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SUMMARY Detecting community structures and analyzing temporal
evolution in dynamic networks are challenging tasks to explore the inher-
ent characteristics of the complex networks. In this paper, we propose a
semi-supervised evolutionary clustering model based on symmetric non-
negative matrix factorization to detect communities in dynamic networks,
named sEC-SNMF. We use the results of community partition at the pre-
vious time step as the priori information to modify the current network
topology, then smooth-out the evolution of the communities and reduce the
impact of noise. Furthermore, we introduce a community transition prob-
ability matrix to track and analyze the temporal evolutions. Different from
previous algorithms, our approach does not need to know the number of
communities in advance and can deal with the situation in which the num-
ber of communities and nodes varies over time. Extensive experiments on
synthetic datasets demonstrate that the proposed method is competitive and
has a superior performance.
key words: dynamic networks, community detection, symmetric nonnega-
tive matrix factorization

1. Introduction

Community structure is considered as a significant property
of complex networks, which can provide insight into the
functionality of networks and uncover the underlying cor-
relations. Recently, there has been an increasing number of
studies in developing methods to detect community. How-
ever, these studies mainly focused on static networks and
cannot detect communities in dynamic networks. Tempo-
ral networks are pervasive in the real-world, including so-
cial networks, person-to-person communication networks,
and protein-protein relation networks. The analysis of tem-
poral networks can reveal the important characteristics and
potential rules within dynamic networks. Therefore, it has
become increasingly important to develop methods to detect
community structures in dynamic networks.

One of the main problems in detecting temporal com-
munities is the instability of the solutions. Therefore, we
cannot determine whether the change in community detec-
tion is caused by the evolution of the community or the
instability of the algorithm. To address this problem, a
large number of solutions have been proposed and their
ultimate goal is to smooth the evolution of communities.
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Chakrabarti [1] proposed the evolutionary clustering frame-
work, which assumes that sudden changes of clustering in a
short time are probably caused by noise and abrupt changes
of clustering are not expected. Based on the framework, sev-
eral algorithms for dynamic community detection have been
developed. A classic method, the FacetNet [2] algorithm,
adopted a stochastic block model for detecting communi-
ties. The DYNMOGA [3] algorithm presented a multiob-
jective method that maximized the modular structures at the
current time step, and minimized the differences between
the community structures at a successive time step. Ma
et al. [4] proposed two evolutionary nonnegative matrix fac-
torization frameworks and then incorporated a priori infor-
mation into the frameworks. Furthermore, Jiao et al. [5] pro-
posed a method based on nonnegative matrix factorization
(NMF) from a fully probabilistic perspective. Yu et al. [6]
proposed an evolutionary clustering framework based NMF
by combining the first-order varying information of the mi-
crostructure. Liu et al. [7] used symmetric nonnegative ma-
trix factorization (SNMF) and introduced node weight ma-
trices to improve the algorithmic performance. However,
most of the proposed methods did not utilize the important
prior information to improve the accuracy of community de-
tection. Furthermore, they cannot detect the temporal com-
munities and explore the evolutionary pattern of communi-
ties synchronously. And some of these methods cannot han-
dle the situation in which the number of communities and
nodes varies over time.

To address the above issues, in this paper, we propose
a novel temporal community detection framework based
on SNMF incorporating a priori information, named sEC-
SNMF. Our main contributions in this work can be summa-
rized as follows: Firstly, we use the results of the community
partition at the previous time step as the priori information
to modify the current network topology. In this way, we can
reduce the influence of noise and improve the accuracy of
community detection. Secondly, we introduce a community
transition probability matrix to track and analyze the com-
munities and temporal evolutions over time. Furthermore,
owing to the property of our framework, which quantifies
the degree of each individual’s participation in the commu-
nity, our framework can be easily extended to detect the
overlapping community structure. More importantly, our
approach can deal with the situation in which the number
of nodes and communities changing over time. In addition,
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our method does not need to know the number of communi-
ties in advance.

2. Evolutionary Approach Based on Symmetric Non-
negative Matrix Factorization

2.1 Notion

In this paper, we use Tr(A) to denote the trace of a matrix,
‖A‖F to denote the Frobenius norm of matrix A. In addition,
the operator (A)T stands for matrix transposition.

