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Orthogonal Gradient Penalty for Fast Training of Wasserstein GAN
Based Multi-Task Autoencoder toward Robust Speech Recognition

Chao-Yuan KAO†, Sangwook PARK††, Alzahra BADI†, David K. HAN†††, Nonmembers,
and Hanseok KO†a), Member

SUMMARY Performance in Automatic Speech Recognition (ASR) de-
grades dramatically in noisy environments. To alleviate this problem, a
variety of deep networks based on convolutional neural networks and re-
current neural networks were proposed by applying L1 or L2 loss. In this
Letter, we propose a new orthogonal gradient penalty (OGP) method for
Wasserstein Generative Adversarial Networks (WGAN) applied to denois-
ing and despeeching models. WGAN integrates a multi-task autoencoder
which estimates not only speech features but also noise features from noisy
speech. While achieving 14.1% improvement in Wasserstein distance con-
vergence rate, the proposed OGP enhanced features are tested in ASR and
achieve 9.7%, 8.6%, 6.2%, and 4.8% WER improvements over DDAE,
MTAE, R-CED(CNN) and RNN models.
key words: speech enhancement, generative adversarial networks, deep
learning, robust speech recognition

1. Introduction

Automatic Speech Recognition (ASR) has been in wider
usage in recent years including mobile devices, home as-
sistants, and other electronic devices. Accuracies of these
ASRs depend highly on the level of noise present in the in-
put audio. For good ASR performance, speech enhancing
preprocessing is considered critical. The enhancement ap-
proaches can generally be categorized into a regression ap-
proach (mapping based target) [1]–[3] or a classification ap-
proach (masking based target) [4]. It has been observed that
masking based method performs better in terms of Short-
Time Objective Intelligibility (STOI), while regression ap-
proaches have comparable performances based on Percep-
tual Evaluation of Speech Quality (PESQ) scores [5]. With
the emergence of deep learning, methods such as Autoen-
coders or Generative Adversarial Networks (GANs) have
been adopted for audio enhancement to increase speech in-
telligibility. Deep learning based methods such as Deep
Denoising Autoencoder (DDAE), DNN [1], CNN [3], or
RNN [6] achieved performance improvements over the con-
ventional methods. Speech Enhancement GAN (SEGAN)
first proposed in [7] has also been used for speech enhance-
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ment. Pandey and Wang found that training the generator
alone with L1 loss performs better than adversarial training
in SEGAN [8]. Donahue, et al. proposed Frequency-domain
SEGAN (FSEGAN) that works in time-frequency repre-
sentation without phase information in contrast to SEGAN
which works with the waveform [9]. FSGAN in this imple-
mentation achieved lower word error rates (WERs) than that
of SEGAN.

Michelsanti and Tan proposed a CNN based Pix2Pix
framework, which outperformed a classical STSA-MMSE
algorithm and a DNN based model for speech enhance-
ment [10]. Mimura et al. proposed a Cycle-GAN-based
acoustic feature transformation and showed its effective-
ness in noisy speech recognition and speaking style adap-
tion [11]. In [12] an adversarial training-based mask estima-
tion has shown to capture speech and noise signals without
supervised data.

Although these methods based on deep learning frame-
work demonstrated improved performances over the tradi-
tional methods, their effectiveness is still limited when ap-
plied in noisy environments. To overcome the noise prob-
lem, we hinge on the idea of separating noise and speech
components in a single network frame. We developed a
speech-noise separation method based on the Multi-Task
AutoEncoder (MTAE) [13].

Our contribution in this Letter is to develop a novel
Orthogonal Gradient Penalty (OGP) in Wasserstein GAN
(WGAN) architecture, combines the advantages of multi-
task learning and WGAN for separating noise and speech
contents in a single network, that results in more rapid con-
vergence during training and achieves improved WER per-
formance.

