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WearAuth: Wristwear-Assisted User Authentication for
Smartphones Using Wavelet-Based Multi-Resolution Analysis∗
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SUMMARY Zero-effort bilateral authentication was introduced re-
cently to use a trusted wristwear to continuously authenticate a smartphone
user. A user is allowed to use the smartphone if both wristwear and smart-
phone are determined to be held by the same person by comparing the
wristwear’s motion with the smartphone’s input or motion, depending on
the grip—which hand holds the smartphone and which hand provides the
input. Unfortunately, the scheme has several shortcomings. First, it may
work improperly when the user is walking since the gait can conceal the
wrist’s motions of making touches. Second, it continuously compares the
motions of the two devices, which incurs a heavy communication burden.
Third, the acceleration-based grip inference, which assumes that the smart-
phone is horizontal with the ground is inapplicable in practice. To ad-
dress these shortcomings, we propose WearAuth, wristwear-assisted user
authentication for smartphones in this paper. WearAuth applies wavelet-
based multi-resolution analysis to extract the desired touch-specific move-
ments regardless of whether the user is stationary or moving; uses discrete
Fourier transform-based approximate correlation to reduce the communi-
cation overhead; and takes a new approach to directly compute the relative
device orientation without using acceleration to infer the grip more pre-
cisely. In two experiments with 50 subjects, WearAuth produced false neg-
ative rates of 3.6% or less and false positive rates of 1.69% or less. We
conclude that WearAuth operates properly under various usage cases and is
robust to sophisticated attacks.
key words: smart devices, user authentication, motion sensor, signal pro-
cessing

1. Introduction

Nowadays, smartphones have been widely used in our daily
lives. People carry smartphones around and use them for
various applications; some applications might be sensitive,
such as executing financial transactions or paying goods and
services. In general, a smartphone is used frequently in a
day, and briefly each time. Unlike wearable devices such
as wristbands that people wear them around, a smartphone
may be temporally out of the control of its legitimate user
or even lost or stolen, which may pose a risk of unwanted
access to the smartphone. Protection of smartphones from
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any unauthorized access has become an imperative require-
ment. Such protection should be user-friendly, desirably
transparent to their users so that there is no impedance to
smartphone’s frequent yet brief usage patterns. Like other
commercial off-the-shelf (COTS) devices, smartphones are
typically protected with user authentication based on the
following three factors: knowledge (e.g., passwords), in-
herence (e.g., fingerprint, face, and iris), and possession
(e.g., trusted devices). Possession-based user authentica-
tion is an attractive approach for smartphones since it can
make the whole process of user authentication completely
transparent.

A possession-based method called Continuous Seam-
less Authentication using Wristbands (CSAW) [1] has re-
cently been proposed. CSAW extends the idea of the zero-
effort bilateral authentication introduced in ZEBRA [2] to
smartphones. It relies on a trusted wristwear to authenti-
cate a smartphone user continuously by verifying whether
the user is wearing the trusted wristwear. If both trusted
wristwear and the smartphone are possessed by the same
user, referred to as same-ownership in this paper, it de-
termines that the user is a legitimate user and allows the
user to access the smartphone. Otherwise, i.e., different-
ownership, it determines that the user is unauthorized and
does not allow the user to access the smartphone. CSAW
determines same-ownership by comparing the wristwear’s
motions with the smartphone’s inputs and motions. If
the wristwear shows correlated motions with them, CSAW
determines same-ownership, otherwise different-ownership.
CSAW uses wrist movements naturally occurred in using
smartphones for authentication; it does not require the user
to make any specific motions or behaviors such as finger-
print inputs or to memorize any secrets such as passwords
for authentication.

Despite a stride forward, CSAW suffers from the fol-
lowing shortcomings: First, the authentication may work
improperly when the user is walking. This is because the
gait can conceal the wrist’s motion of making touches which
are usually small and transient. This problem can be se-
vere especially in the different-hand state—the hand holding
the smartphone is not the wristwear-worn hand providing
the input; it is hard to determine whether the wristwear’s
motion, which is concealed by the gait, is correlated with
the smartphone’s input. On the contrary, if both devices
are in the same hand, it is relatively easy to determine that
their motions are correlated regardless of the user’s mov-
ing state. Second, a large amount of communication is con-
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stantly needed to compare the motions of the two devices.
To compute similarity measures such as correlation and co-
herence, one device needs to send its motion data to the
other. Third, the acceleration-based grip inference, which
assumes the smartphone is horizontal with the ground, is in-
applicable in practice.