Formally, the network at time t can be modelled as a
graph Gt = 〈Vt, Et〉, where Vt is the set of nodes and Et is
the set of edges. The dynamic network G is captured as a se-
quence of networks G = {G1,G2, . . . ,GT }. In this paper, we
assume that the network is unweighted and undirected. We
use the adjacency matrix A to denote the dynamic network
G, where Ai, j,t = 1 denotes there exists a link between vi and
v j at time t, and Ai, j,t = 0 otherwise. Here, k represents the
number of communities in the dynamic networks.

The evolutionary clustering framework assumes that
most changes of links in short time periods could be caused
by noise and abrupt changes of clustering are not ex-
pected [1]. The framework consists of two sub-costs: snap-
shot cost (CS) and temporal cost (CT). The CS represents
how well the community structure fits the network at the
current time step and the CT represents the degree of sim-
ilarity between the community structures at the successive
time step. The cost function is defined as follows:

Cost = α · CS + (1 − α) · CT (1)

where α ∈ (0, 1) is a parameter used to control the contribu-
tions of the two objectives.

2.2 The Dynamic sEC-SNMF Model Formulation

Because of the excellent scalability and high computational
efficiency, NMF algorithm is widely used for data clustering
in machine learning. The NMF algorithm aims to find a pair
of nonnegative low-dimensional matrices W and H to ap-
proximate the factorization of A. Given a matrix A ∈ Rn×n,
we use HHT to approximate the factorization. The cost
function is constructed by minimizing the Frobenius norm
between A and HHT .

min
H∈Rn×k

∥∥∥A − HHT
∥∥∥2

F
s.t. H ≥ 0 (2)

The matrix H ∈ Rn×n is the community indicator matrix,
which hi j represents the membership strength of the ith node
belonging to the jth community. The form HHT represents
the expected number of edges between the ith node and the
jth node. For hard partition, nodes will be assigned to only
one community with the highest probability. In this paper,
our framework can detect overlapping communities by as-
signing nodes to more than one community whose commu-
nity indicator is higher than a threshold.

In the evolutionary clustering framework, we first ex-
pect to maximize the clustering accuracy at the current time
step. In this work, we assume that if two nodes belong to
the same community, there is a high probability that they
will be an edge between them. Therefore, we want the ex-
pected number of edges at time t to be as close as possible
to the adjacent matrix, and the matrix At could be denoted
by HtHT

t . The snapshot cost is defined as follows:

CS =
∥∥∥At − HtH

T
t

∥∥∥2
F

(3)

To detect the temporal communities and explore the evolu-
tionary pattern of communities synchronously, we introduce
a community transition probability matrix G ∈ Rk×k to ex-
plore and trace the evolution of communities. The element
gi j represents the probability of a node transferring from the
ith community to the jth community.

In the evolutionary clustering framework, we also ex-
pect to minimize the temporal cost to smooth the evolution
between the community structures at a successive time step.
Therefore, we assume that if a node at time t − 1 belongs to
the ith community, it has a lower probability of changing its
membership at time t. Therefore, Ht−1Gt should be as close
as possible to Ht. The temporal cost is defined as follows:

CT = ‖Ht−1Gt − Ht‖2F (4)

Furthermore, to reduce the impact of noise, we use the result
of the community partition at the previous time step as a
priori information to modify the current network topology,
which is defined as:

A∗t = At − γ
(
At−1 − Ht−1Ht−1

T
)

(5)

where γ is the parameter to control the degree of priori in-
formation. Through formula (5), the smoothness between
the current and historical network topology can be adjusted
to reduce the impact of noise. The overall cost function is as
follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
Ht≥0,Gt≥0

∥∥∥A∗t −HtHT
t

∥∥∥2
F
+α
∥∥∥Ht−1Gt−Ht

∥∥∥2
F

if t ≥ 2

min
Ht≥0

∥∥∥At − HtHT
t

∥∥∥2
F

if t = 1
(6)

s.t. (Ht)i j ≥ 0, (Gt)i j ≥ 0, ∀i, j

The final objective function (6) is not a convex function,
so we optimize the objectives with respect to one variable
while fixing the other variables. We use an iterative update
algorithm and introduce the Lagrange multiplier φ and ε,
respectively. The Lagrange function is written as follows:

