
910
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

LETTER

Salient Region Detection with Multi-Feature Fusion and Edge
Constraint

Cheng XU†a), Member, Wei HAN†, Dongzhen WANG†, and Daqing HUANG†, Nonmembers

SUMMARY In this paper, we propose a salient region detection method
with multi-feature fusion and edge constraint. First, an image feature ex-
traction and fusion network based on dense connection structure and multi-
channel convolution channel is designed. Then, a multi-scale atrous con-
volution block is applied to enlarge reception field. Finally, to increase
accuracy, a combined loss function including classified loss and edge loss
is built for multi-task training. Experimental results verify the effectiveness
of the proposed method.
key words: salient region detection, convolutional neural network, multi-
feature fusion, edge constraint

1. Introduction

Salient region detection is a basic research field in image
processing and computer vision. Its purpose is to find the
most salient region in an image. Salient region detection
is widely used in various image processing and recognition
tasks, including target location, visual tracking and semantic
segmentation.

Traditional salient region detection usually uses the
middle- and low-level features of images, such as re-
gional texture, color, and contrast. Through feature extrac-
tion, the distinction between saliency and non-saliency is
achieved [1]–[3]. These methods lack sufficient semantic in-
formation, so they do not work well in complex scenarios.

In recent years, deep learning has greatly promoted the
development of salient region detection technology. Com-
pared with the traditional algorithm, the accuracy of the de-
tection results of the saliency model based on deep learning
on the public dataset far exceeds those of the traditional al-
gorithm. Wang et al. [4] present a salient region detection
algorithm by integrating both local estimation and global
search. Li et al. [5] proposed a framework by integrating the
CNN-based saliency model with a spatial coherence model
and multi-level image segmentations. Zhao et al. [6] de-
signed a multi-context deep learning framework for salient
object detection, including both global context and local
context. Compared with traditional salient region detection
methods, these methods greatly improve the detection accu-
racy, but because the pooling operation of a deep network
cannot better preserve the edge information of the salient
object, the edge of the salient object is usually blurred and
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the shape of the salient object is difficult to determine.
To solve this problem, a salient region detection

method combining multi-feature fusion and edge constraint
is designed in this paper, which focusing on how to effec-
tively fuse multi-feature maps and overcome edge blurring
in salient regions through supervised learning of edge in-
formation. Without any post-processing, this method can
generate an accurate saliency map with precise boundaries.

In summary, the main contributions of this work are the
following:

(1) The dense connection structure and multi-
convolution channel are used to construct a multi-scale
feature-fusion network with feature reuse.

(2) A multi-scale atrous convolution block (MACB) is
constructed to extract features in larger receptive fields.

(3) The edge constraint on the salient object is added,
with the classification of the saliency/non-saliency regions,
the combined loss function is built, and the multi-task train-
ing method is used to enhance the edge-distinction ability of
networks.

2. Methods

2.1 Network Framework

The network structure is shown in Fig. 1. The network con-
sists of two sub-networks: a feature fusion network and
salient region detection network. The backbone network of
the feature fusion network uses DenseNet [9]. DenseNet en-
ables each layer to connect directly with all its subsequent
layers and features can be reused, so as to reduce the number
of parameters and keep the network efficient. On this basis,
we used the idea of feature pyramid networks (FPNs) [10]
to output feature maps from Dense Block 2, Dense Block
3, and Dense Block 4 separately, and designed a multi-scale
feature fusion block (MFFB). This block can fuse the shal-
low features with the adjacent deep features by adding the
parallel convolution channel, in order to improve the seman-
tic strength of the shallow features. After the feature fu-
sion network executes, feature maps of three different scales
can be obtained and sent to the salient region detection net-
work for further feature extraction and pixel classification.
The salient region detection network includes a feature ex-
traction block (FEB) and an MACB. The skip-connection
structure of ResNet is adopted in the FEB, the main func-
tion of which is to further extract features and adjust the
scale of the feature maps. The MACB employs atrous con-
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Fig. 1 Architecture overview of the proposed network.

volution with a rate = 6, 12, and 18 to extract salient fea-
tures from the multi-scale feature maps and uses 1*1 con-
volution to reduce the dimension of the feature maps. Then,
the cross-entropy function is used as classified loss to clas-
sify the saliency/non-saliency pixels. After output classifi-
cation, the salient class is selected, and then edge detection
is performed on the salient map and ground-truth map sepa-
rately, and the edge loss representing the edge constraint can
be calculated. We combine classified loss and edge loss in a
multi-task learning network, and use the correlation between
tasks to promote learning. Finally, an accurate saliency map
with precise boundaries is generated.

