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PAPER

Enhancing the Performance of Cuckoo Search Algorithm with
Multi-Learning Strategies

Li HUANG†,††a), Xiao ZHENG†††b), Shuai DING†c), Nonmembers, Zhi LIU††††d), Member,
and Jun HUANG†††e), Nonmember

SUMMARY The Cuckoo Search (CS) is apt to be trapped in local op-
timum relating to complex target functions. This drawback has been rec-
ognized as the bottleneck of its widespread use. This paper, with the pur-
pose of improving CS, puts forward a Cuckoo Search algorithm featur-
ing Multi-Learning Strategies (LSCS). In LSCS, the Converted Learning
Module, which features the Comprehensive Learning Strategy and Opti-
mal Learning Strategy, tries to make a coordinated cooperation between
exploration and exploitation, and the switching in this part is decided by
the transition probability Pc. When the nest fails to be renewed after m
iterations, the Elite Learning Perturbation Module provides extra diversity
for the current nest, and it can avoid stagnation. The Boundary Handling
Approach adjusted by Gauss map is utilized to reset the location of nest
beyond the boundary. The proposed algorithm is evaluated by two differ-
ent tests: Test Group A(ten simple unimodal and multimodal functions)
and Test Group B(the CEC2013 test suite). Experiments results show that
LSCS demonstrates significant advantages in terms of convergence speed
and optimization capability in solving complex problems.
key words: multi-learning strategy, cuckoo search, bound handling mech-
anism, elite learning

1. Introduction

In tackling objective functions which are distinguishable
and continuous, especially those with large size characteris-
tics, metaheuristics-based algorithms are usually justified as
a robust and powerful solution, and this kind of algorithm is
generally believed to be superior to the traditional optimiza-
tion. Inspired by the unique characteristics of the cuckoos,
the standard Cuckoo Search (CS) algorithm [1] is catego-
rized as metaheuristics. Its rules state that each host has a
probability of discovering an alien egg, and if the probability
is greater than a switching parameter Pa, the host will find
the alien egg and will build a new nest in a new location.
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Different from such metaheuristic algorithms as the genetic
algorithm (GA) [2], [3] and the particle swarm optimization
(PSO) [4]–[6], the standard Cuckoo Search (CS) algorithm
has distinguished itself with its reference to the Lévy Flight
which features a heavy-tailed probability distribution, and
which application in the global random walk makes the al-
gorithm more effective. In solving a unimodal function, the
global random walk of the CS algorithm will quicken speed
at which each nest moving to the global optimal nest. How-
ever, in solving more complex functions, the global random
walk is at the risk of excessive exploitation [7], which occurs
when a nest loses its global exploration capacity within a
few iterations, and thus makes the standard CS algorithm be
prone to premature convergence, and makes nest baffled in
pursuing local optimal [8].Thus, the standard CS algorithm
is prone to premature convergence, and makes nest baffled
in pursuing local optima.

To improve the performance of the standard CS al-
gorithm, various modified Cuckoo search algorithms have
been proposed. With a new orthogonal learning strategy, Xi-
angtao Li proposed the Orthogonal Learning Cuckoo Search
Algorithm (OLCS) [9]in 2014, which has been proved to be
able to enhance the exploitation ability of the basic cuckoo
search.In 2015, he proposed that the self-adaptive cuckoo
search algorithm (SACS) [10], which is based on the rand
and best individuals among the entire population, turns to a
linear decreasing probability rule to balance two new muta-
tion rules. Li Huang [11] improved three parts of the stan-
dard CS algorithm, i.e., chaotic initial position, variable step
size of Lévy Flight,and chaos transboundary treatment. Liu
Xiaoying [12] introduced the inertia weight factor of the par-
ticle swarm algorithm into the Levy flight, and adopted the
leapfrog algorithm in the local search mechanism of the
standard CS algorithm. Seen in the light of No Free Lunch
Theorem [13], any existing optimization strategy can hardly
solve all kinds of problems. Inspired by this theoretical as-
sumption, this paper attempts to study on the cuckoo search
algorithm with Multi-learning Strategies (LSCS), which is
expected to be more effective in finding the optimal value
of complex functions, compared with the standard CS algo-
rithm.

2. The Standard Cuckoo Search Algorithm (CS)

By imitating the breeding behavior of Cuckoo in the D-
dimensional search space, the standard CS algorithm, to im-

Copyright c⃝ 2019 The Institute of Electronics, Information and Communication Engineers



HUANG et al.: ENHANCING THE PERFORMANCE OF CUCKOO SEARCH ALGORITHM WITH MULTI-LEARNING STRATEGIES
1917

prove its effectiveness, adopts two moving strategies: the
local random walk and the global random walk. The former
is exploration, which is derived from the differential evolu-
tion [14]–[16] and is designed to ensure the diversity of the
location of nests in the searching space. And the latter is
exploitation, which is expected to accelerate the process of
making all the location of nests near-optimal solutions. Ac-
cording to the standard CS algorithm, the action of moving
the nest is conducted by acting up to the following two for-
mulas.