In this paper, we propose WearAuth, wristwear-assisted
user authentication for smartphones, which overcomes the
aforementioned problems. Frist, to extract the desired
touch-specific movements regardless of whether the user is
stationary or mobile, WearAuth applies the maximal over-
lap discrete wavelet transform (MODWT) and its multi-
resolution analysis (MRA) [3], [4]. The fundamental idea
is that a touch interaction usually takes shorter time than
other behaviors. Thus, the corresponding movement at the
time of the touch can be separated from the other behav-
iors and highlighted at high-frequency components. Second,
to reduce the communication overhead, WearAuth uses the
discrete Fourier transform (DFT)-based approximate corre-
lation [5]. With the approach, the motion similarity can be
measured by sending a few DFT coefficients instead of send-
ing all of the original data. Third, to infer the grip more
precisely, we directly compute the relative orientation of the
two devices by measuring the Z-axes of the two devices in
the Earth coordinate system (ECS), where each Z-axis rep-
resents the direction perpendicular to the device’s screen.
This approach is irrelevant to the acceleration and applica-
ble regardless of the user’s motion.

To evaluate WearAuth, we conducted two experiments
with 50 subjects. We have tested the classifier performance
using multiple machine-learning algorithms. The classifier
showing the best performance obtained an equal error rate
of 0.69%, area under the receiver operating characteristic
(ROC) curve of 0.9997, and an F1 score of 0.9901. In addi-
tion, WearAuth achieved false negative rates of 3.6% or less
for legitimate usage cases, and false positive rates of 1.69%
or less for attack cases. The results indicate that WearAuth
works properly under various usage cases and is robust to
sophisticated attacks.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first research
which introduces a novel approach of applying sig-
nal analyses to the wristwear-assisted user authentica-
tion for smartphones. In WearAuth, the wristwear’s
touch-specific movement is assessed by using the high-
frequency components which capture short-time tran-
sients, while the motion similarity of the two devices
is measured by using the low-frequency components
which represent the general shapes of signals.
• We propose a lightweight approach to measure the mo-

tion similarity of the devices by employing the DFT-
based approximate correlation.
• We propose new features to infer the smartphone us-

age cases and to measure the likelihood of the same-
ownership. We demonstrate that the proposed features
are effective for their own purposes.

• We conducted an extensive evaluation of various legit-
imate and attack models with 50 subjects.

2. Background

In this section, we briefly address the methods of signal
analysis and approximate correlation used in this paper.

2.1 MODWT and MRA

To separate the motion signals into low- and high-frequency
components and analyze them separately, we use the
MODWT and its MRA. The MODWT introduced by
Percival [3], is a modified version of DWT. The MODWT
and its MRA [4] have few important properties. First, unlike
DWT, MODWT does not subsample, and is defined natu-
rally for all sample sizes. Second, MODWT and its MRA
are shift invariant—circularly shifting the time series by any
amount will circularly shift the MODWT coefficients by the
corresponding amount.

Consider MODWT of a time sequence x = x0, x1, . . . ,
xN−1 with a level J. The MODWT wavelet coefficients (d̃ j)
and the scaling coefficients (c̃ j) are formulated as:

d̃ j,n =

L j−1∑
l=0

h̃ j,l xn−l mod N , and

c̃ j,n =

L j−1∑
l=0

g̃ j,l xn−l mod N , (1)

for n = 0, . . . ,N − 1 and j = 1, . . . , J, where Lj denotes
the filter length, hj and g j are the wavelet and scaling filters,
respectively, and h̃ j,l = h j,l/2 j/2 and g̃ j,l = g j,l/2 j/2.

The MODWT-MRA decomposes the original time se-
quence as follows:

x = D̃1 + D̃2 + · · · + D̃J + S̃J , (2)

where D̃ j is the jth order detail (high-frequency) component
and S̃J is the Jth order smooth (low-frequency) component
for x. The detail and smooth can be calculated as follows:

D̃ j,n =

N−1∑
l=0

h̃◦j,ld̃ j,n+l mod N and

S̃J,n =

N−1∑
l=0

g̃◦J,lc̃J,n+l mod N , (3)

where h̃◦l and g̃◦l are the h̃l and g̃l periodized to length N,
respectively [6]. Interested readers may refer [4], [7], [8] for
more information.

2.2 DFT-Based Approximate Correlation

We use the Pearson’s correlation coefficients to measure the
similarity of motion signals. We first define the normaliza-
tion of x as x̂ = x̂0, x̂1, . . . , x̂N−1, such that x̂k = (xk−μx)/σx,
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where μx and σx are the average and standard deviation of
x. For two given signals x and y of equal length N, their
correlation coefficient is computed as:

corr(x, y)=
1
N

N−1∑
k=0

(
xk−μx

σx

)(
yk−μy
σy

)
=

1
N

N−1∑
k=0

x̂kŷk. (4)

Since
∑N−1

k=0 x̂k
2 =

∑N−1
k=0 ŷk

2 = N, the equation can be
rephrased as:

corr(x, y) =
1
N

N−1∑
k=0

x̂kŷk = 1 − 1
2N

d2(x̂, ŷ). (5)

We define the DFT of x as x̆ such that x̆ f =
1
N

∑N−1
m=0 xmei −2π f m

N . Since the DFT is a linear transformation,
the Euclidean distance is preserved as follows: 1

N d2(x̂, ŷ) =
d2(x̄, ȳ), where x̄ and ȳ are the DFT of x̂ and ŷ, respectively.
Thus, the above equation can be rephrased as follows:

corr(x, y) = 1 − 1
2

d2(x̄, ȳ) (6)

Generally, the first few DFT coefficients contain the
most energy of the signal and capture the raw shape of
it. With the symmetry property of the DFT, 2d2

p(x̄, ȳ) =
2
∑p

k=0 (x̄k − ȳk)2 is a good approximation of d2(x̄, ȳ) for
p � N.

