ΔI is the intensity
differences of the current pixel against its neighbors. Equa-
tion (3) is derived from Weber’s law because the differential
component is inspired from it. As the values from calculat-
ing the differential excitation are large, in Eq. (3) the arctan-
gent function is used to limit the values of ξ(x) in the range
of [−π/2, π/2], and it could also partially suppress noise.
Therefore, if the value of ξ(x) is positive, this indicates that
the surroundings are lighter than the current pixel; other-
wise, if it is negative, the surroundings are darker than the
current pixel.

In the proposed method, the differential excitation
component is different from that used in the original WLD.
It adopts the Laplacian of the Gaussian from [7] by apply-
ing the Gaussian filter to the image, as shown in Eq. (7). The
Laplacian operator is expressed as in Eq. (4), where f (x, y)
is the image, and (x, y) is the position of the current pixel xc.

ΔI = �2 =
δ2 f
δx2
+
δ2 f
δy2

Laplacian operator (4)

As stated, the Laplacian operator in the original WLD
is sensitive to noise. As such, [7] used the Laplacian of
the Gaussian (LoG) to compute ΔI, which is expressed and
shown by the following formulas:

h(x, y) = exp

(
− x2 + y2

2σ2

)
2D Gaussian (5)

g(x, y) = h(x, y) ⊗ f (x, y) Result of Convolution (6)

ΔI = �2g = �2[h(x, y) ⊗ f (x, y)]

=
1
πσ4

(
x2 + y2

2σ2
− 1

)
exp

(
− 1

2σ2
(x2 + y2)

)
(7)

Finally, the differential excitation of the current pixel
xc is computed as follows.

ξ(xc) = arctan[Gratio(xc)] = arctan

[
ΔI
I

]

= arctan

[�2g

I

]
(8)

Given that the results from calculating the differential
excitation is normalized to the intensity of the central pixel,
the output will produce continuous values. To obtain dis-
crete values with a limited range, a uniform quantizer is
necessary. Hence, the mid-tread quantizer is used with an
odd number of levels S.

2.2 Centralized Binary Pattern (CBP)

The CBP was first proposed by Fu and Wei [8]. It is a power-
ful texture descriptor that alleviates some disadvantages of
the LBP. In the CBP, the corresponding pairs of neighbor-
ing pixels are compared, only if their connecting lines pass
through the center pixel gc. Further, the center pixel and the
average value of all the pixels within the window are com-
pared. Therefore, using the threshold C, pixels greater than
or equal to C are assigned to 1, otherwise 0. Therefore, the
CBP value of the center pixel is obtained by calculating the
value of each pixel using Eq. (9). It is subsequently con-
verted into a decimal number in the range of [0, 32]. Hence,
the CBP reduces the histograms’ dimensionality by compar-
ing the pairs of neighbors. As an example, consider M=8,
R=2 for a conventional LBP. Its histogram’s dimensionality
is 256; a uniform LBP can be 59 while a CBP is only 32. In
other methods, feature extractions miss the local structure
because the center pixel is set to 0 and is used as a thresh-
old. In the CBP, it considers the importance of the center
pixel and the information it provides. Hence, by giving it
the largest weight, the CBP’s discrimination is improved.

CBPM,R =

(M/2)−1∑
m=0

s
(
gm − gm+(M/2)

)
2m

+ s(gc − 1
M + 1

(
M−1∑
m=0

gm + gc))2M/2 (9)

s(x) =

⎧⎪⎪⎨⎪⎪⎩
1, |x| ≥ C

0, |x| < C

2.3 Combination

The proposed descriptor is the combination or fusion of two
individual features, differential excitation and CBP patterns.
For each pixel of a fingerprint image, it is analyzed in the
two components, the differential excitation and CBP com-
ponents, and used to extract the features simultaneously. To
express the descriptors, histograms are often used. There-
fore, using the two features extracted, a 2D histogram of
dimensions MxS is generated. Further, S is the number of
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intervals of the differential excitation ξ, and M is the total
number of CBP values. In other words, each column cor-
responds to a CBP m, and each row corresponds to a dif-
ferential excitation interval s. Thus, the value of each cell
corresponds to the frequency of the specific differential ex-
citation interval s and the CBP pattern m. Finally, the feature
vector is processed using the SVM machine learning under
three different kernels to classify and determine the live and
fake fingerprints.