The formula (1) is the local random walk, the jth di-
mension of host i is updated as follows:

nest(t + 1) j
i = nest(t) j

i + rand ∗ (nest(t) j
r1

−nest(t) j
r2), rand < Pa

(1)

where nest(t) j
i is the jth dimension position of the ith

nest,nest(t)i=(nest(t)1
r1,nest(t)2

r1, . . . , nest(t)D
r1),and they are

real-valued vectors,that is n number of randomly gener-
ated D-dimensional;where i = 1, 2, . . . , n, j = 1, 2, . . . ,D.
nest(t) j

r1 and nest(t) j
r2 represent two randomly-selected

nests.t is the current iteration number.To ensure a probabil-
ity of 25% of crossover mutation for each dimension of each
nesting, Pa is the switching parameter which is set to be
0.25. rand is a uniformly distributed random number within
the range of(0,1).

The formula (2) is the global random walk, the jth di-
mension of host i is updated as follows:

nest(t + 1) j
i = nest(t) j

i + α × (nest(t) j
i − bestnest(t) j)

⊕Lévy(λ), rand >= Pa

(2)

where,nest(t + 1) j
i denotes the jth dimension posi-

tion of the ith nest through the t + 1 iterations.
bestnest(t)=(bestnest(t)1,bestnest(t)2, . . . , bestnest(t)D) is
the history of the best location through the t iterations by
the whole population,where j = 1, 2, . . . ,D. ⊕ is entry-wise
multiplication. The step size coefficient α[17] is a constant
over zero.This value varies in different cases,but α = 0.01 in
general.And Lévy(λ)[17] is the Lévy distribution.The Lévy
flight behavior has been applied to the optimum random
search,and it shows a good performance [18].

3. The Cuckoo Search Algorithm with Multi-Learning
Strategies (LSCS)

By turning to exploration and exploitation, the standard CS
algorithm is used to solve optimization problems. Since
these two ways are contradictory, a carefully-designed co-
ordination is indispensible so as to avoid the possible ”ex-
cessive exploitation”. Therefore, a sound coordination be-
tween them will be expected to enhance the performance of
the search algorithm.

In LSCS, our design includes: 1) the Converted Learn-
ing Module which aims at making a coordinated cooperation
between exploration and exploitation; 2) the Elite Learn-
ing Perturbation Module which is supposed to alleviate pre-

mature convergence. 3) the new way of boundary setting.
Set on Boundary [19], which is regarded as a drawback of
the Bound Handling Mechanism [20], [21] of standard CS,
stops the game violators and resets nest to boundary val-
ues. And this drawback will hopefully be overcome by
the Boundary Handling Approach adjusted by Gauss map
adopted in the LSCS. The pseudo codes of the proposed
LSCS search procedure given in this section are listed as
follow:

LSCS optimization algorithm:
1 counter N, switching parameter Pa = 0.25,
2 dimension number D,the population n; refreshing gap m
3 Initialize host nest location;
4 For i = 1:n do
5 evaluating all new solutions;
6 find the current bestnest;
7 End for

8 While termination condition is not satisfied (N) do,
9 generating chaotic sequence cc;
Converting learning strategies module
10 generating the transition probability Pc using formula (5);
11 If rand < Pc ,
12 goto tournament selection procedure;
13 choose the nest(t) j

r ;
14 update nestt+1(i, j) using formula (3);
15 Else if rand => Pc ,
16 update nestt+1(i, j) using formula (4);
17 End if
18 evaluating all new solutions of the nest location;
19 find the current bestnest;
20 Boundary Handling Approach adjusted by Gauss map;

Local random walk
21 If rand < Pa ,
22 update nestt+1(i, j) using formula (1);
23 End if
24 evaluating all new solutions of the nest location;
25 find the current bestnest;
26 Boundary Handling Approach adjusted by Gauss map;

27 If the fitness of bestnest is not improved for m iterations;
Elite Learning Perturbation Module
28 update nestt+1(i, j) using formula (6);
29 End if
30 evaluating all new solutions of the nest location;
31 find the current bestnest;
32 End While

3.1 Convert Learning Module

Controlled by transition probability Pc[22], the Converted
Learning Module of the LSCS turns to a balanced com-
bination of Comprehensive Learning Strategy and Optimal
Learning Strategy. Comprehensive Learning Strategy en-
courages the current nest to obtain information about loca-
tion from other individuals so as to keep the diversity of
nests. The Optimal Learning Strategy encourages current
nest to learn the location of the best nest in each iteration. It
can quickly find a local optimum and exploit the promising
area.
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The Comprehensive Learning Strategy is defined as:

nest(t + 1) j
i = nest(t) j

i + cc ∗ (nest(t) j
i − nest(t) j

r)
⊕Lévy(λ), rand < Pc

(3)

where nest(t) j
i denotes the jth dimension position of the ith

nest through the t iterations. The step length coefficient cc
is chaotic sequence generated by Gauss map.With reference
to the literature [11], cc as [0.01, 0.3]. rand is a uniformly
distributed random number within the range of (0,1). Pc

is the transition probability.Following the Tournament Se-
lection Procedure [22], two randomly-chosen nests are com-
pared in terms of the fitness, and the undesirable one will be
selected as the exemplar (nest(t)r) denoting the position of
the rth nest through the t iterations, which is nest(t) j

r) here.
We employ the tournament selection procedure [22]

when the nests dimension learns from the exemplar
(nest(t) j

r) as follows. 1) we randomly single out two nests
from the population which excludes the nest whose position
is updated. 2) We compare the fitness values of these two
nestss and choose the rth nest with a larger fitness value as
an exemplar. 3) The nest’s j dimension learns from the ex-
emplar (nest(t) j

r).If all exemplars of a nest are its own, we
will randomly choose one dimension to learn from another
nest’s exemplar’s corresponding dimension.