As a result, we can calculate the approximate correla-
tion with p DFT coefficients as follows:

corrp(x, y)=1−d2
p(x̄, ȳ)≈1−d2(x̄, ȳ)/2=corr(x, y). (7)

The approximate correlation has the following error
bound [5]:

corr(x, y) − ε ≤ corrp(x, y) ≤ corr(x, y) + ε, (8)

where the value of p is chosen such that

min(2
p∑

k=0

|x̄k |2 , 2
p∑

k=0

|ȳk |2) ≥ 1 − ε
2
. (9)

For instance, if we want an error bound of 0.05, we need to
compute as many DFT coefficients that contain normalized
energy greater than 0.975.

3. Threat Model and Design Assumptions

3.1 Threat Model

3.1.1 Legitimate Usage

We regard a person who wears a wristwear coupled with
a smartphone as a legitimate user of the smartphone. As
with the previous studies [2], [9], the wristwear serves as a
trusted device, and the smartphone authenticates its user by
verifying the same-ownership of both devices.

In real life, legitimate users use their smartphones in

different ways, leading to various patterns of motions sensed
by the two devices. These motions play a crucial role in
WearAuth’s verification of the same-ownership of the two
devices. They are affected by two main factors: the mov-
ing state and the hand state. The former can be categorized
into two cases, walking state (Walk) and sitting state (Sit),
depending on whether the legitimate user is moving or not.
The latter can also be categorized into two cases, same-hand
state (Same) and different-hand state (Diff), depending on
whether the two devices are held in the same hand or in two
different hands. Their combinations lead to the following
four cases: Sit-Same, Sit-Diff, Walk-Same, and Walk-Diff.
These four cases will be studied in this paper.

3.1.2 Attacks

We focus on attacks aiming at WearAuth. Such an attack
can be defined as any attempt by any user to use the smart-
phone without wearing the coupled wristwear, i.e., when the
same-ownership of both devices is violated. The legitimate
user who wears the wristwear in an attack is referred to as a
victim in this paper.

According to the launching methods, attacks can be
classified into two types: random attacks and mimic attacks.
The former is launched by an attacker, referred to as a ran-
dom attacker, who is unaware of how WearAuth works and
makes touch inputs on the smartphone without consider-
ing the victim’s wrist movements. The latter is launched
by an attacker, referred to as a mimic attacker, who knows
WearAuth inside out and attempts to make his touch in-
puts to match the victim’s wrist movements to circumvent
WearAuth’s detection.

3.2 Assumptions

We make the following assumptions in this work:

• Devices. The smartphone has a touch screen, and both
smartphone and wristwear are equipped with motion
sensors.
• Inputs. For simplicity, this work focuses on the widely

used scenario that a user uses finger(s) to make inputs
on the smartphone.
• Wristwear involvement. For the legitimate usage, we

assume that the wristwear-worn hand is involved in
touch interactions—either holding the smartphone or
touching its screen. Otherwise, the motion sensed by
the wristwear is irrelevant to the interactions on the
smartphone, and our scheme cannot differentiate legit-
imate usage and attacks. We will further discuss this
issue in Sect. 6.1.
• Normal operations. Both devices are operating under

normal circumstances without communication disrup-
tion or attacks on their systems or communications.

4. WearAuth Architecture

Figure 1 shows the architecture of WearAuth. It consists of
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Fig. 1 WearAuth architecture. The a, g, and o denote sensor measure-
ments of the accelerometer, gyroscope and orientation sensor. The S̃ and D̃
represent the smooth and detail components, respectively. Note that the PC
in this figure is used to train the classifier model in an offline manner; it is
not involved in operations of the smartphone and wristwear.

Fig. 2 The motion sensors in Android. The accelerometer measures lin-
ear acceleration in m/s2, the gyroscope measures rotational velocity in
rad/s, and the orientation sensor measures degree of rotation that a device
makes with respect to the ECS. The N, E, and U are north, east, and up
(the opposite direction to gravity) in the ECS.

the following four modules: data collection, preprocessing,
feature extraction, and decision making, and we will address
the details of them in order.