3. Experimental Results

3.1 Experiments and Datasets

In this section, the performance of the proposed method is
evaluated on the available datasets provided by the 2011 and
2015 Liveness Detection Competitions [9], [10]. Refer to
Table 1 for information on the datasets and their character-
istics. We subsequently compared the results of the pro-
posed method with state-of-the-art methods, the winner of
the 2011 LivDet Competition, and the winner, first runner
up, and second runner up of the 2015 LivDet Competition,
respectively. For the CBP component, the neighborhood
(M), radius (R), and threshold (C) are set to 8, 2, and 0.15,
respectively.

The metrics adopted from the Liveness Detection Com-
petition for the performance evaluation are the following:

• Ferrlive: Rate of misclassified live fingerprints
• Ferrfake: Rate of misclassified fake fingerprints
• Average Classification Error (ACE):

=
Ferrlive + Ferr f ake

2

• Fcorrlive: Rate of correctly classified live fingerprints
• Fcorrfake: Rate of correctly classified fake fingerprints
• Accuracy: Rate of correctly classified live and fake fin-

gerprints

3.2 Results

In Table 2, the results of the state-of-the-art methods, winner

Table 1 Characteristics of the datasets used in the 2011 LivDet compe-
tition [9] and 2015 LivDet competition [10]

2011 LivDet #1 #2 #3 #4
Scanner Biometrika Digital Italdata Sagem
Model no FX2000 400B ET10 MSO300
Resolution 500 500 500 500
Image size 312×372 355×391 640×480 352×384
Live samples 2000 2000 2000 2000
Fake samples 2000 2000 2000 2000

2015 LivDet #1 #2 #3 #4
Scanner Biometrika Digital Green Bit Cross
Model no HiScan U5160 DScan26 LScanG
Resolution 1000 500 500 500
Image size 1000×1000 252×324 500×500 640×480
Live samples 2000 2000 1977 3010
Fake samples 2500 2500 2500 2921

of the 2011 LivDet competition, and the proposed method,
are shown. The lowest error rates or best performances
values for each scanner are in bold. Therefore, for the
Biometrika scanner, the LBP+LPQ method performed the
best with an error rate of 6.90%. For the Digital and Ital-
data scanners, the proposed method exhibits the lowest error
rates of 6.00% and 7.00% respectively. WLD+LPQ exhibits
the best result of 3.66% for the Sagem scanner. However,
the proposed method outperforms all of the other methods
in the overall performance, as shown by Fig. 1.

The LivDet 2015 datasets included spoof images of un-
known materials. The aim is to test the reliability of the
methods because in real-life scenarios, the materials used
by attackers could be considered unknown and never been
tested or used before. Therefore, the liveness detection
methods should be able to function regardless of the ma-
terials used. Another specific challenge is the image quality.
The Biometrika HiScan-PRO has a sensor with a resolution
of 1000 dpi instead of 500 dpi that was used in the LivDet
2011. It is natural to say that increasing the image resolution
should present positive benefits to the performance. Table 3

Table 2 Error rates on 2011 LivDet test sets for live and fake samples
separately

Methods Error Biometrika Digital Italdata Sagem
Winner [2] Ferrlive 11.00 15.10 15.10 66.00

Ferrfake 29.00 28.50 12.50 6.20
ACE 20.00 21.80 13.80 36.10

WLD [2] Ferrlive 19.30 13.40 22.50 8.60
Ferrfake 7.20 14.10 32.84 4.73
ACE 13.25 13.75 27.67 6.66

LBP [2] Ferrlive 8.40 13.40 18.50 13.80
Ferrfake 11.90 13.40 16.47 4.44
ACE 10.15 12.80 17.48 9.12

LPQ [2] Ferrlive 15.70 11.90 16.00 8.70
Ferrfake 9.90 7.50 15.28 3.96
ACE 12.80 9.70 15.64 6.33

LBP+LPQ Ferrlive 6.50 10.30 13.30 6.80
[2] Ferrfake 7.30 8.80 14.29 5.41

ACE 6.90 9.55 13.80 6.11
WLD+LPQ Ferrlive 9.80 6.30 11.80 4.90
[2] Ferrfake 4.60 9.70 13.49 2.41