For t = 1, we have

L1 =
∥∥∥At − HtH

T
t

∥∥∥2
F
+ Tr(φHt)

= Tr
(
AtA

T
t

)
− 2 Tr

(
AtHtH

T
t

)
+ Tr
(
HtH

T
t HtH

T
t

)
+ Tr(φHt) (7)

and for t = 2

L2 =
∥∥∥A∗t − HtH

T
t

∥∥∥2
F
+ α
∥∥∥Ht−1Gt − Ht

∥∥∥2
F
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+ Tr(φHt) + Tr(εGt)

= Tr
(
A∗t
(
A∗t
)T − 2A∗t HtH

T
t + HtH

T
t HtH

T
t

)
+ αTr

(
Ht−1GtG

T
t HT

t−1 − 2Ht−1GtH
T
t + HtH

T
t

)
+ Tr(φHt) + Tr(εGt) (8)

The partial derivative of L2 with respect to Gt and Ht are:

∂L2

∂Gt
= 2HT

t−1Ht−1Gt − 2HT
t−1Ht + ε (9)

∂L1

∂H1
= −4A1H1 + 4H1HT

1 H1 + φ (10)

∂L2

∂Ht
= −4A∗t Ht + 4HtH

T
t Ht − 2αHt−1Gt + 2αHt + φ

(11)

Using the Karush-Kuhn-Tucker (KKT) condition εi jGi j = 0
and φi jHi j = 0, we obtain the following equations:[

2HT
t−1Ht−1Gt − 2HT

t−1Ht + ε
]
i j

(Gt)i j = 0 (12)[
−4A1H1 + 4H1HT

1 H1 + φ
]
i j

(H1)i j = 0 (13)[
−4A∗t Ht+4HtH

T
t Ht−2αHt−1Gt+2αHt+φ

]
i j

(Ht)i j = 0

(14)

Finally, we obtain the updating formula of Gt and Ht as fol-
lows:

(Gt)i j ← (Gt)i j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
Ht−1Ht

)
i j(

HT
t−1Ht−1Gt

)
i j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

(H1)i j ← (H1)i j

√√√√√ (
A1H1

)
i j(

H1HT
1 H1

)
i j

(16)

(Ht)i j ← (Ht)i j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
2A∗t Ht + αHt−1Gt

)
i j(

2HtHT
t Ht + αHt

)
i j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
4

(17)

In this paper, we select k at each time step as follows:

k = arg
r∗

min
r

√√∥∥∥∥∥∥∥
r∑

i=1

λiT xiT x′iT

∥∥∥∥∥∥∥
/
‖AT ‖ > δ (18)

where λiT is the eigenvalue of matrix A, and xiT is the cor-
responding eigenvector, δ is a parameter controlling the ap-
proximation. According to [4], we set δ = 0.55 in this work.
When nodes appear and vanish in networks, we fill 0 and
delete the corresponding row to make the matrix become
same size. When the number of communities in two succes-
sive time steps changes, we randomly initialize Ht instead
of initializing Ht with Ht−1.

3. Experiment

In this section, we perform extensive experiments on three
representative artificial datasets and compare the results

with two well-known algorithms to test the validity of the
sEC-SNMF algorithm. Firstly, we adopt two representative
dynamic Griven Newman synthetic benchmark datasets pro-
posed by Lin et al. [2] and Kim et al. [8]. The datasets have
various evolution events that can verify whether our algo-
rithm can accurately detect different evolutionary communi-
ties. Furthermore, we also adopt Power-Law networks gen-
erated by the LFR benchmark. The LFR benchmark extends
the Girvan and Newman benchmark by introducing power-
law degree distributions which can generate more realistic
and large-scale benchmark data.

3.1 Evaluation Measures and Baseline Algorithms

To test the validity of the sEC-SNMF algorithm, two dy-
namic community detection algorithms are used as compar-
ison algorithms: the DYNMOGA and FacetNet. In the fol-
lowing experiments, we set the parameters in our algorithm
as α = 0.2 and γ = 0.1. For the baseline algorithms, we use
the parameters recommended by the authors.