In summary, our proposed model (MTAE WGAN
OGP) enables fast training but achieves better performance
over the state-of-art CNN and RNN models for speech en-
hancement. The rest of the paper is organized as fol-
lows. Section 2 introduces the proposed orthogonal gradient
penalty on WGAN model structure. The experimental set-
tings are in Sect. 3. Finally, we evaluate the results in Sect. 4.

2. Proposed Method

2.1 Wasserstein GAN Based Multi-Task Autoencoder
(MTAE WGAN)

Figure 1 shows the WGAN structure we used for develop-
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Fig. 1 MTAE structure: the left side is a denoising autoencoder (green
lines), contains green and red nodes. The right side is a despeeching au-
toencoder (blue lines), contains red and blue nodes. The red nodes in the
middle are shared (weights and biases) by two autoencoders.

ing the proposed orthogonal gradient penalty. WGAN is
composed of one generator based on MTAE and two dis-
criminators for denoising (Ddeno) and despeeching (Ddesp).
The generator makes both enhanced speech and estimated
noise from noisy input. The two discriminators try to distin-
guish real samples, x speech and x noise from fake samples,
Gdeno(y) and Gdesp(y), respectively. If these networks are op-
timized, we can use the generator as a network for speech
enhancement.

According to adversarial training, the objective func-
tion for MTAE based generator is represented by (1) as fol-
lows.

LG = − λ1Ey∼ Pz [Ddeno(Gdeno(y), y)]

− (1 − λ1)Ey∼ Pz [Ddesp(Gdesp(y), y)]

+ λ2LMTAE

(1)

where λ1 and λ2 are hyper-parameters, and LMTAE is the L1
loss. By experiment, we set λ1 = 0.5 and λ2 = 100. The
objective functions for the discriminators (e.g. denoising,
despeeching) are represented by (2) and (3) respectively as
follows.

LDdeno = Ey∼ Pz [Ddeno(Gdeno(y), y)]

− Exs∼ Pdata [Ddeno(xs, y)]

+ λgpEx̂s∼ Px̂s
[(||∇x̂s Ddeno(x̂s)||2 − 1)2]

(2)

LDdesp = Ey∼ Pz [Ddesp(Gdesp(y), y)]

− Exn∼ Pdata [Ddesp(xn, y)]

+ λgpEx̂n∼ Px̂n
[(||∇x̂n Ddesp(x̂n)||2 − 1)2]

(3)

In the implementation, the generator consists of 5 hid-
den layers with 1024, 1280, 1536, 1792, and 2048 units,
the number of hidden units increase linearly as reported
in [13]. To estimate a concatenated 2 contiguous frames
of speech and noise, a concatenated 16 contiguous frames
of 13-dimensional MFCCs (13x16) noisy features are used
as input. Two discriminators feed as real and fake pairs

Fig. 2 Orthogonal gradient penalty between Pdata and Pz.

(x speech, y), (Gdeno(y), y) and (x noise, y), (Gdesp(y), y), re-
spectively as shown in Fig. 1. The denoising discriminator
network is 4-layers with 1024, 768, 512, and 256 units, and
3-layers with 512 units per layer for despeeching discrimi-
nator.

2.2 Orthogonal Gradient Penalty (OGP)

Although a gradient penalty denoted in (4) is widely used for
satisfying Lipschitz condition in WGAN [14]–[16], a hyper-
parameter λgp is too sensitive to train network. H. Petzka et
al. proposed a modified gradient penalty for resolving the
problem [17]. These methods only considered a magnitude
of the gradient to satisfy the Lipschitz condition without re-
gard to the direction of the gradient. In theory, the direc-
tion of gradient always suggests the best way for optimiza-
tion. But, Stochastic Gradient Descent (SGD) obtained by
averaging gradients on each mini-batch point is practically
applied to train deep networks in many ways [18]. Thus,
we investigate and seek the best direction of gradient for
learning and propose a new form named Orthogonal Gradi-
ent Penalty (OGP). The method is motivated by the optimal
discriminator with loss function penalty derived from con-
sidering straight lines connecting coupled points from gen-
erator distribution Pz and the data distribution Pdata. There-
fore, the loss function should not only consider the magni-
tude as in the previously proposed method in [19] but also
the direction toward the target data distribution (from Pz to
Pdata). We believe by adding the direction into the penalty
term will ensure the model to converge faster and finds a
better solution. Figure 2 illustrates the proposed penalty by
the orthogonal direction components.