The Optimal Learning Strategy is defined as:

nest(t + 1) j
i = nest(t) j

i + cc ∗ (nest(t) j
i − bestnest(t) j)

⊕Lévy(λ), rand >= Pc

(4)

where bestnest(t) j denotes the history of the best location
through the t iterations by the whole population,where j =
1, 2, . . . ,D.

3.2 Transition Probability Pc

As explained in [23], different Pc values yielded different
solutions on the same function if the same Pc value was
used for all the nests. Thus, we developed transition prob-
ability Pc by referring to CLPSO [22]. We propose to set
such that each nest has a different Pc value. Therefore, nests
have different levels of exploration and exploitation ability
in the population and are able to solve diverse problems.
Formula governing the transition probability Pc of the Con-
verted Learning Module :

Pc = 0.05 + 0.45 × exp(10(i − 1)/n − 1) − 1
exp(10) − 1

(5)

where n denotes the number of nest,and i denotes the serial
number of the nest, ith.

3.3 Elite Learning Perturbation Module

If the fitness of best nest fails to be improved after m itera-
tions, nest falls into stagnation, and the algorithm will enter

the state of premature convergence. The Elite Learning Per-
turbation Module provides extra diversity to the current nest,
so it may get rid of the stagnation. Taking the const and con-
vergence of the algorithm into consideration, m, the value of
the refreshing gap should be set moderately. Here it is set at
7 by referring to CLPSO [22] and ATLPSO-ELS [24].

The formula for Elite Learning Perturbation Module is
expressed as follow:

bestnest(t + 1) j =


bestnest(t) j + (Ub j − Lb j)
⊕Lévy(λ), rand < Pi

bestnest(t) j + (Lb j − Ub j))
⊕Lévy(λ), rand >= Pi

(6)

where bestnest(t + 1) j denotes the history of the best lo-
cation through the t + 1 iterations by the whole popula-
tion,where j = 1, 2, . . . ,D.Pi stands for the direction proba-
bility, and it guides nest to fly to the direction of the optimal
nest,Pi = 0.5.And rand is a uniform random number rang-
ing among [0, 1]. Lb j and Ub j are the maximum and min-
mum boundary values of the searching space respectively.

4. Experiments and Results

We test LSCS algorithm and the other meta-heuristics with
two group functions: Test Group A(ten simple unimodal and
multimodal functions,from f1 and f10) and Test Group B(the
CEC2013 test suite,from f11 and f38) [25]. The complexity
of the functions from Test Group A to B increases gradually
to examine the performance of the LSCS algorithm.

4.1 Test Group A: Ten Simple Problems

As is shown in Table 1, the unimodal function( f1, f2, f3 and
f4) contains only one optimun, and their properties are scal-
able and separable. The multimodal functions( f5, f6, f7, f8,
f9 and f10) have a lot of local optimums, but there is only one
global optimum. The global optimum of these ten bench-
mark functions is f (x)( f (x) = 0), and x is the location of the
global optimal solution.

4.1.1 Test Group A: Experimental Setup

Test Group A is used in comparing the performance of the
standard CS and that of LSCS, and the dimensions of func-
tions are set at 30 and 50 respectively, and each algorithm
runs 30 times. Besides, the population of each algorithm is
set at 40.The parameters of the two algorithms are set as fol-
lows: 1) Standard CS: The probability switching parameter
Pa = 0.25; 2) LSCS: The probability switching parameter
Pa = 0.25; Refreshing gap m = 7.

4.1.2 The Average (Mean) and Standard Deviation (SD)
of Test Group A

Table 2 shows the experimental results of CS and LSCS in
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Table 1 Test Group A: simple unimodal and multimodal functions

Formula Domain

f1 (x) =
n∑

i=1
x2

i [-100,100]

f2 (x) =
n∑

i=1

(
ix2

)
[-100,100]

f3 (x) =
n∑

i=1

(
106

)(i−1)/(n−1)
x2

i [-100,100]

f4 (x) =
n∑

i=1

∣∣∣xi

∣∣∣ + n∏
i=1
|xi | [-10,10]

f5(x) = −20 exp

[
−0.2

√
1
n

n∑
i

x2
i

]
− exp

[
1
n

n∑
i=1

cos (2πxi)