4.1 Data Collection

Whenever the user authentication is required, e.g., the
smartphone’s screen turns on, WearAuth collects the motion
data of three sensors: accelerometer, gyroscope, and orien-
tation sensor, from both smartphone and wristwear, and col-
lects the touch data from the smartphone. The motion data
is a set of evenly sampled motion signals with time-stamps
written as: t = {tn}, a = [aX , aY , aZ]T , g = [gX , gY , gZ]T ,
and o = [oφ, oθ, oψ]T , where T indicates transpose, t is the
sequence of time-stamps at which each sample is measured,
and n is the array index of the signals. The a, g, and o de-
note the sensor measurements of the accelerometer, gyro-
scope and orientation sensor, respectively (see Fig. 2). The
X, Y , and Z indicate the three axes of the device, where they
extend out of the right-side, the top-side, and the front face
of the device. At the same time, the smartphone records the
touch data. When a touch input occurs, a sequence of touch
event packets is generated, where each packet contains the

Fig. 3 An example of 4-level MODWT-MRA. The wristwear’s accelera-
tion magnitude signal (aM) is decomposed into the four detail components
(D̃aM ,{1...4}) and one smooth component (S̃aM ,4). The vertical dotted lines
indicate the touch start time and touch end time of the three touch inputs.

time-stamp and touch event of finger down, up, and move
on the screen.

4.2 Preprocessing

Segmentation. The collected data is divided into several
chunks for further processes. Each touch input is defined by
the two touch event packets, down and up, while the double-
tap input contains two downs and two ups. For each touch
input, the exact touch start time and touch end time are ex-
tracted. The motion data is divided into segments of the
equal size Nw written as follows:

Wx,i = {xn}wi≤n≤wi+Nw−1 = [xwi , xwi+1, . . . , xwi+Nw−1],

where x is any motion signal from the three sensors, and
Wx,i represents ith segment of x with the start index of wi.

After segmenting the motion signals, WearAuth
computes the two magnitude sequences to obtain axis-
independent motion information. For each sample
of acceleration ([aX,n, aY,n, aZ,n]T ) and rotational velocity
([gX,n, gY,n, gZ,n]T ), the corresponding magnitudes can be cal-

culated as follows: aM,n =
√

a2
X,n + a2

Y,n + a2
Z,n and gM,n =√

g2
X,n + g

2
Y,n + g

2
Z,n

Signal Decomposition. WearAuth decomposes each
motion signal into smooth and detail components using
the MODWT-MRA. Figure 3 illustrates an example of 4-
level MODWT-MRA of a motion signal. As can be seen,
the smooth component characterizes the general shape of
the original signal, while the detail components capture
the short-time transitions, i.e., touch-specific movements.
WearAuth uses the smooth components of both devices to
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measure the motion similarity, and the detail components of
the wristwear to assess the touch-specific movements. We
note that the smartphone’s detail components (D̃{1,...,J}) are
not used. For each segmented motion signal x of the length
Nw, the J-level MODWT-MRA decomposes the signal into
a matrix of size (J + 1) × Nw as follows:

MODWT -MRA(x)= [D̃x,1, D̃x,2, . . . , D̃x,J , S̃x,J]T . (10)

4.3 Feature Extraction

For each motion segment, WearAuth extracts the following
four types of features where each type has its own purpose:

• Move features: to determine the moving state of each
device (or its holder), e.g., sitting or walking
• Grip features: to determine the hand state, e.g., same-

hand or different-hand
• Similarity features: to determine whether the wrist-

wear’s motion is similar to the smartphone’s motion
• Touch features: to determine whether the wristwear

performs touch-specific movements

The first two types are used to infer the four legiti-
mate usage cases introduced in Sect. 3.1.1, while the latter
two types are used as metrics of the likelihood of the same-
ownership where each targets the different usage case.

4.3.1 Move Features

WearAuth infers the moving state of each device by using
the acceleration pointing up to the sky (aU) in the ECS (see
Fig. 2). The underlying idea is that when the user is walking,
the periodic contacts of user’s feet with the ground generate
forces perpendicular to the ground. As a result, both de-
vices repeatedly experience fluctuation of the acceleration
directed to the sky (aU) and to the ground (−aU) regardless
of their orientation. To compute aU , we need coordinate
transformation of the acceleration from the device coordi-
nate system (DCS) to the ECS using the rotation matrix.

After then, the following four features are extracted
from the sequence of aU = {aU,n} of each device: energy,
spectral centroid, spectral bandwidth, and spectral entropy.
The reason we use these features is because we want to
take advantage of spectral components induced by the gait
that contains periodic movements. And these features were
used in gait analysis of the previous studies [10], [11]. We
first define the DFT coefficients of aU as ăU = {ăU, f }, and
păU ( f ) is the normalized magnitude of the f th DFT coeffi-
cient: păU ( f ) = |ăU( f )|/∑Nw−1

m=0 |ăU(m)|.
The energy (E) is the sum of the square of a signal:

E(aU) =
Nw−1∑
k=0

|aU,k |2 = Nw

Nw−1∑
f=0

|ăU, f |2. (11)

The spectral centroid (SC) is the balance point of the
spectral power distribution:

Fig. 4 Inner angle (θinner) between the Z-axes of the wristwear and
smartphone. The value tends to be larger for the same-hand state and
smaller for the different-hand state.

SC(aU) =

∑Nw−1
f=0 f · păU ( f )2

∑Nw−1
f=0 păU ( f )2

. (12)

The spectral bandwidth (SB) measures the width of the
range of the spectral power distribution:

SB(aU) =

∑Nw−1
f=0 ( f − SC(aU))2 · păU ( f )2

∑Nw−1
f=0 păU ( f )2

. (13)

The spectral entropy (SE) measures whether the DFT
coefficients are concentrated or widespread; the higher the
concentration, the lower the value.