From the original gradient penalty in Eq. (4), let
Ex∼ Pdata [D(x, y)] = p and Ez∼ Pz [D(G(y), y)] = q, we can
write a unit direction vector of the straight line, r̂ as in
Eq. (5).

GP = λgpEx̂∼ Px̂ [(||∇x̂D(x̂)||2 − 1)2] (4)

r̂ =
p− q

√
(p− q)T (p− q)

(5)

where, p and q represent the sample of the real and the gen-
erated data that have been obtained from the MTAE. Next,
by subtracting a unit direction vector, we can constrain on
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Fig. 3 The denoising discriminator Wasserstein distance of our model,
where our proposed gradient penalty converges faster when training.

an orthogonal component of the gradient to the shortest path
for optimization in (6). Note that λgp is set to 100 in all ex-
periments.

OGP = λgpEx̂∼ Px̂ [(||∇x̂D(x̂) − r̂||2)2] (6)

This modification enables the discriminator to direct
the enhanced data (fake) to the shortest direction to the
real data. As demonstrated in Fig. 3, our proposed penalty
term in (6) results in lower error rates and achieves 14.1%
improvement in Wasserstein distance convergence rate af-
ter 500k generator iterations in comparison to the original
penalty in (4). Δw indicates the distance gain at 500kth gen-
erator iteration.

3. Experiment Setup

3.1 Dataset

The TIMIT database is used in the experiment. Models are
trained on TIMIT training utterances corrupted by 10 types
of background noise (2 artificial: pink and red noise; and 8
from YouTube.com: classroom, laundry room, lobby, play-
ground, rain, restaurant, river, and street) with four signal-
to-noise ratio (SNR) levels (5, 10, 15, and 20 dB), and 9% of
clean speeches are retained. Synthetic noise has been shown
to be effective for speech enhancement task [20].

Validation set consists of TIMIT validation utterances
corrupted by 10 types of noise used for training but with
different samples unseen by the training. The testing set is
corrupted with 4 types of unseen noise (café, pub, school-
yard, and shopping center), collected from ETSI EG 202
396-1 V1.2.2 (2008-09). The validation and test sets are all
grouped at four SNR levels (5, 10, 15, and 20 dB) under all
the aforementioned noise conditions by using ADDNOISE
MATLAB [21].

3.2 Preprocessing

For the ASR model, we used the KALDI toolkit to train
a Combination SGMM and Dans DNN model on a clean
TIMIT training data. The features used from audio signals

are sampled at 16 kHz and extracted by applying a short-
time Fourier transform with a window size of 25 ms and
10 ms window step. Then, we apply 23 Mel-filter banks,
with Mel-scale from 20 Hz to 7800 Hz.

For training the denoising MTAE WGAN OGP, the
features are normalized in the range of [−1, 1] per utterance.
We apply the RMSprop optimizer with the learning rate of
0.0001. The models are trained with a batch size of 100.
LReLU activation function is used in all layers except in the
final output layer for DDAE and MTAE architecture.

4. Results

To compare effectiveness of the proposed MTAE WGAN
OGP, we used MTAE architecture in [13], DDAE [22], R-
CED(CNN) [3] and RNN as baseline models. Performance
is evaluated using word error rates (WERs) obtained from
ASR model. The RNN model consists of 3 layers of LSTM
and one fully connected layer as output layer. The number
of LSTM cells and FCN nodes are 512 in each layer. To
deal with exploding gradients problem, we use a gradient
clipping from −1 to 1 [23]. The results are summarized in
Table 1.

