
1190
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

LETTER

Loss-Driven Channel Pruning of Convolutional Neural Networks

Xin LONG†a), Xiangrong ZENG†, Nonmembers, Chen CHEN†, Student Member, Huaxin XIAO†,
and Maojun ZHANG†, Nonmembers

SUMMARY The increase in computation cost and storage of convo-
lutional neural networks (CNNs) severely hinders their applications on
limited-resources devices in recent years. As a result, there is impend-
ing necessity to accelerate the networks by certain methods. In this paper,
we propose a loss-driven method to prune redundant channels of CNNs.
It identifies unimportant channels by using Taylor expansion technique re-
garding to scaling and shifting factors, and prunes those channels by fixed
percentile threshold. By doing so, we obtain a compact network with less
parameters and FLOPs consumption. In experimental section, we evaluate
the proposed method in CIFAR datasets with several popular networks, in-
cluding VGG-19, DenseNet-40 and ResNet-164, and experimental results
demonstrate the proposed method is able to prune over 70% channels and
parameters with no performance loss. Moreover, iterative pruning could be
used to obtain more compact network.
key words: channel pruning, convolutional neural networks, Taylor expan-
sion, fine-tuning, iterative pruning

1. Introduction

In recent years, deep neural networks play important roles
in variety of computer vision tasks [1]–[3]. However, large
networks appear in practical applications due to the spec-
ification of different task, which impose more parame-
ters and FLOPs consumption burden on training devices.
There is impending necessity to compress the deep net-
works without affecting the performance. Considerable ef-
forts have been proposed to study this scheme, including
parameter pruning and sharing [4], [5], low rank approx-
imation [6], [7], quantization [8]–[10], architecture design-
ment [11]–[13] and sparse pruning [14]–[16]. As discussed
in [17], channel pruning would provide a great tradeoff
between flexibility and ease of implementation for CNNS
while other approaches not.

In this paper, we propose a loss-driven channel prun-
ing method which prunes unimportant channels identified
by using Taylor expansion technique. The flow chart of the
proposed algorithm is shown in Fig. 1. First of all, our ac-
tion object is a trained model aiming to different datasets and
networks. Next, we evaluate the importance of each chan-
nel by designed criteria for channel pruning. Then removing
unimportant channels through defined threshold. Finally,
a compact network is obtained by fine-tuning which also
make performance degradation compensated. Besides, the

Manuscript received November 19, 2019.
Manuscript publicized February 17, 2020.
†The authors are with the National University of Defense Tech-

nology, China.
a) E-mail: longxin14@nudt.edu.cn

DOI: 10.1587/transinf.2019EDL8200

above process can be repeated for several time, called itera-
tive channel pruning which leads to more compact network.

2. Proposed Method

In this section, we propose our method to achieve chan-
nel pruning of CNNs. The pipeline is shown in Fig. 1.
Batch normalization [18] is a wide-used technology which
has been adopted by most CNNs to achieve fast convergence
and better performance. The general algorithm of batch nor-
malization is shown in algorithm 1, where the last step is
the affine transformation operation, γ and β are trainable pa-
rameters (scale and shift) which provides the possibility of
linearly transforming normalized activation back to initial
input scales to avoid decreasing model performance.

Obviously, scaling and shifting parameters are
channel-wise in each layer. Therefore, we could achieve

Fig. 1 Pipeline of loss-ware channel pruning.

Algorithm 1: Procedure of batch normalization
Input : Value of x over a mini-batch: B = {x1, · · · , xm};

Learned parameter: γ, β
Output: yi = BNγ,β (xi)

1 μB ← 1
m

∑m
i=1 xi

2 σ2
B ← 1

m

∑m
i=1 (xi − μB)2

3 x̂i ← xi−μ̃B√
σ2
B+ε

4 yi ← γx̂i + β ≡ BNγ,β (xi)

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



LETTER
1191

channel pruning based on batch normalization layer by con-
sidering γ and β parameters. Different from previous re-
search, it has great advantage of pending no much extra
computation resource to the network.