SE(aU) = −
Nw−1∑
f=0

păU ( f ) · log(păU ( f )). (14)

For each motion segment, the move feature vector has
the following form:

Fmove =< Ewrist, SCwrist, SBwrist, SEwrist,

Ephone, SCphone, SBphone, SEphone >,

where wrist and phone indicate the wristwear and smart-
phone, respectively.

4.3.2 Grip Features

To figure out the hand state, we compute the inner angle be-
tween the Z-axes of the two devices in the ECS (see Fig. 4).
The Z-axis in the ECS is computed by multiplying the rota-
tion matrix to the Z-axis in the DCS, i.e., [0 0 1]T . Then, the
inner angle (θinner) is calculated as follows:

θinner,n = cos−1
(
Zwrist,n · Zphone,n

)
, (15)

where (·) represents the inner product, and Zwrist and Zphone

are the Z-axis unit vectors of the wristwear and smartphone
in the ECS, respectively.

Thereafter, the mean (μθ) and standard deviation (σθ)
of the inner angles form the grip feature vector (Fgrip) as
follows: Fgrip =< μθ, σθ >.

4.3.3 Similarity Features

To measure how much the wristwear’s motion is similar to
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the smartphone’s motion, WearAuth compares the smooth
components (S̃J) by using the DFT-based approximate cor-
relation introduced in Sect. 2.2. This can reduce the commu-
nication overhead while preserving a proper error bound.

WearAuth computes a total of 21 approximate correla-
tion coefficients (corrp,{1,...,21}) from the smooth components
of the following motion signal pairs:

• corrp,{1,..,9}: awrist,{X,Y,Z} with aphone,{X,Y,Z}
• corrp,{10,...18}: gwrist,{X,Y,Z} with gphone,{X,Y,Z}
• corrp,{19,20}: awrist,M with aphone,M , and
gwrist,M with gphone,M

• corrp,21: awrist,U with aphone,U

Unlike CSAW, WearAuth compares all possible pairs
of the motion signal axes. That is because the associated
axis pairs of the two devices depend on the relative device
orientation. For example, if the wristwear rotates about the
Z-axis by 90 degrees and the X-axis by −90 degrees, the
wristwear’s X, Y , and Z-axes point to the same directions
with the smartphone’s Y , −Z, and −X-axes, respectively,
where the minus (−) sign indicates the opposite direction.

After then, WearAuth selects the Ks largest values out
of the 21 absolute correlation coefficients to form the simi-
larity feature vector (Fsimilarity) as follows:

Fsimilarity =< Max1(|corrp|), . . . ,MaxKs (|corrp|) >
where Maxi indicates the ith largest value. The reason we
use the absolute value is that if a pair of associated axes point
to the opposite directions, they produce a large but negative
correlation coefficient.

4.3.4 Touch Features

In order to assess the relationship between the wristwear’s
motion and smartphone’s input, WearAuth extracts the two
features, peak height (PH) and peak location (PL), from the
power spectrum of each detail component (E j = |D̃ j|2) of
the wristwear’s motion signals. As shown in Fig. 5, the PH
is the maximum value of the normalized power spectrum of

Fig. 5 Two types of the touch features. The peak height (vertical red
dotted line) is the maximum value of the normalized power spectrum of the
detail component within the touch time, and the peak location (horizontal
red dotted line) is the minimum distance of the PH’s time index from the
touch start time or touch end time.

the detail component within the touch time defined as:

PHx, j = max{Êx, j,n} for x ∈ {aX , aY , aZ , aM ,

gX , gY , gZ , gM} and tstart ≤ n ≤ tend,

where Êx, j is the normalized power spectrum of the jth level
detail component of the segmented signal x. The PL is the
minimum distance of the PH’s time index from the touch
start time (tstart) or touch end time (tend) defined as:

PLx, j = min{nmax − tstart, tend − nmax},
where nmax = arg max

tstart≤n≤tend

{Êx, j,n}.

Generally, in the legitimate usage cases, we have observed
that the peaks occur near the touch start time or touch end
time because people generally move their wrists sharply at
that time, which results in the low PL values. Thus, we have
considered the PL as a time-sensitive feature which helps
to distinguish between the legitimate usage and attack; if
an attacker fails to match his mimicking touch with the vic-
tim’s movement, which easily occurs, the PL value becomes
large.

The challenging problem is that even for the same type
of touch interactions, the major detail component(s) that
highlights the touch-specific movement, changes every time.
For example, a tap is highlighted once at ÊaZ ,2, while the
next tap can be highlighted at ÊgX ,1. This is due to the wrist-
wear’s orientation, and the movement type (linear or rota-
tional) and its speed for a touch interaction vary over time.