]
+ (20 + e) [-32,32]

f6(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1 [-600,600]

f7(x) =
n∑

i=1
x2

i + ( 1
2

n∑
i=1

ixi)2 + ( 1
2

n∑
i=1

ixi)4 [-100,100]

f8(x) =
n∑

i=1

(
k max∑
k=0

[
ak cos

(
2πbk (xi + 0.5)

)])
−n

k max∑
k=0

[
ak cos

(
2πbk ∗ 0.5

)]
[-0.5,0.5]

f9(x) =
n∑

i=1

[
x2

i − 10 cos (2πxi) + 10
]

[-5.12,5.12]

f10 (x) =
n−1∑
i=1

(
100

(
x2

i − xi−1

)2
+ (xi − 1)2

)
[-30,30]

terms of the Average(Mean) and Standard Deviation (SD) of
different solutions. The best results are shown in bold face.
The results suggest that the LSCS solves the function with
30 dimensions much easier than it solves the function with
50 dimensions. The reason is that the more the dimension
is, the more complex the function will be, and the more dif-
ficult the seeking of the global optimum will be. Since the
step size of the random walk of the original CS algorithm
is fixed, from the function f1 to f4, the optimization ability
of the original CS is worse than that of the LSCS algorithm.
In solving multimodal functions (From the function f5 to
f10), the optimizing capacity of the LSCS is better than that
of the CS algorithm. Noticeably, to Rastrigins function( f9),
the LSCS optimization algorithm can obtain the global op-
timal solution,0.Compared with the original algorithm, the
Converted learning module of the LSCS optimization algo-
rithm can randomly traverse to a larger search space to find
the global optimal solution to the function.

4.1.3 Test Group A: The Convergence Tests

Figure 1 presents the convergence progress of two algo-
rithms (CS and LSCS) on a single run of 10000 iterations,
and the dimension of nest (D) is 50. As for the results of the
unimodal Problems, Fig. 1(from subfigure (a) to subfigure
(d)) suggests that the LSCS algorithm with Converted learn-
ing module performs better than the standard algorithm in
terms of search and converge capability. Especially, in solv-
ing Schwefels P2.22(Fig. 1-subfigure (d)), the performance
of LSCS algorithm is particularly prominent. The results of
the multimodal problems are presented in Fig. 1 (Fig. 1 or
Fig. 1) (from sub-figure(e) to subfigure(j)) which suggests
(suggest) a better reliability and a more desirable stability
of LSCS over CS. Nevertheless, the result of the Rosebrock
function( f10) shown in subfigure (j) of Fig. 1, after the last
10000 iterations, the convergence rate of the LSCS is lower

Table 2 The mean and SD of Test Group A

30D f1 f2 f3
CS Mean 2.91E-16 3.18E-15 2.90E-13

SD 3.08E-16 3.45E-15 3.20E-13
LSCS Mean 3.47E-35 2.20E-34 2.26E-32

SD 5.82E-35 4.33E-34 5.57E-32
30D f4 f5 f6
CS Mean 3.09E-07 1.08E-01 2.43E-07

SD 1.37E-07 4.68E-07 9.35E-07
LSCS Mean 3.51E-21 5.51E-15 7.38E-03

SD 3.90E-21 1.66E-15 8.56E-03
30D f7 f8 f9
CS Mean 6.58E-13 4.79E+01 6.39E-01

SD 8.21E-13 7.99E+00 2.41E-01
LSCS Mean 5.35E-31 9.95E-02 0.00E+00

SD 7.78E-31 4.01E-01 0.00E+00
30D f10

CS Mean 1.67E+01
SD 4.09E+00

LSCS Mean 3.22E+01
SD 2.94E+01

50D f1 f2 f3
CS Mean 2.65E-17 4.18E-16 4.35E-14

SD 2.34E-17 3.03E-16 2.72E-14
LSCS Mean 1.09E-27 2.44E-26 4.90E-25

SD 1.38E-27 3.87E-26 4.63E-25
50D f4 f5 f6
CS Mean 1.24E-08 6.79E-01 2.43E-07

SD 5.17E-09 2.22E+00 9.35E-07
LSCS Mean 4.48E-17 1.65E-14 2.13E-03

SD 2.90374E-17 5.94E-15 5.08E-03
50D f7 f8 f9
CS Mean 1.09E-11 8.05E+01 1.06E+00

SD 1.33E-11 9.73E+00 0.182
LSCS Mean 1.62E-22 5.18E+01 0.00E+00

SD 1.9817E-22 3.45E+01 0.00E+00
50D f10

CS Mean 4.60E+01
SD 1.98E+01

LSCS Mean 6.68E+01
SD 3.76E+01

than that of the standard CS. To find the optimal solution to
the Rosebrock, the LSCS requires a certain number of itera-
tions for the sake of particle diversity. In solving Ackley( f5),
Griewangk( f6), Weierstrass( f8) and Rastrigin( f9) functions,
the LSCS optimization algorithm quickly finds the global
optimal solution( f (x) = 0), because the application of the
Multi-Learning Strategies of the LSCS optimization algo-
rithm has improved the searching capability of the nests.

