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Multi Model-Based Distillation for Sound Event Detection∗

Yingwei FU†,††a), Kele XU†,††, Haibo MI†,††b), Qiuqiang KONG†††, Dezhi WANG††††,
Huaimin WANG†,††, Nonmembers, and Tie HONG††, Student Member

SUMMARY Sound event detection is intended to identify the sound
events in audio recordings, which has widespread applications in real life.
Recently, convolutional recurrent neural network (CRNN) models have
achieved state-of-the-art performance in this task due to their capabilities
in learning the representative features. However, the CRNN models are of
high complexities with millions of parameters to be trained, which limits
their usage for the mobile and embedded devices with limited computation
resource. Model distillation is effective to distill the knowledge of a com-
plex model to a smaller one, which can be deployed on the devices with lim-
ited computational power. In this letter, we propose a novel multi model-
based distillation approach for sound event detection by making use of the
knowledge from models of multiple teachers which are complementary in
detecting sound events. Extensive experimental results demonstrated that
our approach achieves a compression ratio about 50 times. In addition,
better performance is obtained for the sound event detection task.
key words: sound event detection, model distillation, model compression,
convolutional recurrent neural network

1. Introduction

The task of sound event detection (SED), also called as
acoustic event detection aims at recognizing the onset and
offset times of sound events and predicting the sound events
to predefined classes. Generally speaking, SED task can be
divided into monophonic sound event detection and poly-
phonic sound event detection. Monophonic SED indicates
that the sound events are not overlapping in audio while
polyphonic SED indicates that multiple sound events may
occur at the same time. Currently, SED task is confronted
with several challenges. Firstly, an audio clip may contain
overlapping sound events, which makes it difficult to obtain
representative features for detection. Secondly, an audio clip
is often weakly labeled which only contains the presence of
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sound events without the timestamps of sound events, as it’s
time-consuming to label the onset and offset times of the
sound events manually.

Sustainable efforts have been made to address these
challenges. Traditional methods for SED rely on the
shallow-architecture learners, such as Hidden Markov Mod-
els (HMMs) [1]. However, the overlap of the sound events
results in difficulty to predict the sound events and times-
tamps. Non-negative matrix factorization (NMF) has been
used to separate the overlapping sound events in an audio
clip [2]. And, NMF is able to predict overlapping sounds.
However, it only handles frame-level information, and ig-
nores the temporal context. Recently, deep neural networks
using log mel band energy features or mel frequency cep-
stral coefficients (MFCCs) features as input have shown im-
proved performance for the SED task. In more detail, con-
volutional neural network (CNN) can exploit spatially lo-
cal correlation across input data [3]. While, recurrent neural
network (RNN) can capture long term temporal context for
the audio signal [4]. By combining CNN and RNN, con-
volutional recurrent neural network (CRNN) has provided
state-of-the-art results on various polyphonic sound event
detection task.

However, most of these deep models have millions of
parameters to be trained, and the models can not be applica-
ble to the devices with limited computation and storage re-
sources [5]. Model distillation is a general machine learning
approach for model compression and performance improve-
ment, and it uses the knowledge learned by teacher model
to help the student model to train [6]. The teacher model is
often a high-capacity pre-trained deep model while the stu-
dent model is a small target net with lower-performance. It
is worth mentioning that, for weakly-labeled SED task, the
previous work [7] proposed a method of iterative training
using model distillation to improve model performance.

In this letter, we propose a novel model distillation ap-
proach for polyphonic SED. The proposed approach utilizes
the classification probabilities (frame-level) obtained by the
teacher model as extra training supervision term for student
model. Different from the iterative distillation method [7],
our approach combines multiple teachers’ frame-level pre-
dicted distributions to help student model improve the per-
formance. Because different models are complementary in
detecting sound events, integrating the knowledge of multi-
ple models can let the student model have better generaliza-
tion ability. We conduct experiments on the weakly labeled
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Detection and Classification of Acoustic Scenes and Events
(DCASE) 2017 Challenge Task 4 dataset. We find that our
approach can provide a model compression ratio about 50
times, and the student model can get better performance.

This letter is organized as follows. Section 2 descries
the CRNN framework. Section 3 presents the proposed
method. Section 4 shows the experiments. Conclusion is
given in Sect. 5.

2. Framework

In our experiment, we employ the CRNN for the task,
which provides state-of-the-art performance for SED [8].
The framework of CRNN is shown in Fig. 1. The extracted
log mel band energy and delta features of log mel are com-
bined as the input for the CNN. As demonstrated in previous
study [5], the delta features can improve the performance as
it may enrich the input features dimension. Then the out-
put of the convolutional layers are employed as input to two
bidirectional RNNs. The RNN component is followed by
a gate structure and an attention layer [8] so that the infor-
mation related to the temporal sequence can be retained to
improve the performance.