To handle this problem, WearAuth selects the
Kt largest PHs ({LPH1, LPH2, . . . , LPHKt }) and its PLs
({LPL1, LPL2, . . . , LPLKt }) computed from the 8J detail
components (J-level MODWT-MRA of 8 motion signals)
to make the touch feature vector as follows:

Ftouch =< LPH1, . . . , LPHKt , LPL1, . . . , LPLKt > .

If no touch occurs, the feature vector is filled with dummy
values; for example, we used −1 as the dummy value. If
multiple touches occur within the time duration of a seg-
ment, the mean vector is computed. In summary, the touch
feature vector forms as follows:

Ftouch =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

< −1,−1, . . . ,−1 >︸������������������︷︷������������������︸
2×Kt

, if Nt = 0

mean

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ftouch,1

. . .
Ftouch,Nt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , else

where Nt is the number of touch inputs within the time du-
ration of the motion segment, and Ftouch,i corresponds to the
ith touch input of the segment.

4.4 Decision Making

Finally, a pre-trained classifier model periodically takes the
four feature vectors as input and produces a score as out-
put. The output score, or ownership score (OS), indicates
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the likelihood of the same-ownership. We chose a sim-
ple threshold-based approach to make the final decision:
the same-ownership if OS ≥ threshold, and the different-
ownership otherwise.

The classifier can be trained by most commonly used
machine learning algorithms. Among them, we have
tested the following five algorithms for WearAuth: decision
tree [12], naive Bayes [13], support vector machine [14],
random forest [15], and AdaBoost [16]. Note that we build
a general classifier model using the data of all participants
for each algorithm; the model is not an individual model
for each user which relies on the user’s unique behavioral
traits. The general model is not completely user-agnostic
because it has contained the data of each user, but we can
verify whether the model works well for all users through
the 10-fold cross-validation technique. Their performance
will be addressed in Sect. 5.3.2.

5. Evaluation

5.1 Implementation

We used a Samsung Galaxy Note 5 and an LG Watch
Urbane to collect smartphone and wristwear data, respec-
tively. The former ran Android Marshmallow (v6.0.1) with
64 GB storage and 4 GB RAM, and the latter ran Android
Wear OS (v2.0) with 4 GB storage and 512 MB RAM.
We developed applications for each device to collect smart-
phone’s touch data and both devices’ motion data. Built-in
APIs of Android are used for the most parts of the modules.

At the beginning of an experiment, both devices ac-
cessed to a pre-installed stratum-3 server of Network Time
Protocol (NTP) [17] to synchronize their time. We note that
this explicit time synchronization is not necessary in prac-
tice. Once the timelines of the two devices are aligned, there
is no need to apply it again. If the NTP is unavailable, cross-
correlation can be used to achieve the same effect [18].

5.2 Experimental Settings and Data Collection

We conducted two experiments for our user study. We de-
signed the first experiment to evaluate the overall perfor-
mance of WearAuth; we captured the data of legitimate us-
age as well as random and naive mimic attacks. Later we
designed an additional experiment to evaluate the robustness
of WearAuth against more sophisticated attacks, the oppor-
tunistic attacks, introduced in [9]. We recruited a total of
50 volunteers in our experiments; 30 subjects for the first
one and 20 subjects for the second one. Most of the sub-
jects were campus students and the other were workers in
our institution. Each subject took about an hour to com-
plete assigned tasks and received a $10 reward after com-
pletion. The demographic information of the subjects of the
two experiments is summarized in Table 1. Our experiments
were approved by the Institutional Review Board of our
institution.

Table 1 Demographics of a total 50 subjects of two experiments.

Gender Watch-worn hand
Male Female Left Right

36 14 48 2
Age

∼24 25∼29 30∼34
33 12 5

Unlike the experiments in CSAW, we did not distin-
guish tasks separately. We only focused on the task of phone
use, i.e., touch interactions, for the (de)authentication of
users; other tasks such as smartphone pick-up or rotate eval-
uated in CSAW were not considered. If the smartphone is
actually in use, there will be a combination of tap and swipe
inputs depending on the type of an application used. For
example, users may mainly use swipes to do scrolling in a
document reader application while they use taps to type in a
messenger application. Because of the vast amount of com-
binations, we instructed the subjects to perform basic touch
interactions in a random order instead of using application-
specific combinations. For the attacks, we assumed the
cases where the attackers (subjects) took the automatically
unlocked smartphone; at the same time, the victim (one re-
searcher) was nearby and she was stationary, walking, or
using another smartphone or a PC depending on the case.
The details are addressed in the following sections.

5.2.1 Data of Legitimate Usage

As mentioned in Sect. 3.1.1, we have considered the four le-
gitimate usage cases with the two moving states, i.e., walk-
ing and sitting, and two hand states, i.e., same-hand and
different-hand. As in CSAW [1], the same-hand state mani-
fests in three different hand grips, WW, WN, and BB, while
the different-hand state has one hand grip, NW (see Fig. 6).
Each grip shown in the figure is named by two letters: the
first letter indicates the hand holding the smartphone, and
the second letter indicates the hand interacting with the
smartphone; W stands for the hand wearing the wristwear,
N stands for the other hand without the wristwear, and B
stands for the both hands.