2.1 Criteria for Channel Pruning

Considering a batch of training examples B = {x1, · · · , xm},
and corresponding target output y = {y1, · · · , ym}. After
training process, we obtain a trained model with L-layer net-
work parameters W = {(w1, b1) , (w2, b2) , · · · (wL, bL)}, and
assuming cost function L(·). As introduced above, γ and β
are trained parameters during training process, tiny changes
may occur changes in the loss function. To approximate loss
changes ΔL(·), we adopt the first-degree Taylor polynomial.
In general, for a binary function f (x, y), the Taylor expan-
sion at point (x0, y0) is

f (x0 + h, y0 + k)

=

N∑
n=0

1
n!

(
h
∂

∂x
+ k
∂

∂y

)2

f (x0, y0) + Θ (x0, y0)

On the other hand, the first-degree Taylor expansion for loss
function L(·) at channel (γ0, β0) is

L (W, (γ0 + h, β0 + k))

= L (W, (γ0, β0)) + h · ∂L (W, (γ0, β0))
∂γ

+ k · ∂L (W, (γ0, β0))
∂β

+ Θ (γ0, β0)

where Θ (γ0, β0) is the high order remainder. Therefore the
loss change ΔL(·) regarding scaling and shifting parameters
could be formed as:

ΔL (W, (γ0, β0)) = h · ∂L (W, (γ0, β0))
∂γ

+ k

· ∂L (W, (γ0, β0))
∂β

+ Θ (γ0, β0)

which is the criterion for evaluating importance of layer
channel. Intuitively, this criterion prunes layer channels that
have small value of loss change ΔL(·) and ignores the high
order remainder. This method requires accumulation of gra-
dient of γ and β parameters, which could be easily computed
in back-propagation process.

2.2 Channel Pruning and Fine-Tuning

After training in general conditions, we obtain full-precision
model. Then we can prune layer channels regarding to
proposed criterion by removing corresponding connections.
Similar to [17], we prune unimportant channels with a
global percentile threshold across the whole network. We
rank the importance of each channel by the value of ΔL(·),
and prune channels with corresponding lower value of ΔL(·)
under above stated percentile threshold.

For example, we will prune 50% unimportant channels
with lower value of ΔL(·) when the percentile threshold is
50%. Obviously, we obtain a more compact model with less
parameters and computational resources in this way. Be-
sides, pruning channel would lead to some accuracy loss
when the percentile threshold is pretty high. In experimen-
tal sections, this can be largely compensated by fine-tuning
process which needs less training epochs and time.

2.3 Iterative Channel Pruning

In order to obtain more compact network, we extend pro-
posed method to iterative channel pruning, which is shown
by the dotted portion in Fig. 1. There are two ways to con-
duct iterative channel pruning. 1), by setting a fixed per-
centile threshold, the pruning is carried out according to the
threshold every iteration until pruning is stopped due to ex-
cessive precision loss. 2), single pruning target can be ob-
tained by multiple channel pruning iterations. For instance,
if we want to prune 60% channels, we can get it through two
iterations of pruning, such as pruning 20% channels first and
then pruning 50%. By doing so, we could prevent the per-
centile threshold of single pruning is too large, and precision
compensation cannot be obtained through fine-tuning.

3. Experiments

3.1 Implementation Details

In this paper, we empirically conduct experiments on
CIFAR-10 and CIFAR-100. The same standard data
augmentation strategy in [14] is adopted by this paper.
For network architectures, we evaluate our method on
three frequently-used network: VGG-19, DenseNet-40 and
ResNet-164. Because the limitation of our poor experi-
mental conditions, we cannot conduct proposed method on
ImageNet and other complex networks with more layers.
During training process, the learning rate starts at 0.1 and
we use learning rate decay equal to 0.1 at epochs number
80 and 120 for the whole 160 epochs. Moreover, we use a
weight decay of 5×10−4 and momentum of 0.9 for stochastic
gradient descent (SGD) optimizer.

3.2 Experimental Results and Discussions

Comparison on CIFAR-10 and CIFAR-100 with [17]:
The results on CIFAR-10 and CIFAR-100 are shown in Ta-
ble 1, we define the global percentile threshold of channel
pruning as θ.

As shown in Table 1, it could be seen that the proposed
method outperform a little more than [17]. Moreover, it
could lead to better results than baseline when pruning many
layer channels.