4.2 Test Group B: The CEC2013 Test Suite

The previous analysis of Test Group A shows that the
performance of the proposed LSCS is significantly better
than that of the standard CS algorithm.In the following
study, we use more complex benchmark functions (Group
B: CEC2013 test suite) to examine the performance of
the LSCS.The CEC2013 test suite consists of five Uni-
modal functions(from f11 to f15), fifteen Basic Multimodal
functions(from f16 to f30) and eight Compositions func-
tions(from f31 to f38), and they are more complex with rota-
tion and displacement characteristics of the functions.

4.2.1 Test Group B: Experimental Setup

We compare the proposed algorithm LSCS with five ap-
proaches, i.e., CS, TCPSO [26], SACS [10], CCS3 [11] and
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Fig. 1 Convergence performance of the CS and LSCS on Test Group A.

CLPSO [22].Comparative experiments are conducted within
Test Group B. The functions of Test Group B are set at 30
and 50 respectively, and the iterations of the correspond-
ing algorithm are set at 30000 and 50000 accordingly. The
population of each algorithm is 40 and they run 30 times
respectively. Parameter configurations of the comparing al-
gorithms are listed below: 1) Standard CS: The probability
switching parameter Pa = 0.25; 2) TCPSO: l = 2,wM =

0.9,cs
1 = cs

2 = cM
1 = cM

2 = cM
3 = 1.6; 3) SACS: The

probability switching parameter Pa = 0.25; 4) CCS3: The
probability switching parameter Pa = 0.25; 5) CLPSO:
w0 = 0.9,w1 = 0.4,c = 1.49445,Refreshing gap m = 7;
6) LSCS: The probability switching parameter Pa = 0.25;
Refreshing gap m = 7;

4.2.2 Performance Evaluation of Group B

The means and standard deviations of the algorithms on
the CEC2013 test suite with 30D problems are shown in
Table 3. The CCS3 algorithm and LSCS algorithm have
demonstrated a better performance on five Unimodal func-
tions (from f11 and f15).For f11 and f15, the CCS3 and LSCS
algorithms can find the optimal solution(0).Among the 15
basic multimodal functions, LSCS algorithm performs the
best within 8 functions (namely, f16, f18, f19, f21, f23, f24, f25

and f27). Among the 8 compositions functions(from f31 to
f38),the LSCS algorithm has performed the best.Because the
Elite Learning Perturbation Module prevents the bestnest
from being trapped in the local optima, if the fitness of the
bestnest is not improved for m successive fitness. And dif-
ferent the transition probability Pc values yield the best per-
formance for different 8 compositions functions. In order to
compare the performance of the six algorithm,we also make

another set of experiments which is the CEC2013 test suite
with 50D. According to the results of the 50D problems
shown in Table 4, our proposed method LSCS still achieves
the best or better performance against other comparing al-
gorithms over most of the test functions.

4.2.3 Test Group B: The Non-Parametric Wilcoxons Rank
Sum Test

Wilcoxons rank sum test returns p − Value and z. The
p − Value represents the minimal significance level for de-
tecting differences.If the p−Value is less than 0.05, it means
that, the better result achieved by the best algorithm is sta-
tistically significant in each case, and it is not obtained inci-
dentally. Table 4 shows the non-parametric Wilcoxons rank
sum test of the algorithms on the CEC2013 test suite with
30D problems. For the 30D problems, in function(s) f11

and f15(Unimodal),function f30(Multimodal) and functions
f33, f36 and f38(Composition), p − Value obtained through
Wilcoxons rank sum test are bigger than 0.05. About Uni-
modal Functions( f11 and f15) and Composition Functions (
f38), optimal solutions of the LSCS and CS are two inde-
pendent samples, which have the same p − value,1.On the
whole, in the CEC2013 test suite, LSCS achieves significant
better performance against CS.

5. Conclusion

The global random walk of the standard CS algorithm is
at the risk of excessive exploitation, and when it occurs
nests lose the global exploration capacity and thus makes
the algorithm prone to premature convergence. In this paper,
we propose a cuckoo search algorithm with Multi-learning
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Table 3 The result of CEC2013 functions with 30D, MaxFES:30000

Algo f11 f12 f13 f14 f15 f16 f17

CS Mean 0.00E+00 4.87E+05 5.47E+05 3.05E+02 0.00E+00 4.45E-02 9.37E+01
SD 0.00E+00 1.27E+05 8.82E+05 5.57E+01 0.00E+00 5.82E-02 1.38E+01

TCPSO Mean 1.14E-12 2.65E+06 4.44E+08 1.87E+03 7.84E-13 3.33E+01 1.16E+02
SD 1.36E-12 1.45E+06 4.38E+08 8.02E+02 6.92E-13 2.18E+01 2.89E+01

SACS Mean 0.00E+00 3.46E+06 4.81E+07 1.36E+03 1.14E-13 1.32E+01 4.98E+01
SD 0.00E+00 1.21E+06 2.77E+07 3.45E+02 0.00E+00 4.01E+00 1.06E+01

