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LETTER

Symbolic Representation of Time Petri Nets for Efficient Bounded
Model Checking

Nao IGAWA†, Nonmember, Tomoyuki YOKOGAWA†a), Member, Sousuke AMASAKI†, Nonmember,
Masafumi KONDO††, Yoichiro SATO†, and Kazutami ARIMOTO†, Members

SUMMARY Safety critical systems are often modeled using Time Petri
Nets (TPN) for analyzing their reliability with formal verification methods.
This paper proposed an efficient verification method for TPN introducing
bounded model checking based on satisfiability solving. The proposed
method expresses time constraints of TPN by Difference Logic (DL) and
uses SMT solvers for verification. Its effectiveness was also demonstrated
with an experiment.
key words: formal verification, Time Petri Net, SMT Solver, difference
logic

1. Introduction

Industries strive for assuring their safety critical systems,
failure of which exposes man-life and social infrastructures
to serious danger. For assurance, the safety critical sys-
tems are often modeled using Time Petri Net (TPN) [1], [2],
which is one of the main extensions of Petri Nets with time
constraints [3]. The reliability of systems is then analyzed
with the TPN models applying formal verification methods.
A formal verification approach based on model checking
methodology expresses possibly tremendous states of a sys-
tem as assignments to propositional variables and real ones.
Thus, tools based on this approach such as TINA [4] and
Romeo [5] are suffered from a complex and space consum-
ing problem. Representing the state space symbolically such
as [6]–[8] is considered promising. These studies applied
SAT-based bounded model checking [9] to the verification
of Timed Automata.

In [10], we proposed a verification method for TPN
based on bounded model checking that extended an SAT-
based bounded model checking method for Petri Nets [11]
and showed the advantage of our method over existing
model checker. The method expressed time constraints in
linear arithmetic (LA) and enabled to use an SMT (Satisfia-
bility Modulo Theories) solver for verification. Its symbolic
representation adopted a similar encoding of timed systems
in [7] such that firing of transitions and elapsing place de-
lays were encoded as boolean expressions separately. We
also extended the symbolic representation to express time
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constraints in difference logic (DL) [12] in a similar manner
to [8], and an efficient satisfiability solving algorithm for
formulas described in DL [13] could be applicable.

In this paper, we conduct a comparison experiment and
show the advantage of the encoding based on DL compared
to the existing encoding based on LA. We prepare different-
sized TPN examples to evaluate the scalability of the en-
coding. We also demonstrate that the formula size reduc-
tion [10] has a greater effect on the proposed encoding.

2. Bounded Model Checking for TPN

2.1 TPN

We introduce P-Time Petri Nets (P-TPN) [14], a subclass
of TPN that extend Petri Nets (PN) so that it can repre-
sent a place delay. P-TPN is defined as 6-tuple P-TPN
= (P,T, F, Fin,M0, X), where P is a set of places, T is a
set of transitions, F ⊆ (P × T ) ∪ (T × P) is a set of arcs,
Fin ⊂ (P × T ) is a set of inhibitor arcs and M0 ⊆ P is an
initial marking. X : P → (Z+) × (Z+ ∪ + inf) is a function
mapping places to place delays (Z+ denotes a set of integers
which are greater than or equal to zero). We focus on a safe
P-TPN where each place has at most one token, and no arc
weight is considered.

A place can have a token. A place delay represents a
time required to enable a token of the place and have lower
bound li and upper bound ui (li ≤ ui) for pi ∈ P. A token in
place pi can be enabled on and after li elapsed and must be
enabled until ui elapsed. A transition must fire immediately
when all of its input places have an enabled token, and the
tokens move to its output places through the transition. An
inhibitor arc represents a condition of inhibiting a transition
firing. Transitions connected with input places through an
inhibitor arc can fire only if those places have no enabled
token. Input and output places of a transition t ∈ T are
described as •t and t•, and input and output transitions of a
place p ∈ P are described as •p and p•, respectively. Places
with an inhibitor arc to transition t are represented as ◦t.