We collected the legitimate usage data with 30 subjects
at the first experiment. Each subject wore the wristwear to
play the role of a legitimate user using the smartphone and
conducted eight sessions; each session devoted to one of
the two moving states and one of the four hand grip con-
ditions. The smartphone application instructed the subject
to make touch inputs by displaying the six types of basic
touches, tap, double tap, swipe up, swipe right, swipe down,
and swipe left in a random order with auxiliary information,
one basic touch at a time. A total of 33,236 touch inputs
and 19,843 motion segments were collected, with the detail
given in Table 2.

5.2.2 Data of Attacks

As described in Sect. 3.1.2, attacks can be classified into two
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Fig. 6 Four hand grips. The left three are labeled as the same-hand state, and the remaining one is
labeled as the different-hand state.

Table 2 The number of subjects, touch inputs and motion segments under the four states of the
legitimate usage.

Legitimate Hand Subject
Tap

Double Swipe Swipe Swipe Swipe Total Segment
usage grip number tap up right down left input number

WW 30 624 625 625 625 619 623 3741 2408
Sit-Same WN 30 709 716 710 717 706 704 4262 2503

BB 30 728 725 725 723 721 726 4348 2508
Sit-Diff NW 30 694 695 692 693 702 694 4170 2501

WW 30 686 688 689 686 680 685 4114 2500
Walk-Same WN 30 711 711 718 715 715 714 4284 2505

BB 30 704 704 711 710 705 712 4246 2499
Walk-Diff NW 30 677 673 683 681 677 680 4071 2419

Table 3 The number of subjects, touch inputs and motion segments of seven attack cases. The attack
data consists of the researcher’s wristwear data and subjects’ smartphone data. The smartphone data of
the two random attacks is same with the Mimic-Phone-Naive-All attack. However, there is the difference
in the number of motion segments because each victim data is longer in the random attacks than in
Mimic-Phone-Naive-All.

Attack Subject Tap Double Swipe Swipe Swipe Swipe Total Segment
case number Tap up right down left input number

Random-Sit 30 2511 1912 1989 2081 1933 2040 12466 9987
Random-Walk 30 2511 1912 1989 2081 1933 2040 12466 9987
Mimic-Phone-Naive-All 30 2511 1912 1989 2081 1933 2040 12466 9941
Mimic-Phone-Opp-All 20 466 357 363 397 386 414 2383 2017
Mimic-Phone-Opp-Tap 20 1952 0 0 0 0 0 1952 1878
Mimic-PC-Opp-All 20 2167 200 118 232 99 269 3085 2486
Mimic-PC-Opp-Keyboard 20 2634 0 0 0 0 0 2634 2463

types: random or mimic. A total of 47,452 touch inputs and
38,759 motion segments were collected with the detail given
in Table 3. For the attack data, one of the researchers played
the role of a victim. To reduce the impact of changes in
the researcher’s data, the researcher wore the wristwear and
did some prescribed behaviors before conducting the exper-
iment, and her wrist movements were recorded through the
wristwear’s motion sensors and the video camera. There-
after in the evaluation, the attack data is built by combining
the researcher’s pre-recorded wristwear data with each sub-
ject’s smartphone data.

The design target of attack data is twofold: to show
1) the robustness of WearAuth with various types of wrist-
wear motions when the smartphone is used by other person,
and 2) how the attacker’s strategy of making touch inputs
by matching them with the victim’s wrist movements af-
fects the security of WearAuth. For that, we conducted two
experiments. At the first experiment with 30 subjects, we
collected three types of attack data: Random-Sit, Random-
Walk, and Mimic-Phone-Naive-All. Later at the second ex-
periment with 20 subjects, we collected the data of more

sophisticated attacks, the opportunistic attacks introduced in
Huhta et al. [9].

The random attacks are divided into Random-Sit and
Random-Walk depending on the moving state of the victim.
The victim in the random attacks did not hold the smart-
phone, i.e., no hand grip condition, and moved her hands
freely such as putting her hands on the desk, drinking water,
or just keeping her hands still in Random-Sit, and putting
her hands in her pocket or waving her arms while walk-
ing in Random-Walk. Note that the smartphone data used
in the random attacks is same with Mimic-Phone-Naive-
All. This is because we want to reduce the burden of the
subjects. Although the data was generated with the sub-
jects following the victim’s touch interactions, it was also
the data of subjects using a smartphone. Thus, instead of
requiring additional touch interactions of subjects, which
should be irrelevant to victim’s wrist movements in the ran-
dom attacks, we combined the same smartphone data of
Mimic-Phone-Naive-All with the three different types of re-
searcher’s wristwear data to generate Random-Sit, Random-
Walk, and Mimic-Phone-Naive-All.
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For the mimic attacks, the subjects were instructed to
mimic touch interactions to match the victim’s wrist move-
ments in the pre-recorded video. To help the subjects, the
video included the hints of captions and audio. We tested
WearAuth’s robustness under various cases of the mimic at-
tacks. Among them, the following two cases are considered
as the most advantageous to the attackers and will be re-
ported in this paper: Mimic-Phone and Mimic-PC. The for-
mer simulates an attacker observing and mimicking the vic-
tim’s touch interactions on another smartphone, while the
latter simulates an attacker exploiting the wrist movements
of the victim who moves a mouse or types on a keyboard
with a PC. Both cases would create many opportunities for
an attacker to launch the mimic attacks since the victim’s
wrist motions in these two cases are either same or similar
with those in the legitimate usage. Specifically for Mimic-
PC, moving a mouse resembles swipes, i.e., horizontal wrist
move, and typing on a keyboard resembles taps, i.e., vertical
wrist move, on a smartphone. Thus, a smart attacker might
exploit the opportunity to match his touch interactions on
the victim’s smartphone with the victim’s wrist movements
of using a PC.