CCS3 Mean 0.00E+00 3.85E+05 1.05E+05 2.83E+00 0.00E+00 3.65E-02 6.13E+01
SD 0.00E+00 1.43E+05 2.11E+05 2.59E+00 0.00E+00 3.83E-02 3.40E+01

CLPSO Mean 2.05E-13 6.11E+06 1.06E+08 5.55E+03 1.67E-13 1.50E+01 6.26E+01
SD 6.94E-14 1.78E+06 4.71E+07 1.19E+03 5.77E-14 4.18E+00 1.16E+01

LSCS Mean 0.00E+00 3.40E+05 8.05E+05 4.35E+04 0.00E+00 3.35E-04 6.59E+01
SD 0.00E+00 9.27E+05 1.61E+06 3.33E+04 0.00E+00 3.12E-04 2.48E+01

Algo f18 f19 f20 f21 f22 f23 f24

CS Mean 2.08E+01 2.80E+01 5.35E-04 8.95E-01 1.17E+02 1.56E+02 6.02E+02
SD 6.61E-02 1.92E+00 2.23E-03 3.04E-01 2.38E+01 3.10E+01 1.79E+02

TCPSO Mean 2.09E+01 2.73E+01 4.45E-01 8.34E+01 2.17E+02 2.29E+02 1.37E+03
SD 7.23E-02 3.11E+00 6.41E-01 2.49E+01 5.50E+01 2.57E+01 4.12E+02

SACS Mean 2.09E+01 2.76E+01 1.50E+00 0.00E+00 1.01E+02 1.36E+02 7.07E-01
SD 5.67E-02 2.05E+00 2.52E-01 0.00E+00 1.68E+01 1.39E+01 6.97E-01

CSS3 Mean 2.09E+01 2.42E+01 5.01E-03 0.00E+00 7.75E+01 1.20E+02 2.22E+02
SD 4.75E-02 1.94E+00 4.54E-03 0.00E+00 1.20E+01 1.67E+01 1.52E+02

CLPSO Mean 2.09E+01 2.25E+01 8.85E-01 1.25E-13 7.28E+01 1.23E+02 4.87E+02
SD 5.55E-02 1.72E+00 2.81E-01 9.49E-14 1.22E+01 2.23E+01 1.18E+02

LSCS Mean 2.07E+01 2.21E+01 6.45E-02 0.00E+00 8.90E+01 1.18E+02 1.81E-01
SD 9.88E-02 5.167398 4.02E-02 0.00E+00 2.99E+01 26.536110 5.05E-02

Algo f25 f26 f27 f28 f29 f30 f31

CS Mean 4.03E+03 2.07E+00 5.63E+01 1.67E+02 4.79E+00 1.19E+01 2.04E+02
SD 2.75E+02 2.74E+00 7.28E+00 2.24E+01 5.73E-01 2.55E-01 4.62E+01

TCPSO Mean 5.38E+03 1.64E+00 9.93E+01 2.42E+02 8.09E+00 1.50E+01 3.34E+02
SD 1.13E+03 4.03E-01 2.17E+01 4.90E+01 3.12E+00 0.00E+00 1.02E+02

SACS Mean 3.64E+03 1.45E+00 3.04E+01 1.86E+02 2.31E+00 1.14E+01 2.50E+02
SD 2.53E+02 2.17E-01 7.42E-03 1.23E+01 3.17E-01 3.43E-01 4.95E+01

CSS3 Mean 3.81E+03 1.01E+00 3.89E+01 1.25E+02 3.31E+00 1.29E+01 2.33E+02
SD 3.00E+02 1.36E-01 3.43E+00 1.44E+01 6.38E-01 1.85E+00 4.79E+01

CLPSO Mean 3.18E+03 6.03E-01 3.21E+01 1.03E+02 7.64E-01 1.41E+01 1.62E+02
SD 3.12E+02 1.39E-01 3.10E+00 9.73E+00 2.51E-01 8.00E-01 4.76E+01

LSCS Mean 4.43E-01 1.74E+00 3.01E+01 1.36E+02 9.01E-01 1.21E+01 3.89E+02
SD 2.68E-01 5.77E-01 1.19E-01 3.41E+01 2.73E-01 9.22E-01 8.19E+01

Algo f32 f33 f34 f35 f36 f37 f38

CS Mean 8.42E+02 4.61E+03 2.78E+02 2.96E+02 2.00E+02 1.02E+03 3.00E+02
SD 2.62E+02 4.80E+02 4.97E+00 3.37E+00 7.07E-03 2.08E+02 0.00E+00

TCPSO Mean 1.55E+03 5.99E+03 2.70E+02 2.72E+02 3.30E+02 1.00E+03 5.19E+02
SD 4.69E+02 9.66E+02 9.82E+00 9.77E+00 7.34E+01 7.69E+01 5.62E+02

SACS Mean 1.76E+02 4.25E+03 2.68E+02 2.88E+02 2.00E+02 1.00E+03 3.00E+02
SD 2.95E+01 4.41E+02 8.34E+00 5.77E+00 4.93E-02 5.36E+01 0.00E+00