2.2 Bounded Model Checking

A state s of TPN which has l places (l = |P|) is defined
by a variable c and two l - vectors m = (m1, . . . ,ml) and
z = (z1, . . . , zl) for the vector of places p = (p1, . . . , pl)
where pi ∈ P. c denotes the global time of the TPN and
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zi represents the time when pi gets a token. By using the
variables, the elapsed time of the token in pi is expressed as
c− zi. mi is a boolean variable which evaluates to true when
pi has a token. Here, a boolean function over variables of s
which holds iff a state s belongs to a state set S is called a
characteristic function of S . Similarly, a transition relation
can be specified as a characteristic function over s and s′

which holds iff s can change to s′.
To carry out SAT-based bounded model checking, it is

necessary to encode two characteristic functionsNk and Rk.
Nk(s0, · · · , sk) denotes that the initial state s0 can reach sk

by k-steps through s1, s2, · · · , sk−1. Rk(s0, · · · , sk) denotes
that a desired property to be checked is satisfied in any one
of the states s0, · · · , sk. Here, a step represents the changing
of states caused by time elapsing and firing of transitions.
A step is defined as a changing of states s and s′ through
a state s′′, where s changes to s′′ by elapsing of some time
interval and s′′ changes to s′ by firing of some transitions.
Bounded model checking can check whether a system can
satisfy the desirable property within k-steps by determining
the satisfiability of Nk ∧ Rk using SMT-solver. If Nk ∧ Rk

is satisfiable, the property can be satisfied in k-steps from
the initial state. That is, the system satisfies the reachability
of the states where the property holds, and the verification
succeeds. If not, it means that the system does not satisfy
the property at least within k-steps.

2.3 Symbolic Representation

In our encoding, time constraints are expressed in difference
logic (DL), which is a sub logic of linear arithmetic and has
a form restricted as x − y �� c for variables x, y and constant
c, where �� represent equality or inequality. Constraints ex-
pressed in DL can be solved efficiently by searching a nega-
tive cycle of a weighted directed graph.

Two step types are supposed in our encoding: an elaps-
ing sub-step caused by time elapsing and a firing sub-step
caused by transition firing discretely. C(s, s′) and F (s, s′)
denote characteristic functions of an elapsing sub-step and
firing sub-steps. A characteristic function of one step

T (s, s′) is defined as T (s, s′)
de f
= C(s, s′′) ∧ F (s′′, s′) for

some intermediate state s′′ between the steps.
A transition t must fire immediately when all p ∈ •t

have enabled tokens and any p ∈ ◦t has no enabled token;
otherwise, t can not fire. Here, we introduce two character-
istic functions Ent(s) and Dst(s). Ent(s) denotes t must fire
in a state s and Dst(s) denotes t can not fire in a state s as
follows:

Ent(s)
de f
=
∧

pi∈•t
(mi ∧ ui ≤ c − zi) ∧

∧

pi∈◦t
¬(mi ∧ li ≤ c − zi),

Dst(s)
de f
=
∨

pi∈•t
¬(mi ∧ li ≤ c − zi) ∨

∨

pi∈◦t
(mi ∧ ui ≤ c − zi).

Note that Ent(s) and Dst(s) are defined so that there exist
states where neither Ent(s) nor Dst(s) holds. This is be-
cause whether the token in pi is enabled or not is decided

non-deterministically when li ≤ c − zi < ui. In such states,
whether t fires or not is also decided non-deterministically.

As an elapsing sub-step is performed when there is no
transition which must fire, C(s, s′) can be defined as fol-
lows:

C(s, s′)
de f
= (c′−c > 0)∧

∧

t∈T
¬Ent(s)∧

∧

pi∈P
(z′i =zi ∧ m′i ↔ mi)

∨(c′ − c = 0) ∧
∧

pi∈P
(z′ = zi ∧ m′i ↔ mi)

where m′i , z′i and c′ represent mi, zi and c on state s′ respec-
tively. Note that c′ − c > 0 holds only when Ent(s) does
not hold for all t ∈ T . As you can see, C(s, s′) is satisfied
even if some t can fire on the global time x between c and c′

(c < x < c′). Thus C(s, s′) provides an over-approximation
of the time elapsing behavior of TPN and T (s, s′) permits
sequences of states which can not occur in actuality. How-
ever, T (s, s′) is satisfied for all sequences of states from s to
s′ which the TPN allows and our encoding can check reach-
ability to states where desired properties hold.
F (s, s′) can be defined as a conjunction of character-

istic functions Ft(si, s j) for all transitions (n = |T |), which
holds iff si changes to s j by a firing of t or si = s j:

F (s, s′)
de f
= Ft1 (s, s1) ∧ Ft2 (s1, s2) ∧ · · · ∧ Ftn (sn−1, s

′).

