888

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.4 APRIL 2020

[LETTER

Against Insider Threats with Hybrid Anomaly Detection with
Local-Feature Autoencoder and Global Statistics (LAGS)

Minhae JANG ', Yeonseung RYU'™, Jik-Soo KIM'™®, Nonmembers, and Minkyoung CHO™', Member

SUMMARY Internal user threats such as information leakage or sys-
tem destruction can cause significant damage to the organization, however
it is very difficult to prevent or detect this attack in advance. In this paper,
we propose an anomaly-based insider threat detection method with local
features and global statistics over the assumption that a user shows differ-
ent patterns from regular behaviors during harmful actions. We experimen-
tally show that our detection mechanism can achieve superior performance
compared to the state of the art approaches for CMU CERT dataset.

key words: abnormal detection, sequence-to-sequence learning, autoen-
coder, reconstruction error

1. Introduction

Insider threats caused by stakeholders who have access
to internal systems, can severely damage the organiza-
tions with leakage or destruction of sensitive or commer-
cially valuable information/systems. Unlike other cyber
attacks, it is very difficult to detect these threats because
an internal attacker has permissions to access the informa-
tion/systems, and does not need to bypass security devices
such as IDS/IPS, or Firewalls. Over the last two decades,
insider threat detection has been heavily researched [1], and
“anomaly-based detection method” is one of the popular
mechanisms in this area. The underlying assumption is that
a malicious insider behaves differently from his/her normal
patterns when they try to thieve or attack internal informa-
tion/systems (e.g., collecting a large amount of information,
uploading files to outside website, or periodically visiting
websites for job search).

In this paper, we propose an insider threat detec-
tion method based on a sequence-to-sequence autoencoder
model. Autoencoder [2] basically learns to make output as
same as the input itself and it is one of the unsupervised
learning mechanisms. Therefore, autoencoder does not need
to label each data. In order to detect insider threats, suffi-
cient amount of data must be obtained along with the case
definitions of insider threats. However, insider threat cases

Manuscript received September 30, 2019.
Manuscript revised November 20, 2019.
Manuscript publicized January 10, 2020.
"The author is with Digital Solution Lab., KEPCO Research
Institute, Korea.
"'The authors are with Dept. of Computer Engineering,
Myongji University, Korea.
a) E-mail: minhae.jang@kepco.co.kr
b) E-mail: ysryu@mju.ac.kr
¢) E-mail: jiksoo@mju.ac.kr
d) E-mail: mkcho@mju.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2019EDL8180

may change widely according to varying time and circum-
stances, so that it is almost impossible to accumulate enough
data to cover all these cases. Instead, we try to learn normal
behaviors from data, and consider the potential candidate of
insider threats based on the deviation from trained normal
behaviors.

User behavior data is event-based time series data, and
the data length is different from each other depending on
user and time. To learn this kind of data, we use a sequence
to sequence model [3] based on RNN (recurrent neural net-
work). Although RNN-based model shows excellent per-
formance for sequence data, it is already known that the
performance gets degraded when the sequence length be-
comes very long. Therefore, instead of learning the whole
sequence, we divide it into relatively short fixed-length se-
quences, and learn local sub-sequences with a RNN model.
One minor problem in this approach is that these local sub-
sequences may not represent the main characteristics of the
whole sequence. To address this problem, we have lever-
aged additional statistical techniques (e.g., standard devia-
tion factors) to effectively capture the global characteristics
for the entire sequence.

2. Related Work

This section mainly focuses on the related studies of in-
sider threat detection using CMU CERT insider threat test
dataset [4].

Rashid et. al. [5] proposed a novel method to detect in-
sider threats by using Hidden Markov Model (HMM). Given
the user computer usage logs which contains detailed infor-
mation about login / logoff, web access, USB connection,
and email, they transform those logs to simple integer se-
quences by categorizing to seven event types. Then, they
trained the hidden markov model for the first 5 weeks which
are considered as a user’s normal behavior. They detect the
suspicious threats by estimating if events are significant de-
viations from the normal behavior. In their experiments, the
performance of their algorithm is less than 0.8 in the as-
pect of AUC (Area Under Receiver Operating Characteris-
tics Curve).