As a proof of concept, the CNN components selected
can be ResNet50 [9], Xception [10], DenseNet201 [11] and
Inception-V3 [12], as these models have shown to be effec-
tive in classification tasks. Two bidirectional GRUs [13]
with different activation functions are adopted to capture
the temporal information, and each network consists of
128 cells. The GRUs outputs are then element-wise mul-
tiplied by the gated structure. The attention layer includes
two independent fully connected (FC) layers whose activa-
tion functions are softmax and sigmoid respectively. The
FC layer with sigmoid activation function predicts the prob-
ability of sound events at each frame. The FC layer with
softmax activation function is used to attend to the frames
that may contain sound events. The output of the FC layer
with sigmoid activation function is the frame-level predic-
tion which is denoted as Yf ∈ [0, 1]T×K . The probability of
sound event j at frame i is obtained by:

Yf (i, j) = σ(Xi, j) (1)

where σ(Xi, j) = 1
1+e−Xi, j

, and X ∈ RT×K is the output matrix
of FC layer before activation function. T is the number of
frames and K is the number of sound event types. The clip-
level prediction corresponding to each audio is defined as
Yc ∈ [0, 1]K and the probability of sound event j is obtained
by:

Yc( j) =

∑T
i=1 φ(Xi, j) � σ(Xi, j)∑T

i=1 φ(Xi, j)
(2)

where φ(Xi, j) = eXi, j
∑K

k=1 eXi,k
is the output of the FC layer with

softmax activation function, and � is the element-wise mul-
tiplication. Since the training data of the DCASE 2017
Challenge Task 4 dataset is weakly labeled, we use Eq. (2)

Fig. 1 Framework of CRNN for weakly labeled polyphonic SED task.

to get the clip-level prediction and the binary cross-entropy
between the clip-level prediction Yc and the ground truth la-
bel of the audio is used as training loss. The training loss is
defined as:

Lb = −
N∑

i=1

(Yc
i log Yi + (1 − Yc

i) log(1 − Yi)) (3)

where Yc
i and Yi denote the estimated clip-level prediction

vector and ground truth label vector at sample index i, re-
spectively. The batch size is N.

3. Model Distillation

Model distillation involves transferring knowledge from a
complex model (teacher model) to a smaller one (student
model) [6]. The basic principle of distillation is to intro-
duce additional supervision of the teacher model in student
model training, beyond the conventional supervised learning
objectives. The implementation of our approach is shown
in Fig. 2. As SED task is required to determine the on-
set and offset times of sound events, frame-wise distilla-
tion can transmit the knowledge of temporal information in
frames instead of the whole clip. Indeed, as the choice of
the teacher model can be diverse, distillation from multiple
teacher models can enhance the generalization ability of stu-
dent model and achieve better performance.

3.1 Teacher Model and Student Model

The CRNN models proposed in Sect. 2 provide state-of-the-
art performance for SED. However, there are millions of pa-
rameters in the models which are not applicable for the mo-
bile and embedded devices with limited resources. These
models are typical teacher models.

The amount of CRNN framework parameters mainly
depends on the complexity of CNN and RNN components.
In our experiment, for the student model, the CNN com-
ponent is a compact CNN which consists of three blocks,
and each block includes one convolution layer followed by
one batch normalization layer, one gate layer and one max-
pooling layer. The gate layer [8] in compact CNN consists
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of a sigmoid branch and a linear branch. The RNN com-
ponent in student model is two bidirectional GRUs which
consists of 80 cells respectively. The parameter of the gate
structure and the attention layer is only a small part of the
entire CRNN framework and both of them are helpful in
improving the performance, so they are adopted in student
model.

3.2 Frame-Wise Distillation

The Kullback-Leibler Divergence (KLD) is often used for
training the student model to imitate the prediction of the
teacher model. In frame-wise distillation for SED task, we
apply distillation to each frame. And the frame-wise KLD
loss is defined as below:

Lf = −
τ2∑T

i=1
∑K

j=1 λt(i, j) log λs(i, j)

T
(4)

where τ is a temperature hyper-parameter which controls the
soft degree of probability distribution. The symbols λt and
λs are frame-wise soft labels from the teacher model and
student model. Compared with the approach which uses the
frame-level prediction directly, the soft label can be more
representative. The λt and λs are defined as below:

λt(i, j) =
eυ(Yt f (i, j))

∑K
k=1 eυ(Yt f (i,k))

λs(i, j) =
eυ(Ys f (i, j))

∑K
k=1 eυ(Ys f (i,k))

(5)

where υ(x) = log x
τ−τx , and it converts the classification re-

sult into logit form with temperature. Yt f (i, j) and Ys f (i, j)
are the frame-level probability of sound event j at frame i in
teacher model and student model respectively.

3.3 Multi Model-Based Distillation

Although frame-wise distillation can help student model im-
prove the performance, it only utilizes the knowledge of one
teacher model. However, we argue that the students often
have multiple teachers to obtain knowledge. In this part, we
explore multi model-based distillation which makes use of
the information from multiple teacher models.