From Table 1, it is demonstrated that the MTAE
WGAN OGP consistently gives lower WERs compared to
that of baseline models. The MTAE WGAN OGP achieve
9.7%, 8.6%, 6.2%, and 4.8% overall improvement of the
WERs relative to DDAE, MTAE, R-CED(CNN) and RNN
model. WER improvements become more pronounced at
low SNR conditions. In addition, we can observe that the
RNN model performs well at high SNR conditions. How-
ever, as SNR becomes lower, the performance becomes
worse. For speech enhancement tasks, frames that are too
far apart may not be necessary for denoising tasks. Thus,
concatenated only contiguous frames in Feedforward Neu-
ral Networks seem to work sufficiently.

The proposed gradient penalty gives a slight improve-
ment in the WER over the original penalty on average. More
significantly, the proposed gradient penalty converges faster
in training as shown in Fig. 3. Since training GAN is usually
slow and unstable, the proposed orthogonal penalty allevi-
ates these difficulties.

5. Conclusion

We proposed a new orthogonal gradient penalty (OGP)
method for WGAN that outperforms and converges faster
compared to the magnitude-based gradient penalty. The
results have shown that the proposed MTAE WGAN OGP
achieved 9.7%, 8.6%, 6.2%, and 4.8% WER improvements
relative to DDAE, MTAE, R-CED(CNN) and RNN model,
respectively, while the training achieved 14.1% convergence
rate improvement.
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Table 1 WER comparison between DDAE, CNN(R-CED), RNN,
MTAE WGAN GP and MTAE WGAN OGP on 4 types of unseen back-
ground noise with four SNR conditions.

snr Model
WER (%)

Café Pub
Schooly

ard Shop Avg

20 dB

DDAE 27.5% 27.4% 28.0% 25.4% 27.1%
MTAE 27.6% 26.8% 28.3% 25.5% 27.0%
R-CED
(CNN) 27.5% 25.4% 26.8% 25.3% 26.2%

RNN 26.2% 24.9% 26.5% 24.6% 25.5%
MTAE WG

AN GP 25.8% 25.3% 26.4% 24.6% 25.5%

MTAE WG
AN OGP 25.6% 25.3% 26.1% 24.4% 25.3%

15 dB

DDAE 30.3% 30.6% 33.6% 26.5% 30.2%
MTAE 30.4% 29.9% 33.0% 26.5% 29.9%
R-CED
(CNN) 29.5% 28.1% 31.9% 25.1% 28.6%

RNN 29.2% 28.6% 32.0% 25.1% 28.7%
MTAE WG

AN GP 28.8% 28.0% 30.2% 25.9% 28.2%

MTAE WG
AN OGP 28.0% 28.1% 29.4% 25.6% 27.8%

10 dB

DDAE 37.5% 38.5% 41.4% 31.9% 37.3%
MTAE 36.2% 37.3% 40.0% 31.6% 36.3%
R-CED
(CNN) 35.3% 35.0% 38.9% 30.1% 34.8%

RNN 35.3% 35.4% 39.3% 31.2% 35.3%
MTAE WG

AN GP 32.7% 33.9% 37.4% 28.9% 33.2%

MTAE WG
AN OGP 32.7% 33.9% 36.2% 29.3% 33.0%

5 dB

DDAE 44.9% 48.7% 49.4% 36.1% 44.7%
MTAE 43.8% 48.4% 49.1% 35.7% 44.2%
R-CED
(CNN) 42.0% 46.5% 49.0% 34.8% 43.0%

RNN 42.1% 46.2% 48.0% 35.2% 42.8%
MTAE WG

AN GP 40.2% 44.9% 46.5% 33.5% 41.3%

MTAE WG
AN OGP 39.7% 44.5% 45.4% 33.5% 40.7%
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