Ha et. al. [6] proposed a deep learning based ap-
proach for insider threats detection. They followed the
same preprocessing method as Rashid et. al. and learn-
ing the sequences with RNN autoencoder model, inspired
by Encoder-Decoder-Anomaly Detection (EncDec-AD) [7];
this detects an anomaly pattern based on autoencoder’s re-

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

LETTER

construction errors. They split a whole sequence into small
fixed-size sequences, and then learn them with RNN au-
toencoder. Evaluation results show that the proposed model
clearly outperforms HMM-based models. For additional
performance improvements, they used the frequency of USB
devices as an extra information.

Tuor et. al. [8] proposed an insider threat detection
method with stacked LSTM models. Instead of simply
preprocessing seven event types, they analyze more fine-
grained events consisting of a total 408 detailed types ac-
cording to usage time, existing email attachment, file oper-
ations (e.g., reading, writing, copying, and deletion), etc. In
the experiments with CMU CERT r6.2 dataset, they showed
that their model outperformed SVMs and PCA which are
the standard anomaly detection techniques. Also, they argue
that 90% of insider threats can be detected if they examined
250 instances with top anomaly scores per day. Another
recent work by Yuan et. al. [9] enumerated events into 16
types and tested with various LSTM models and CNN mod-
els. One of a LSTM with CNN model successfully detected
insider threats and obtained AUC = 0.9449 in the best case
at CMU CERT r4.2 dataset.

This paper extends our previous work [6] by effectively
fine-tuning the model with attention mechanism, and re-
vising the seq2seq learning model. In addition, we have
eliminated the application-specific information such as USB
usage frequency for generalization. Instead, we introduce
standard deviation factors to estimate each event’s global
characteristics which can be easily extended to support
general-purpose sequence data sets. Our extensive exper-
imental results show that proposed insider threat detec-
tion scheme can clearly outperform existing approaches for
CMU CERT dataset.

3. Architecture and Implementation

In this section, we describe our target datasets, preprocess-
ing mechanism, proposed learning models, and anomaly
measurements.

3.1 Data Sets

CMU CERT dataset contains detailed logs for user’s events.
Each event has transaction ID, timestamp, user ID, system
ID, and other event specific details (as seen from Fig. 1).

To handle these event data, we preprocess them as de-
picted in Fig. 2. The input log data consist of 5 event files re-
lated to login, http, file, device, and email. We extract events
by user ID from all files and merge them into a single file
for each user. After sorting the user file in a chronological
order, the final event sequence data can be created through
enumeration process; Given the input data, we simply enu-
merate events into seven types, and detailed information are
ignored (as we can see from Fig.2). The enumerated val-
ues of events start from 1, and O is used as a padding value
indicating that there is no event data.

889

logon,{ U1Q4-19PX02PE—-8712XJDX},02/24/2011 19:49:41,
WDDO0366,PC—-0155,Logon

device,{ Q613—A2AY45RM—-4749NTDA },02/24/2011 22:07:28,
WDD0366,PC—-0155,Connect

http ,{ S3I7-R3CN14RD-1922CYQD },02/24/2011 22:29:04,
WDDO0366,PC—-0155,http://wikileaks.org/Julian_Assange

device,{ JANS-J11G44ZN—-4509ZX0G},02/24/2011 22:31:31,
WDD0366,PC—0155,Disconnect

email ,{ I3G5-W IFL72KE-1363JNAZ},08/31/2010 11:21:01,
XHWO0498,PC-9840,Selma—Burch@harris.com,,, Xerxes.
Howard. Wilcox @ dtaa.com,28488,1

file ,{ Y8VI-MOYKS81DK-8272ZWUF},11/04/2010 15:19:09,
MPMO0220,PC-2344,AZTCQ30G.exe 4D-5A-90 file
keylogging malware

logon,{ VSE4-F1JY53FG-8030MANZ},02/24/2011 23:11:08,
WDDO0366,PC—0155,Logoff

Fig.1 Examples on input logs

logi Extract Sort by
ogin.csv all events the order of
at user k event time

http.csv . Day 1

Day 2

device.csv

V7

email.csv

[Event type enumeration]