CCS3 Mean 2.82E+02 4.36E+03 2.44E+02 2.80E+02 2.00E+02 9.24E+02 2.93E+02
SD 1.11E+02 1.16E+03 5.37E+01 2.32E+01 5.53E-03 1.37E+03 3.65E+01

CLPSO Mean 4.30E+02 4.07E+03 2.38E+02 2.95E+02 1.97E+02 4.86E+02 1.61E+02
SD 8.54E+01 5.11E+02 2.79E+01 5.59E+00 1.02E+01 1.98E+02 8.74E+01

LSCS Mean 1.31E+02 4.40E+03 2.26E+02 2.77E+02 1.93E+02 7.92E+02 3.00E+02
SD 6.93E+01 8.00E+02 19.70212 1.19E+01 17.41992 1.48E+02 0.00E+00

strategies (LSCS). In LSCS, the converted learning module
tries to make a coordinated cooperation between exploration
and exploitation, and the Elite Learning Perturbation Mod-
ule alleviates the premature convergence.

The Boundary Handling Approach adjusted by Gauss
map overcomes the drawback of Set on Boundary. The pro-
posed algorithm is evaluated on Test Group A(ten simple
unimodal and multimodal functions) and Test Group B(the
CEC2013 test suite). And it is compared with the standard
CS and some other well-known existing optimization algo-
rithms. The experimental results indicate that LSCS sub-
stantially outperforms the standard CS algorithm in terms of
convergence speed. Besides, LSCS can always find global
optimal in the benchmark functions.

Future work may include the ability to add social learn-
ing to the nests of the LSCS algorithm, enabling informa-
tion transfer between particles so as to find optimal solutions
in complex environments. By using multi-population parti-

tioning, the nests of LSCS algorithm will be more hetero-
geneous, so the exploration ability will be more desirable.
Nevertheless the more important question is how to apply
the LSCS optimization algorithm in solving more complex
optimization problems within the engineering domain.
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Table 4 The result of CEC2013 functions with 50D, MaxFES:50000

Algo f11 f12 f13 f14 f15 f16 f17

CS Mean 0.00E+00 2.10E+06 7.83E+06 1.58E+02 4.32E-14 4.34E+01 1.10E+02
SD 0.00E+00 4.02E+05 5.91E+06 7.14E+01 5.63E-14 7.23E-15 8.91E+00

TCPSO Mean 2.36E-05 1.01E+07 1.85E+09 6.29E+03 5.48E-07 7.14E+01 1.19E+02
SD 8.37E-05 6.61E+06 1.42E+09 2.86E+03 2.99E-06 2.67E+01 2.56E+01

SACS Mean 2.20E-13 9.19E+06 1.69E+09 2.92E+03 1.14E-13 4.40E+01 1.17E+02
SD 4.15E-14 2.24E+06 8.11E+08 6.61E+02 0.00E+00 2.56E+00 1.13E+01

CCS3 Mean 0.00E+00 5.90E+06 3.53E+05 1.88E-02 9.85E-14 4.34E+01 9.09E+01
SD 0.00E+00 7.02E+06 5.04E+05 2.76E-02 3.94E-14 1.44E-14 2.04E+01

CLPSO Mean 2.27E-13 1.09E+07 3.86E+08 3.89E+03 2.43E-13 4.10E+01 8.88E+01
SD 0.00E+00 2.32E+06 1.55E+08 6.83E+02 3.93E-14 6.18E+00 1.03E+01

LSCS Mean 0.00E+00 1.52E+06 4.47E+06 1.43E+03 0.00E+00 2.05E+01 9.53E+01
SD 0.00E+00 2.90E+06 3.70E+06 3.84E+02 0.00E+00 2.22E+01 1.88E+01

Algo f18 f19 f20 f21 f22 f23 f24

CS Mean 2.11E+01 5.58E+01 1.87E-02 8.03E+00 3.27E+02 3.61E+02 1.09E+03
SD 4.50E-02 1.99E+00 1.01E-02 6.82E+00 4.29E+01 2.97E+01 2.91E+02

TCPSO Mean 2.11E+01 5.42E+01 2.44E+01 2.33E+02 4.23E+02 4.86E+02 3.51E+03
SD 5.03E-02 4.49E+00 2.41E+01 5.15E+01 8.61E+01 7.28E+01 5.89E+02

SACS Mean 2.11E+01 5.49E+01 8.06E+00 5.68E-14 3.41E+02 3.78E+02 2.24E+02
SD 4.23E-02 3.15E+00 2.11E+00 0.00E+00 4.43E+01 4.50E+01 2.79E+01

CCS3 Mean 2.11E+01 5.48E+01 1.15E-01 9.49E-14 1.99E+02 3.27E+02 8.67E+02
SD 3.07E-02 2.92E+00 2.14E-01 3.12E-14 5.67E+01 7.15E+01 3.15E+02

CLPSO Mean 2.11E+01 4.59E+01 1.27E+00 6.15E-06 1.68E+02 2.81E+02 1.01E+03
SD 1.32E-02 2.68E+00 2.10E-01 1.62E-05 2.16E+01 2.86E+01 1.19E+02