F (s, s′) holds if s can reach s′ by firing of some sequence
of transitions following the order in t1, . . . , tn. Ft(s, s′) can
be defined as follows:

Ft(s, s′)
de f
= (c′ − c = 0) ∧ ¬Dst(s)

∧
∧

pi∈t•
(m′i ∧ z′i = c) ∧

∧

pi∈•t\t•
(¬m′i ∧ z′i = zi)

∧
∧

pi∈P\(•t∪t•)
(m′ ↔ mi ∧ z′ = zi)

∨ (c′ − c = 0) ∧
∧

pi∈P
(m′i ↔ mi ∧ z′i = zi).

Since Nk represents that the initial state s0 can reach
the state sk by k-steps, Nk can be obtained as follows:

Nk
de f
= I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk)

where I(s) denotes a characteristic function of the initial
states and is defined as follows:

I(s)
de f
=
∧

pi∈M0

mi ∧
∧

pi�M0

¬mi ∧
∧

pi∈P
zi = 0.

Suppose a characteristic function R(s) which holds iff a
given property is satisfied in s. WhenNk holds for the states
s0, · · · , sk and R(si) holds in some state si (0 ≤ i ≤ k), Nk

also holds by assigning si to si+1, . . . , sk. Because T (s, s′) is

true when s = s′. Thus we can obtain Rk
def
= R(sk).

For example, deadlock freeness of TPN can be checked
by expressing deadlock states as a characteristic function. A
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Table 1 Effects of variables replacing.

# of variables # of constraints
Step before replacing after replacing before replacing after replacing

LA DL LA DL LA DL LA DL
1 292,469 292,859 3,815 3,442 300,670 300,325 12,016 10,908

#1 5 1,459,353 1,461,299 16,083 14,214 1,490,770 1,490,485 47,500 43,400
10 2,917,958 2,921,849 31,418 27,679 2,978,395 2,978,185 91,855 84,015
1 2,461,701 2,462,895 11,479 10,450 2,486,925 2,486,084 36,703 33,639

#2 5 12,300,265 12,306,231 49,155 44,006 12,397,525 12,397,336 146,415 135,111
10 24,598,470 24,610,401 96,250 85,951 24,785,775 24,786,401 283,555 261,951
1 25,975,013 25,979,063 38,423 35,218 26,060,356 26,058,043 123,766 114,198

#3 5 129,849,417 129,869,663 166,467 150,438 130,180,260 130,181,319 497,310 462,094
10 259,692,422 259,732,913 326,522 294,463 260,330,140 260,335,414 964,240 896,964

Table 2 Comparison of execution time (sec.).

Step MathSAT Z3 SMTIinterpol yices CVC4 result
LA DL LA DL LA DL LA DL LA DL

1 0.043 0.031 0.031 0.031 0.479 0.420 0.012 0.015 0.149 0.148 unsat
2 0.069 0.061 0.071 0.071 0.629 0.570 0.023 0.027 0.277 0.270 unsat
3 0.118 0.116 0.138 0.137 0.730 0.690 0.035 0.041 0.421 0.405 unsat
4 0.219 0.186 0.250 0.238 0.941 0.891 0.048 0.057 0.544 0.524 unsat

#1 5 4.182 1.097 0.965 0.785 6.158 8.586 6.397 0.209 1.113 1.008 unsat
6 5.325 2.876 2.989 1.813 11.633 11.916 16.283 0.544 2.860 1.406 unsat
7 18.612 3.956 8.524 3.264 17.235 39.502 12.725 0.590 3.395 2.454 unsat
8 19.148 10.185 14.632 5.260 78.673 58.682 14.222 1.393 11.403 4.746 unsat
9 31.172 17.919 33.772 11.692 201.717 187.003 32.164 3.885 49.292 14.752 unsat
10 78.780 42.962 61.003 32.251 > 600 258.586 91.310 7.780 69.900 184.923 unsat
1 0.103 0.108 0.107 0.104 0.888 0.843 0.038 0.046 0.620 0.549 unsat
2 0.353 0.283 0.384 0.333 2.880 1.499 0.089 0.101 1.304 1.143 unsat
3 0.878 0.557 1.040 0.717 2.187 2.130 0.343 0.173 1.987 1.754 unsat
4 1.799 1.082 1.775 1.343 10.130 6.396 0.854 0.291 2.762 2.418 unsat