Logon | Http | Email File Conn. [DisCon. | Logoff
1 2 3 4 5 6 7

Fig.2 Preprocessing of CMU CERT Data

3.2 Seq2seq Autoencoder Model with Attention

In order to deal with user’s event-series data, we have built
an autoencoder based on “sequence-to-sequence (seq2seq)
model”. An autoencoder basically consists of an encoder
part that maps an input into a latent space typically smaller
than input dimension, and a decoder part that restores the
latent space to its original data form. After training, the au-
toencoder has a high recovery rate for the patterns learned,
and may fail to reconstruct for non-trained patterns.

seq2seq model is to learn how to transform one input
sequence into another one. There are many real world ap-
plications for this type of seq2seq learning such as language
translation and word recommendation. In our case, since
we are making input and output sequences the same, the
seq2seq model operates as autoencoder. Specifically, we de-
signed our seq2seq autoencoder by taking the encoder’s fi-
nal state (which is a kind of summary of an input sequence)
into the initial state of decoder. Also, in order to improve
the overall performance, additional attention mechanism is
effectively applied to our model. Our seq2seq model with
attention can utilize all state information of each input se-
quence along with encoder’s final state (as we can see from
Fig. 3).

3.3 Anomaly Detection on Long Sequence

Let S denotes a set of sequences where each sequence s;

890

[Output sequence]

RN

Attention |

N O

Encoder

/

T T ‘
Embedding @

Decoder

Input sequence]

Fig.3 Sequence to sequence model with attentions

consists of a series of a discrete element e. Let n denote
the number of the sequences and len(-) denotes a function to
compute the length of a given sequence.

S ={s1,52,- -, 5.} where s; = [e1, €2, -+, €]gp]

Let us consider the application of our cases where the length
of sequence s; is long enough (e.g., over 200 events for each
day) and the number of sequences, #, is relatively small (e.g.
60 days). Then, it is hard to train the sequence with our
seq2seq autoencoder due to the number of training data is
too small. In order to train this kind of data, we inflates the
given data set by extracting subsets of a sequence through
sliding with a small sized window. Let T, denotes a set of
subsequences generated from a sequence s; where w is the
size of sliding window. Then, we can effectively augment
the sequence data s; as followings:

) ew]’ [82’ 63,) ew+l], o '}
where ¢; is the j-th element in sequence s;

TS,‘ = {[61762’ o

Now, given a set of sequence S, we define a loss function,
called reconstruction error R, of our seq2seq autoencoder.
R can be compute as the sum of categorical crossentropy on
S as follows.

R = Zs,-eS Zt‘,-eTsl. Zeket, ey log Pr(ey)

However, this reconstruction error may miss the characteris-
tics of an entire sequence because the training is performed
only with subsequences, not an entire sequence. In order to
reflect the overall sequence characteristics, we introduce a
standard deviation factor; how far is the number of occur-
rences of each event from the given mean and standard de-
viation of normal sequences. We consider it as a loss when
the factor exceeds some threshold 7 as followings:

D=X-m)/oc if X-m)jo>1
=0 otherwise

where m, o are mean and standard deviation, respectively.
In our experiments, the threshold 7 value is set to 2 which
is typically about twice the standard deviation (a half-width
of the 95% confidence interval). Within this confidence in-
terval, it is considered as a normal behavior with no penalty
(i.e.,D=0)