LSCS Mean 2.10E+01 5.20E+01 8.36E-02 0.00E+00 1.87E+02 3.16E+02 3.75E-01
SD 3.79E-02 1.11E+01 4.71E-02 0.00E+00 4.81E+01 4.49E+01 2.88E-01

Algo f25 f26 f27 f28 f29 f30 f31

CS Mean 8.17E+03 1.79E+00 1.11E+02 3.99E+02 1.54E+01 2.14E+01 2.92E+02
SD 4.32E+02 2.08E-01 8.29E+00 4.52E+01 2.96E+00 5.63E-01 2.81E+02

TCPSO Mean 1.24E+04 2.24E+00 2.71E+02 5.74E+02 2.61E+01 2.38E+01 8.83E+02
SD 1.05E+03 5.11E-01 5.25E+01 9.33E+01 7.34E+00 1.33E+00 3.36E+02

SACS Mean 7.78E+03 2.44E+00 6.08E+01 4.53E+02 7.26E+00 2.15E+01 3.25E+02
SD 5.31E+02 2.58E-01 1.61E+00 2.29E+01 6.37E-01 2.92E-01 2.71E+02

CCS Mean 7.61E+03 1.90E+00 7.53E+01 2.31E+02 6.10E+00 2.03E+01 3.46E+02
SD 6.27E+02 4.95E-01 5.03E+00 2.96E+01 2.19E+00 1.91E+00 2.35E+02

CLPSO Mean 6.52E+03 1.02E+00 6.20E+01 2.24E+02 2.69E+00 2.37E+01 1.99E+02
SD 5.15E+02 2.11E-01 1.46E+00 2.15E+01 2.92E-01 7.76E-01 2.51E+01

LSCS Mean 3.96E-01 2.07E+00 5.10E+01 3.36E+02 1.50E+00 2.24E+01 5.12E+02
SD 2.99E-01 8.93E-01 7.08E-02 6.50E+01 3.34E-01 1.29E+00 3.99E+02

Algo f32 f33 f34 f35 f36 f37 f38

CS Mean 1.46E+03 9.97E+03 3.59E+02 3.91E+02 2.00E+02 1.84E+03 4.00E+02
SD 4.90E+02 3.41E+02 7.94E+00 5.27E+00 4.93E-02 3.69E+01 0.00E+00

TCPSO Mean 3.54E+03 1.29E+04 3.43E+02 3.39E+02 4.20E+02 1.74E+03 1.89E+03
SD 5.37E+02 1.49E+03 1.13E+01 9.59E+00 6.05E+01 8.71E+01 2.01E+03

SACS Mean 6.70E+02 9.23E+03 3.43E+02 3.76E+02 2.40E+02 1.74E+03 4.00E+02
SD 1.96E+02 8.28E+02 6.85E+00 4.70E+00 8.87E+01 5.34E+01 0.00E+00

CCS3 Mean 1.23E+03 8.56E+03 2.42E+02 3.98E+02 2.06E+02 1.39E+03 4.00E+02
SD 4.74E+02 6.76E+02 1.38E+01 3.92E+01 1.45E+01 2.29E+02 1.58E-13

CLPSO Mean 1.25E+03 8.63E+03 3.30E+02 3.94E+02 2.01E+02 1.52E+03 4.00E+02
SD 2.34E+02 6.28E+02 9.94E+00 9.77E+00 2.49E-01 3.12E+02 5.50E-02

LSCS Mean 1.10E+02 8.94E+03 3.08E+02 3.26E+02 2.62E+02 1.21E+03 4.00E+02
SD 1.09E+02 1.31E+03 1.18E+01 4.06E+01 9.61E+01 6.26E+01 1.48E-01

Table 5 Comparison LSCS with CS on Wilcoxon rank sum test

f11 f12 f13 f14 f15 f16 f17

Wilcoxon W 915 615 695 465 915 685 583
Z 0 -4.439 -3.267 -6.657 0 -3.405 -4.913
p-value 1 9.045E-6 0.0011 2.784E-11 1 6.598E-4 8.944E-7

f18 f19 f20 f21 f22 f23 f24

Wilcoxon W 639.5 602 465 510 687 618.5 465
Z -4.2859 -4.633 -6.675 -6.947 -3.376 -4.38 -6.659
p-value 1.82E-5 3.587E-6 2.464E-11 3.708E-12 7.352E-4 1.133E-5 2.746E-11

f25 f26 f27 f28 f29 f30 f31

Wilcoxon W 528 753 465 666 465 852 513
Z -6.645 -2.397 -6.6574 -3.683 -6.659 -0.934 -6.197
p-value 3.016E-11 0.0165 2.786E-11 2.298E-4 2.753E-11 0.3504 5.734E-10

f32 f33 f34 f35 f36 f37 f38

Wilcoxon W 465 849 465 495 840 591 915
Z -6.656 -0.976 -6.661 -6.229 -1.989 -4.798 0
p-value 2.801E-11 0.328 2.724E-11 4.685E-10 0.0467 1.601E-6 1
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