2.2 Multi-Scale Feature Fusion Block

Shallow features usually do not have sufficient ability to ex-
press features, while deep features lack good ability to de-
scribe details. In this case, we use residual structure and de-
convolution to form a multi-scale feature fusion block. The
structure of this block is shown in Fig. 2. The MFFB is di-
vided into three branches: branch 1, branch 2, and branch
3. Branch 1 adopts a 1*1 convolution kernel as the skip
connection, which can alleviate the problem of gradient dis-
appearance. To enhance the expressive ability of shallow
features, we use a 3*3 convolution core as branch 2. Branch
2 has a larger field of perception, which is convenient for
capturing image details; branch 3 consists of 3*3 convolu-
tion and deconvolution. Branch 3 uses the deeper features
close to it, enhances the expression ability of the shadow
features, and makes it easy to distinguish the salient object
from the background. When MFFB is used to extract the
features of Dense Block 4, as shown in Fig. 1, branch 3 is
removed because no deeper features can be used for fusion.

2.3 Feature Extraction Block

The structure of FEB is shown in Fig. 1. The skip connec-

Fig. 2 Multi-scale feature fusion block.

tion is adopted in this structure, and two 3*3 convolution
including batch-norm layers and ReLu layers are used in
the branch to extract detail features, which are fused with
the original channel features to achieve the effect of distin-
guishing fine features. Finally, the feature map is adjusted
to the same size by deconvolution.

2.4 Multi-Scale Atrous Convolution Block

Traditional convolution limits the size of receptive field, so
it is necessary to use the pooling layer to enlarge the recep-
tive field by dimension reduction of the feature map. The
pooling dimension reduction will miss the details of the im-
age, resulting in irreversible loss. Therefore, to extract more
salient features, a MACB is designed by using atrous convo-
lution [8]. An image I is input and two-dimensional convo-
lution kernels C is used to perform a pixel-by-pixel convo-
lution operation. For the general convolution operation, we
have

f (i, j) =
∑

m

∑

n

I(i + m, j + n)C(m, n) (1)

The rate r is added in the atrous convolution. Then,

f (i, j) =
∑

m

∑

n

I (i + m ∗ r, j + n ∗ r) C(m, n) (2)
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Fig. 3 Multi-scale atrous convolution block.

when r ≥ 2, the receptive field can be enlarged without
changing the size of the convolution core and adding ad-
ditional parameters. The receptive field can be expressed as

Rf ield = [(k + 1) ∗ (r − 1) + k]2 (3)

where k represents the size of the convolution core. To ob-
tain features of different scales, the feathers are extracted by
atrous convolution with r = 4, 8, and 16, as shown in Fig. 3.

2.5 Loss

In the proposed method, an edge constraint is added to en-
hance the clarity of the edge of salient objects. Therefore,
the loss function can be divided into classified loss and edge
loss.
(1) Classified loss

The parameters of the network can be optimized by
minimizing the errors between the predicted values and cor-
responding annotations. We use a binary classification net-
work to segment salient objects and non-salient background
regions. The goal of the network optimization is achieved
by minimizing the cross-entropy of the softmax classifier:

Lcls
i = −

1
N

N∑

k=1

(ycls
k log(pk) + (1 − ycls

k )(1 − log(pk)))

(4)

where pk is the probability produced by the network that
indicates pixel xk in the salient region. The notation ycls

k ∈{0, 1} denotes the ground-truth label. N is the number of
pixels in the image.
(2) Edge loss

Edge loss uses the predicted and the matched ground-
truth masks as input, which are edge detected with edge de-
tection filter Sobel. Afterwards, the difference between the
predicted and ground-truth edge maps are determined. For
this task, we choose Euclidean loss, which can express the
absolute difference between the predicted and ground-truth
edge maps.