#2 5 6.991 4.115 4.165 4.024 16.678 35.643 4.230 0.427 3.969 3.582 unsat
6 10.310 6.721 8.226 6.014 55.335 62.101 9.524 1.229 11.929 5.239 unsat
7 40.479 46.537 29.248 14.886 148.538 294.035 42.590 4.308 20.572 10.864 unsat
8 65.158 68.318 77.255 37.106 591.304 320.213 71.035 8.127 65.388 29.093 unsat
9 88.706 53.858 118.414 84.530 > 600 > 600 212.159 19.547 208.174 73.094 unsat
10 296.510 173.050 224.211 135.838 — — 340.504 48.888 389.901 204.180 unsat
1 0.371 0.384 0.437 0.415 1.867 1.775 0.129 0.160 1.837 1.827 unsat
2 1.727 1.520 2.706 1.715 10.087 10.064 0.468 0.460 4.804 4.819 unsat
3 5.398 3.688 7.790 4.658 23.477 19.291 2.835 1.011 7.868 7.157 unsat
4 11.624 7.474 16.579 9.238 130.407 104.760 26.152 2.488 10.562 9.784 unsat

#3 5 49.279 21.836 63.565 25.299 91.997 215.889 89.636 5.140 14.849 13.539 unsat
6 173.166 89.663 156.303 96.474 > 600 > 600 150.506 16.581 31.128 28.166 unsat
7 335.292 337.237 > 600 188.084 — — > 600 32.838 304.836 81.453 unsat
8 > 600 > 600 — > 600 — — — 139.254 451.156 404.832 unsat
9 — — — — — — — 240.595 > 600 > 600 unsat
10 — — — — — — — > 600 — — N/A

deadlock occurs when all tokens of places are enabled and
no transition can fire. Thus a characteristic function Rd(s)
which denotes deadlock states can be defined as follows:

Rd(s)
de f
=
∧

t∈T
¬Ent(s) ∧

∧

pi∈P
(mi → ui ≤ c − zi).

2.4 Size of Formula to be Solved

To express time constraints in DL, we introduce the addi-
tional variable c which represents the global time for each
state and the additional constraints over the value of c. Thus
the formula to be solved increases in the number of vari-
ables. In [10], we provided the method for reducing formula
size by replacing unchanged variables. Since the value of zi

will be unchanged until the place pi gets a new token in the
proposed encoding, there are many terms formed as (z′i = zi)
which can be removed by replacing z′i with zi. This makes
it possible for the proposed encoding to reduce the formula
size compared to the existing encoding.

3. Experiments

For evaluation, the proposed encoding was compared with
the existing encoding based on Linear Arithmetic (LA)
shown in [10]. This experiment was performed on the com-
puter with Ubuntu 16.04 LTS OS, Intel Core i7 7700 3.6
GHz CPU, and 64 GB Memory. We supplied three TPNs #1,
#2 and #3, whose numbers of places/transitions are 374/389,
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1030/1193 and 3206/4049. We used five SMT solvers at
the top of SMT-COMP 2018 [15]: MathSAT [16], Z3 [17],
SMTInterpol [18], yices [19], and CVC4 [20].

Table 1 shows the comparison of effects of the formula
size reduction by variable replacing. “Variable” denotes the
variables which are declared in the formula, and “constraint”
denotes the logical constraints in the formula. Here the logi-
cal constraint denotes x, ¬x, or x↔ y for boolean variable x
and y, or constraints in LA. As shown in the Table, the num-
ber of variables and constraints can be significantly reduced
by the variable replacing, and the reduction works well on
the proposed encoding compared to the existing one.

Table 2 shows execution times of bounded model
checking from 1 step to 10 steps for the three TPNs. The
column “LA” and “DL” describes the execution times by the
existing encoding and proposed encoding, respectively. We
set the timeout to 600 seconds. As shown in the “result”
column, deadlock cannot be detected for the TPNs within
10 steps. For all of the SMT solvers, the proposed encod-
ing performed better than the existing encoding. In partic-
ular, yices showed a good performance for the formula in
DL even if the size of the target TPN becomes large. For
some cases, a performance for the formula in LA is better
than the formula in DL. Since the size of formula is not so
large, the differences of structure of the formula seems to
affect the execution time rather than the effectiveness of the
fast algorithm.

4. Summary and Future Work

A symbolic representation for efficient bounded model
checking is proposed, and its effectiveness is demonstrated.
An experiment with practical TPNs and a comparison with
other tools such as TINA and Romeo are on our future re-
search direction. We will extend this work to apply interpo-
lation based unbounded model checking (UBMC) [12], [21].
Future work is an application the effective UBMC algo-
rithm [22] to our encoding.
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