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.4 APRIL 2020

Event ID | 1 2 |...] 7
Mean 11125 (...165
Deviation | 2.5 | 4.1 | ... | 1.2 | —, Standard Deviation
l Event #] 32 | 21 | | 7 ‘ Factors (D)
l Normal
[loss = kD + R |
Ab al
[Output] @ @ @ _ normal
t f t
Seq2Seq Reconstruction
Autoencoder ™ Error (R)
with Attention “ITor
t 1 t
[Input] @ @ @ -

Fig.4 Abnormal detection with s.t.d factors and reconstruction errors

Table1 CERT r4.2. data
total user 1,000 users
total days 500 days (2010-01-02 - 2011-05-17)
total events 32,770,227 events
threat events 7,323 events
threat users 70 users
threat (user, day) | 986 pairs

Finally, the loss function can be defined with recon-
struction error R from our seq2seq model and the standard
deviation factors D, of each element e

loss=R+k- Z D, where E is a set of event types

ecE

where k is a hyper-parameter constant to balance the recon-
struction error and the standard deviation factors. If the loss
is bigger than some threshold given by user, we consider
the example as abnormal indicating a candidate of potential
insider threats.

3.4 Implementation

We implemented our model with Keras in Tensorflow 1.13
and performed experiments on Ubuntu 16.04 desktop 64bit
OS with Intel 17-8700 (12 Core CPU), 64GB Memory and
NVIDIA GTX Titan Z (vram 12GB) GPU. The hyper-
parameters for optimizations in our model have been se-
lected as the learning rate to 0.05, the nesterov option to
be true, and the momentum to 0.9. For the details of our
implementation, refer to the source code repository [10].

4. Evaluation

Our main dataset is CMU CERT revision 4.2 which con-
tains relatively a lot of abnormal events compared to other
revisions. Basically, a thousand of users generated about 32
million computer usage events during 500 days. The total
number of threat events is 7,323 and the distinct threat pair
by user and day is 986. Our objective is to find 986 (user,
day) threat pairs among the total 1,000 users x 500 days
pairs on the dataset (actually 330,452 pairs).

For each user, we built and trained a seq2seq autoen-
coder model. The training data is the first 60 days of user
behavior logs under the assumption that users act normally
during this period. The maximum epoch is 500 and the train-
ing can be stopped early if the loss becomes below 0.002 in

LETTER

Table 2 The confusion matrix for our model
precision recall T F
ours 54.02% 85.80% | T 846 140
(size=3) 99.96% 99.78% | F 720 328,746
ours 41.78% 88.95% | T 877 109
(size=4) 99.97% 99.63% | F 1,222 | 328,244
ours 37.73% 89.15% | T 879 107
(size=8) 99.97% 99.70% | F 1,451 328,015
ours 14.20% 91.38% | T 901 85
(size=16) 99.97% 98.35% | F | 5446 | 324,020

Receiver operating characteristic of our model (size=4)

o o o -
= > @ >
\
AY
N
N
N

True Positive Rate
\

o
N
\

P ROC curve (area = 0.98)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig.5 ROC curve for our model (size = 4)

order to prevent overfitting. As performance metrics, we
employ a confusion matrix, ROC (Receiver operating char-
acteristic) curve, and CR-k [8]. CR-k measures the maxi-
mum number of checking to detect all instances of threats.

First, to investigate the effects of subsequence sam-
pling, we test our model with various training sequence
lengths by changing the sizes of sliding window. The exper-
imental results are presented in Table 2. Note that 7 means
a threat event and F denotes a normal event. 7" and £ show
the events that are detected as threats and normal activities
respectively.