ACE 7.20 8.00 12.64 3.66
Proposed Ferrlive 9.80 6.49 8.90 6.18

Ferrfake 5.05 5.50 5.10 4.45
ACE 7.43 6.00 7.00 5.32

Fig. 1 Average classification error
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Table 3 Summary results of accuracy rates of 2015 LivDet methods and
the proposed method

Methods Green Bit Biometrika Digital Cross Overall
Winner [10] 95.40 94.36 93.72 98.10 95.51
2nd [10] 95.80 95.20 85.44 96.00 93.23
3rd [10] 94.44 94.08 88.16 94.34 92.82
Proposed 94.75 94.18 93.96 97.57 95.11

Table 4 Breakdown or detailed results of Table 3

Methods Error Green Bit Biometrika Digital Cross
Winner Fcorrlive 96.50 91.50 91.90 99.07
[10] Fcorrfake 94.67 96.27 94.93 97.10

known 95.70 97.30 95.40 97.88
unknown 92.60 94.20 94.00 95.98
Accuracy 95.40 94.36 93.72 98.10

2nd [10] Fcorrlive 93.50 89.10 64.30 98.93
Fcorrfake 97.33 99.27 99.53 92.96
known 98.00 99.60 99.60 97.77
unknown 96.00 98.60 99.40 86.10
Accuracy 95.80 95.20 85.44 96.00

3rd [10] Fcorrlive 92.50 96.20 89.30 98.07
Fcorrfake 95.73 92.67 87.40 90.47
known 97.50 92.40 90.80 91.89
unknown 92.20 93.20 80.60 88.44
Accuracy 94.44 94.08 88.16 94.34

Proposed Fcorrlive 92.97 92.35 92.60 96.94
Fcorrfake 96.16 95.64 95.04 98.22
known 96.50 95.75 95.65 97.85
unknown 94.80 95.20 92.60 99.66
Accuracy 94.75 94.18 93.96 97.57

is a summary of the results of the winner, the first runner up,
and the second runner up methods from the 2015 LivDet
competition, and the proposed methods, respectively. Com-
pared to Table 2 specifically for the Biometrika scanner, a
slight increase occurred in the performance even though in
the 2015 LivDet dataset, the images were obtained using
a higher resolution device. Note, however, that the meth-
ods in the 2015 LivDet competition had the opposite ef-
fect that there was a decrease in classification performance.
Further, the small image sizes of the digital scanner in the
2015 LivDet dataset resulted in a slight degradation in per-
formance. However, despite these challenges, the overall
performance of the proposed method is the second best with
an accuracy rate of 95.11%.

More details or the results breakdown are provided in
Table 4. This table shows the results of the metrics used for
evaluating the performance, as provided in one of the pre-
vious subsections. Row Fcorrfake includes the percentage
of correctly classified fakes for all fake images (including
known and unknown). As for the rows, known and un-
known, they are the percentages of correctly classified fakes
from the known materials and unknown materials, respec-
tively. As shown by the results, no significant difference
occurred in the accuracy rates between the fake fingerprints
created from the known and unknown materials. The pro-
posed method can identify fake fingerprints regardless the
type of material used.

4. Conclusions

It is considered that as liveness detection improves, spoofing
attacks and the methods used thereof also improve. There-
fore, it is necessary to introduce new methods of finger-
print liveness detection. Herein, the proposed method is a
new combination or fusion of features. We investigated its
performance by analyzing and testing it using criteria and
datasets adopted from the 2011 and 2015 LivDet competi-
tions. The results show that the proposed method provides
better and improved performance in comparison with state-
of-the-art methods and other methods from the 2011 and
2015 LivDet competitions. It also proves and confirms that
methods derived from a combination of features offer bet-
ter performance in terms of discriminative power, or distin-
guishing live and fake fingerprints, as opposed to methods
with individual features.

For future work, we are considering the investigation
of the effects of the parameters on the reliability of the pro-
posed method, and further plan to apply and test the pro-
posed method on other forms of biometric liveness detec-
tion, such as the iris and face.
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