We denote the frame-wise KLD loss of different
teacher models as Li

f , i ∈ {1, . . . ,M}, and the number of
teacher models is M. The mixed KLD loss is defined as
below:

Lm =

M∑

i=1

θiL
i
f (6)

where θi is the weight of each teacher model. We set θi = 1
M ,

i ∈ {1, . . . ,M} which denotes average mixing. The mixed
teacher models can encourage the student model to behave
linearly between teacher models and enhance the general-
ization ability.

Fig. 2 Frame-wise distillation and multi model-based distillation
schematic. The frame-level prediction is transformed into soft label and
the KLD between these labels is used as extra loss.

4. Experiments

4.1 Experimental Settings

Experiments are conducted on the DCASE 2017 Challenge
Task 4 dataset. The training, testing and evaluation set con-
tains 51172 and 488 and 1103 audio clips respectively. The
training set is weakly labeled. For testing and evaluation,
strong labels with timestamps are provided. We re-sample
audio clips using 22.05KHz and transform the wave-form to
log mel band energy. Then the first and second order delta
features of log mel features are used as the other two chan-
nels features to form a 3-channel features as input, and each
channel feature has the size of 320 × 128. All the methods
use the same input features.

The structure of the baseline CNN is the same as
that of DCASE 2017 Challenge baseline system. The
CNN components (ResNet50, Xception, DenseNet201 and
Inception-V3) of the teacher CRNN models are fine-tuned
from the pre-trained models which are trained on the Im-
ageNet dataset. And the RNN components of the teacher
models and all components of the student models are fully
trained using DCASE Challenge dataset. The F1 value mea-
sure is employed for the evaluation by using the official
sed val package [14] with a 1s segment size and a 200ms
collar on onsets and a 200ms/20% of the events length col-
lar on offsets.

4.2 The Influence of the Number of Teacher Models

In our experiments, we firstly study the influence of the
number of teacher models. The teacher models include
ResNet50, Xception, DenseNet201 and Inception-V3 which
are followed by two bidirectional GRUs consisting of 128
cells respectively, a gate structure and an attention layer.
The amount of model parameters are 25.36 million, 21.46
million, 18.90 million and 22.21 million respectively. For
the combinations of different numbers of teacher models,
we test all types of combinations and report the average F1
values. Figure 3 gives the quantitative comparison. We find
increasing the number of the teacher models does not pro-
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Fig. 3 The average F1 value of the student models (with different set-
tings of the teacher models). The SIA, SCA, EIA and ECA denotes the
segment-based instance-based average F1 value, the segment-based class-
based average F1 value, the event-based instance-based average F1 value
and the event-based class-based average F1 value respectively.

Table 1 The components and the amount of parameters for CRNN
frameworks.

CNN component RNN component CRNN parameters

TM1 ResNet50 128 cells Bi-GRU 25.36 million

TM2 Xception 128 cells Bi-GRU 21.46 million

SM Compact CNN 80 cells Bi-GRU 0.48 million

vide dramatic performance gain but increasing the compu-
tation cost, and 2 teacher models can provide satisfied per-
formance. In the following letter, we use 2 teacher models
for the model distillation.

4.3 Model Compress Ratio

The configuration of CRNN frameworks is shown in Ta-
ble 1. As can be seen from the table, compared with teacher
models (TM1 and TM2), our method can provide a com-
pression ratio of 53× and 45× for the student model (SM).
The student model with reduced model size can be deployed
on the mobile or embedded devices with limited resources.

4.4 Model Performance

The results of F1 value comparisons on the evaluation set
are shown in Table 2. Owing to using our 3-channel fea-
tures as input, the SIA of baseline CNN increased slightly
(compared with 28.4% in DCASE baseline system). Com-
pared with the baseline, the CRNN models have better per-
formance. Frame-wise distillation and multi model-based
distillation methods can both improve the F1 value of SM,
and the multi model-based distillation shows superior im-
provement versus frame-wise distillation because it mixes
the knowledge of multiple teacher models. The SIA, EIA
and ECA of the SM with Lm are 50.9%, 16.8% and 17.1%
which are the best result among all the methods. Although
the SCA of the SM with Lm is 2.8% lower than the F1 value
in TM2, it improves remarkably compared with the F1 value
in SM.

Table 2 The results of F1 value on the evaluation set.

Method SIA SCA EIA ECA

Baseline CNN 29.5% 30.7% 4.1% 5.0%

TM1 47.0% 48.9% 11.9% 12.5%

TM2 50.6% 53.3% 14.4% 15.5%

SM 40.4% 43.0% 10.7% 12.3%

SM with L1
f 44.6% 46.2% 13.5% 14.3%

SM with L2
f 46.6% 49.6% 14.5% 15.2%

SM with Lm 50.9% 50.5% 16.8% 17.1%

5. Conclusion

This letter proposes a novel multi model-based distillation
method on CRNN for weakly labeled polyphonic SED task.
The proposed method can utilize the advantages of different
models to improve the performance of the student model,
and the student model with less parameters is applicable to
the devices with limited computation and storage resources.
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