Effect of different pruning percentile threshold: The
goal of channel pruning is to pruning more parameters
without affecting the accuracy. We train DenseNet-40 and
ResNet-164 on CIFAR-100 with a varying threshold, and



1192
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

Table 1 Test error comparison.

(a) Test error comparison on CIFAR-10

Model Test error (%) Parameter pruned (%) FLOPs pruned (%)
VGG-19-Baseline 6.34 - -

VGG-19-Ours (θ = 70%) 6.09 87.5 46.6
VGG-19-[17] (θ = 70%) 6.20 88.5 51.0
DenseNet-40-Baseline 6.11 - -

DenseNet-40-Ours (θ = 40%) 5.16 36.9 34.3
DenseNet-40-[17] (θ = 40%) 5.19 35.7 28.4
DenseNet-40-Ours (θ = 70%) 5.51 65.0 59.9
DenseNet-40-[17] (θ = 70%) 5.65 65.2 55.0

ResNet-164-Baseline 5.42 - -
ResNet-164-Ours (θ = 40%) 4.88 28.1 26.1
ResNet-164-[17] (θ = 40%) 5.08 14.9 23.7
ResNet-164-Ours (θ = 60%) 5.10 54.7 50.8
ResNet-164-[17] (θ = 60%) 5.27 35.2 44.9

(b) Test error comparison on CIFAR-100

Model Test error (%) Parameter pruned (%) FLOPs pruned (%)
VGG-19-Baseline 26.74 - -

VGG-19-Ours (θ = 50%) 26.02 72.3 34.2
VGG-19-[17] (θ = 50%) 26.52 75.1 37.1
DenseNet-40-Baseline 25.36 - -

DenseNet-40-Ours (θ = 40%) 24.63 36.4 34.6
DenseNet-40-[17] (θ = 40%) 25.28 37.5 30.3
DenseNet-40-Ours (θ = 60%) 25.14 55.1 51.7
DenseNet-40-[17] (θ = 60%) 25.72 54.6 47.1

ResNet-164-Baseline 23.37 - -
ResNet-164-Ours (θ = 40%) 22.41 27.0 30.4
ResNet-164-[17] (θ = 40%) 22.87 15.5 33.3
ResNet-164-Ours (θ = 60%) 23.24 50.5 53.8
ResNet-164-[17] (θ = 60%) 23.91 29.7 50.6

the pruned ratio of parameters and FLOPs are recorded for
each pruning pro-cess. The results are summarized in Fig. 2.
Form Fig. 2, it can be concluded that the performance of
pruned models degrade much when the pruning ratio sur-
passes a large threshold. If we prune few channels, the per-
formance of mode is even better than baseline due to the
overfitting phenomenon in training is eliminated. On the
other hand, both networks have large redundancy over pa-
rameters and computation consumption, and we could ob-
tain a compact network by our method with a proper thresh-
old.

Iterative channel pruning: We employ the two ways
of iterative channel pruning on CIFAR10/CIFAR-100 by us-
ing VGG-19. The test accuracy of each iteration are shown
in Tables 2 and 3. For iterative pruning, we set pruning
threshold as 50%, and conduct the pipeline in Fig. 1. In or-
der to compare iterative pruning and single pruning, we set
up experiments in (b) to maintain same pruned target.

As the pruning process goes, we will obtain more and
more slimming network while inevitably hurt the model per-
formance. On the other hand, single pruning may hurt the
performance drastically than iterative pruning while achiev-
ing the same pruning goal. On CIFAR-10/100, the accuracy
by single pruning is reduced by nearly 14/54 percent points
than iterative pruning when pruning 87.5% channels, which
is very fatal for image classification. Thus, we suggest to
adopt iterative pruning with low percentile thresholds in ap-
plications.

Fig. 2 Model parameter and FLOPs savings by different pruning per-
centile threshold on CIFAR-100. The horizontal axis represents the prun-
ing percentile, and the vertical axis is the precision and parameter/FLOPs
pruned.



LETTER
1193

Table 2 Test error comparison.