Ledge
i =

1
N

N∑

k=1

‖yk − ŷk‖2 (5)

where ŷk is the pixel of edge map predicted by the network,
and yk the pixel of the ground-truth edge map. N is the
number of pixels in the image.
(3) Multi-task training

There are two loss functions in the whole network,
including one classification loss and one edge loss. We

Table 1 Quantitative performance on three benchmark datasets.

Algorithms
ASD PASCAL-S ECSSD

Fβ MAE Fβ MAE Fβ MAE
GMR 0.911 0.077 0.662 0.219 0.741 0.192
DSR 0.887 0.082 0.646 0.207 0.734 0.175

HDCT 0.885 0.121 0.607 0.229 0.707 0.198
LEGS 0.904 0.062 0.751 0.155 0.831 0.121
MDF 0.931 0.052 0.758 0.144 0.830 0.106

MCDL 0.928 0.035 0.736 0.144 0.839 0.103
SSD 0.932 0.035 0.762 0.121 0.837 0.102
Ours 0.933 0.034 0.773 0.119 0.869 0.081

adopted the strategy of joint training and designed a multi-
task loss function, in which each output loss can be used
as the regularization term of other losses to prevent over-
fitting to some extent. During training, the multi-task loss
function can provide additional gradient signals to prevent
gradient disappearance. The multi-task loss function can be
expressed as follows:

min
M∑

i=1

∑

j∈{cls,edge}
ω jL

j
i (6)

where M is the number of training samples, ω j the weight
coefficient.

3. Experiment

We compared the proposed algorithm with six salient re-
gion detection algorithms, including GMR [1], DSR [2],
HDCT [3], LEGS [4], MDF [5], MCDL [6] and SSD [7].
GMR, DSR and HDCT are traditional detection algorithms
using low-level features, while LEGS, MDF, MCDL and
SSD are salient region detection algorithms based on deep
learning. We obtained the result images from the project
site of each algorithm. The results which were not pro-
vided were generated from the authors’ source codes pub-
lished in the web. We used three typical test datasets: ASD,
PASCAL-S, and ECSSD for our evaluation.

Precision-recall (PR) curves, F-measure (Fβ) and mean
absolute error (MAE) were used as metrics to evaluate the
performance of salient region detection. The PR curve is
computed by binarizing the saliency maps under different
probability thresholds ranging from 0 to 1 and comparing
against the ground truth. The comparisons on PR graph is
presented in Fig. 4. Maximum Fβ scores and MAE values
are also described in Table 1.

As shown in Fig. 4 and Table 1, our model achieves
superior quantitative max Fβ, MAE and PR performance
across the board when compared to GMR, DSR, HDCT,
LEGS, MDF, MCDL and SSD. This is because our model
fuses multiple feature maps through a feature fusion net-
work to better describe the semantics and details of images,
and then optimizes salient maps through an edge constraint,
which improves the salient map’s accuracy.

Figure 5 is visual comparison of salient region detec-
tion results with and without the edge loss term. When
dealing with complex scenes, the proposed algorithm can
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Fig. 4 Precision-recall curves on the three benchmark datasets.

Fig. 5 Visual comparison of salient region detection results with and
without the edge loss term.

not only smoothly and uniformly display salient regions, but
also shows a good effect in edges. The salient maps obtained
are clear as a whole, and the salient object and background
are clearly distinguished.

In order to reflect the influence of MACB and edge con-
straint on the performance of the algorithm, we have car-
ried out a comparative experiment on ECSSD dataset. After
adding the MACB to the backbone network, Fβ increased by
9.2% and MAE decreased by 12.7%. Further adding edge
constraint, Fβ increased by 7.5% and MAE decreased by
9.7%. It can be seen that MACB and edge constraint signif-
icantly improve the performance of salient region detection.

4. Conclusion

To solve the problem of blurred-edge representation of
salient objects in complex backgrounds, we propose a
salient region detection method in this letter. By extract-
ing and fusing multi-scale features of images, image de-
tails and semantic information are effectively utilized. Com-
bined with the edge loss, the edge information of salient ob-
jects can be captured by the network. The effectiveness of
the proposed algorithm is compared with seven salient re-
gion detection algorithms that have been utilized in recent
years. The results show that the proposed algorithm can de-
tect salient objects more accurately, and can better represent
the information of salient objects, and with clearer bound-
aries.
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