In our experiments, we use the widely-used evaluation
metric normalized mutual information (NMI) [9] to evaluate
the performance, which is formally defined as:

NMI(T,C)

=

−2
∑FT

i=1

∑FC

j=1
Fi j log(Fi j · n/Fi·F· j)∑FT

i=1
Fi· log(Fi·/n) +

∑FC

i=1
F· j log(F· j/n)

(19)

where T and C is the real community detection and the com-
munity partition of our algorithm, respectively. The matrix
F is the confusion matrix. A higher value indicates a better
performance.

3.2 The Evaluation Performance on Synthetic Dataset 1

The first synthetic dataset is introduced by Lin et al. [2]. The
network consists of 128 vertices divided into 4 communities
and each community contains 32 vertices. Every node has a
fixed average degree, and contact z links with the nodes in
other communities. In this work, we set the average degree
as 20, and set z = 5, z = 6. The higher the value of z is, the
fuzzier the community structure is. Moreover, C% of the
vertices are moved among communities. For each fixed z,
we randomly select 10% and 30% of the vertices to change
their community at each time step. We consider 50 time
steps in synthetic dataset 1.

To illustrate the performance of the sEC-SNMF algo-
rithm, fifty independent runs are conducted on four net-
works and the averaged NMI values of three algorithms are
as shown in Fig. 1. When the noise level increases, the per-
formance of the two baselines decreases dramatically, and
our algorithm consistently shows better performance at all
noise levels.

3.3 The Evaluation Performance on Synthetic Dataset 2

The second synthetic dataset is introduced in [8]. It
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Fig. 1 Compare with DYNMOGA and FacetNet in terms of the NMI
value of synthetic dataset 1 (a) z = 5, C = 10% (b) z = 5, C = 30%
(c) z = 6, C = 10% (d) z = 6, C = 30%

Fig. 2 Compare with DYNMOGA and FacetNet in terms of the NMI
value of synthetic dataset 2 (a) SYN-FIX, z = 3 (b) SYN-FIX, z = 5
(c) SYN-VAR, z = 3 (d) SYN-VAR, z = 5

consists of two kinds of datasets. The first network is the
SYN-FIX network which consists of 128 vertices divided
into 4 communities with 32 vertices each equally. The num-
ber of communities is fixed. Similar to synthetic dataset 1,
3 vertices are randomly selected to change their community.
The second network is the SYN-VAR network which con-
sists of 256 vertices divided into 4 communities with 64 ver-
tices and the number of communities is variable. The num-
ber of communities for the 10 timestamps is 4, 5, 6, 7, 8, 8,
7, 6, 5, and 4.

As can be seen from Fig. 2, it is obvious that the sEC-
SNMF algorithm performs the best among all the methods
on all datasets. It is worth noting that the NMI values ob-
tained by our algorithm are always 1 for the two SYN-FIX
datasets for all timestamps.

3.4 The Evaluation Performance on Synthetic Dataset 3

The third synthetic dataset is Power-Law networks which is
generated by the LFR benchmark [10]. In Network 1, the
numbers of nodes, links, and communities are 1858, 10635

Fig. 3 Normalized mutual information values of synthetic dataset 3
(a) Network 1 (b) Network 2.

and 26, respectively. The number of communities is fixed.
To introduce dynamics, 6 vertices are randomly selected to
join other communities at each time step. In Network 2,
the number of nodes and links is 1000 and 7692, respec-
tively. Analogously, we select two communities randomly
to merge them into one community, and select one commu-
nity to divide it into two communities. Overall, the number
of communities for the 5 timestamps is 28, 27, 26, 27, and
28. The majority of the existing algorithms performed well
on the Girvan and Newman benchmark, but poorly on the
LFR benchmark. As can be seen from Fig. 3, all the results
demonstrate that the sEC-SNMF algorithm is superior to all
compared methods on the two Power-Law networks. The
values of NMI obtained by the sEC-SNMF algorithm on the
two datasets are all higher than 0.8 for 5 time steps.

4. Conclusions

This paper presents a semi-supervised temporal community
detection model based on SNMF. We use the results of the
community partition at the previous time step as the priori
information to modify the current network topology. Fur-
thermore, a community transition probability matrix is in-
troduced to track and analyze the temporal evolutions. Ex-
tensive experiments on synthetic datasets demonstrate that
the sEC-SNMF algorithm has excellent performance in min-
ing accurate community structures in dynamic networks.
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