(a) Iterative pruning on CIFAR-10 (θ = 50%)

Iteration Test accuracy (%) Parameter pruned (%) FLOPs pruned (%)
1 93.89 75.93 35.33
2 93.86 91.51 59.22
3 92.81 97.54 85.73
4 90.46 99.37 95.36
5 83.08 99.85 98.72

(b) Single pruning on CIFAR-10 for comparison with (a)

Pruning ratio (%) Test accuracy (%) Parameter pruned (%) FLOPs pruned (%)
50.00 93.89 75.93 35.33
75.00 93.74 90.37 54.58
87.50 78.72 97.15 83.06
93.75 10.00 99.19 95.39

Table 3 Test error comparison.

(a) Iterative pruning on CIFAR-100 (θ = 50%)

Iteration Test accuracy (%) Parameter pruned (%) FLOPs pruned (%)
1 73.98 72.32 34.18
2 71.46 91.25 70.33
3 62.60 97.66 90.21
4 46.86 99.41 97.29

(b) Single pruning on CIFAR-100 for comparison with (a)

Pruning ratio (%) Test accuracy (%) Parameter pruned (%) FLOPs pruned (%)
50.00 73.98 72.32 34.18
75.00 63.28 90.70 66.25
87.50 8.65 97.61 89.80
93.75 6.22 99.34 97.16

4. Conclusion

In this paper, we propose loss-driven channel pruning
method to learn compact CNNs. It identifies unimportant
channels by using Taylor expansion technique regarding to
scaling and shifting factors, then we prune channels by fixed
percentile threshold. Accuracy loss caused by pruning can
be compensated by following fine-tuning process. Exper-
imental results show that the proposed method is able to
prune over 70% channels and parameters with no accuracy
loss, and even better results compared to baseline. More sig-
nificantly, we found iterative pruning which would be better
than single pruning process.

References

[1] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” Neural Information
Processing Systems, pp.1097–1105, 2012.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,”
2014 IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp.580–587, 2014.

[3] H. Xiao, B. Kang, Y. Liu, M. Zhang, and J. Feng, “Online meta
adaption for fast video object segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., Early Access, 2019.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” Neural Information Pro-
cessing Systems, pp.1135–1143, 2015.

[5] S. Han, H. Mao, and W.J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and

Huffman coding,” International Conference on Computer Represen-
tations, 2016.

[6] X. Yu, T. Liu X. Wang, and D. Tao, “On compressing deep models
by low rank and sparse decomposition,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition, pp.67–76, 2017.

[7] E.L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for effi-
cient evaluation,” Neural Information Processing Systems, pp.1269–
1277, 2014.

[8] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations,”
Neural Information Processing Systems, pp.3123–3131, 2015.

[9] F. Li and B. Liu, “Ternary weight networks,” Computer Vision and
Pattern Recognition, 2016.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural net-
works,” European Conference on Computer Vision, Lecture Notes
in Computer Science, vol.9908, pp.525–542, Springer, Cham, 2016.

[11] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, and H. Adam, “MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,” Computer Vision and
Pattern Recognition, 2017.

[12] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp.6848–6856, 2018.

[13] B. Baker, O. Gupta, N. Naik, and R. Raskar, “ Designing neural
network architectures using reinforcement learning,” International
Conference on Computer Representations, 2017.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H.P. Graf, “Prun-
ing filters for efficient convnets,” arXiv preprint arXiv:1608.08710,
2016.

[15] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Neural Information Processing

http://dx.doi.org/10.1109/cvpr.2014.81
http://dx.doi.org/10.1109/tpami.2018.2890659
http://dx.doi.org/10.1109/cvpr.2017.15
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1109/cvpr.2018.00716


1194
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.5 MAY 2020

Systems, pp.2074–2082, 2016.
[16] X. Long, Z. Ben, X. Zeng, Y. Liu, M. Zhang, and D. Zhou, “Learn-

ing sparse convolutional neural networks via quantization with low
rank regularization,” IEEE Access, vol.7, pp.51866–51876, 2019.

[17] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” arXiv
preprint arXiv:1708.06519, 2017.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelarating deep
network training by reduing internal covariate shift,” arXiv preprint
arXiv:1502.03617, 2015.

http://dx.doi.org/10.1109/access.2019.2911536