Our goal is to maximize the true positive (T, T) and
minimize the false positive (F, f). In Table 2, we can ob-
serve that as the pattern size becomes larger, the true posi-
tive (T, T) increases, however the false positive (F, T) also
rapidly increases. As the pattern size is increased, the possi-
ble patterns will be increased exponentially (e.g., 73,74, 78,
7'9). Therefore, it may be difficult to learn user patterns, not
quite strongly depending on near events. Although the pre-
cision and recall seem to be too low, due to the huge number
of total (user, day) pairs (i.e. 328,669), our performance can
be considered as relatively good enough. Based on these re-
sults, we choose the best sliding window size as 4, which
can show high true positive and relatively reasonable false
positive rates.

As we can see from Fig. 5, our proposed model shows a
good shape in the ROC curve. In addition, we could achieve
AUC value of 0.9855 which is better than the recent research
results in Yuan et. al. [9] where they used a stacked RNN and
CNN resulting in 0.9449 AUC value in the best case.

To compare with another recent work by Tuor et. al. [8]
based on the CR-k metric, we test our model with CMU
CERT r6.2 by following their experimental settings. They
chose CR-250 where the maximum number of checking to
detect all threats is 250. On the other hand, our model needs

891
Table 3 The confusion matrix at CMU CERT r6.2
precision recall T F
ours 1.05% 90.00% | T 18 2
(size=4) 99.29% 99.99% | F 1,714 | 242,032

at most 40 detections per day, that is CR-40, which is six
times less than the previous work’s CR-250.

Note that previous papers did not specify their accuracy
results so that we cannot directly compare them with ours.

5. Conclusion

In this paper, we have addressed the insider threat detec-
tion problem with abnormal detection deep learning model.
We trained local feature autoencoder based on sequence to
sequence model with attention and used standard deviation
factors to capture global statistical characteristics. Experi-
mental results show that our proposed model can outperform
the previous mechanisms and achieve the best available re-
sults, especially at CMU CERT dataset. Our approach is
not limited to CMU CERT dataset only, and can be easily
extended to various sequence dataset with discrete elements
such as temperature, stocks, heartbeats, etc.

Acknowledgments

This research was supported by 2018 Research Fund of
Myongji University, and the National Research Foundation
of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2019R1A2C1005360).

References

[1] L.Liu, O.De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and
preventing cyber insider threats: A survey,” IEEE Commun. Surv.
Tutorials, vol.20, no.2, pp.1397-1417, 2018.

[2] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol.313, no.5786,
pp-504-507, 2006.

[3] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learn-
ing with neural networks,” NIPS, pp.3104-3112, 2014.

[4] J. Glasser and B. Lindauer, “Bridging the Gap: A pragmatic ap-
proach to generating insider threat data,” 2013 IEEE Security Pri-
vacy Workshops, pp.98—104, IEEE 2013.

[5] T.Rashid, I. Agrafiotis, and J.R.C. Nurse, “A new take on detecting
insider threats: Exploring the use of hidden markov models,” Proc.
8th ACM CCS International Workshop on Managing Insider Secu-
rity Threats, pp.47-56, ACM, 2016.

[6] D.W. Ha, K.T. Kang, and Y. Ryu, “Detecting insider threat based
on machine learning: Anomaly detection using rnn autoencoder,” J.
KIISC, no.4, pp.763-773, Aug. 2017.

[7] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based encoder-decoder for multi-sensor anomaly
detection,” arXiv preprint arXiv:1607.00148, 2016.

[8] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in struc-
tured cybersecurity data streams,” Proc. Al for Cyber Security Work-
shop at AAAI 2017, 2017.

[9] FE. Yuan,Y.Cao, Y. Shang, Y. Liu, J. Tan, and B. Fang, “Insider threat
detection with deep neural network,” International Conference on
Computational Science, vol.10860, pp.43—54, Springer, 2018.

[10] “LAGS,” https://github.com/minkcho/lags.

http://dx.doi.org/10.1109/comst.2018.2800740
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/spw.2013.37
http://dx.doi.org/10.1145/2995959.2995964
http://dx.doi.org/10.5244/c.31.139
http://dx.doi.org/10.1007/978-3-319-93698-7_4