According to the attacker’s strategy, the mimic attacks
are further divided into the five categories as shown in Ta-
ble 3. Naive stands for the naive mimic attacks where
the subject tried to mimic all of the victim’s interactions.
Opp stands for the opportunistic mimic attacks, introduced
in Huhta et al. [9], where the subjects could choose when
and the type of interactions to mimic; they were instructed
to skip mimicking if they thought it was not possible to
succeed. Accordingly, the subjects opportunistically mim-
icked the victim making all types of the touch interactions
in Mimic-Phone-Opp-All, and the victim making tap inter-
actions only in Mimic-Phone-Opp-Tap. Similarly, the sub-
jects mimicked the victim using both keyboard and mouse in
Mimic-PC-Opp-All, and the victim using the keyboard only
in Mimic-PC-Opp-Keyboard.

The victim and attackers conducted four sessions with
the four hand grip conditions in Mimic-Phone-Naive-All;
conducted one session with one hand grip condition, NW
(different-hand), in the opportunistic mimic attacks. We ex-
cluded the three same-hand conditions for the opportunistic
attacks because the strategy of the attacks is not effective
in matching the motions of the two devices—if an attacker
chooses the same-hand condition and skips to match smart-
phone motions, WearAuth would detect the mismatched
motions periodically with or without touch interactions.
Note that the mimic attackers can choose the hand state by
observing the victim’s wristwear and adjusting the orienta-
tion of the victim’s smartphone. In addition, if the victim
uses a PC, her wristwear is likely to point up, which makes
the situation similar to the different-hand state as long as the
smartphone’s front face points up, too. We also excluded
the walking state for the mimic attacks because if the vic-
tim and/or the attacker walked, the mimic attacks might be
infeasible in practice.

Table 4 Parameters used for the evaluation results.

Data Sampling rate of motion sensors 200 Hz
Collection & Motion segment size 4 sec
Segmentation Segment overlapping rate 0.5

Signal Wavelet function symmlet-4
Decomposition Decomposition level (J) 4

# of inner angles (Nθ) used to
80

compute the grip features

Feature
# of DFT coefficients (p)

Extraction
used to compute the 30

approximate correlation
# of approximate correlation
coefficients (Ks) selected 9

to form the similarity features
# of LPHs and LPLs (Kt) 5
to form the touch features

5.3 Experimental Results

Table 4 gives the parameter description for the evaluation
results. We tuned our parameters similar to the previous
work [1]. We collected the motion sensor data with the sam-
pling rate of 200 Hz. We also segmented the motion sig-
nals into 4s-segments (800 samples) with overlapping rate
of 0.5; as a consequence, the first segment contains the data
of 0∼4s and the second one contains the data of 2∼6s and so
on. For the signal decomposition, we chose the symmlet-4
wavelet [7], since it is simple but has lesser phase shift than
the Haar wavelet which is the simplest one. In addition, the
decomposition level (J) was set to 4 to extract 4 detail com-
ponents and 1 smooth component. For a 4s-segment, a total
of 80 inner angles were computed for the grip features; a
simple down sampling technique is used, i.e., choose one
for every 10 samples, to reduce the computation overhead.
Since the frequency resolution of a 4s-segment is 0.25 Hz,
the 30 DFT coefficients can cover the frequency range of the
smooth components (< 6.25 Hz), which are used for the ap-
proximate correlation, with small information leakage. The
number of the similarity features (Ks) and touch features
(Kt) were empirically chosen to 9 and 5, respectively. Con-
sequently, every two seconds, a total of 29 (8+2+9+5×2)
features were extracted from a 4s-segment, and an owner-
ship score is yielded as the classification result.

5.3.1 Feature Analysis

To evaluate the effectiveness of the proposed features, we
computed the cumulative distribution functions (CDFs) of
each feature for each case, and compared them using the
two-sample Kolmogorov-Smirnov (KS) test.

Two-sample Kolmogorov-Smirnov Test. The two-
sample KS test tests the hypothesis that the samples come
from the same distribution. It is a non-parametric test,
and its usefulness comes from the absence of any assump-
tion on the sample distributions [19]. For two random vari-
ables X and Y , the KS statistic (DX,Y ) quantifies the largest
discrepancy between the two CDFs of the samples as fol-
lows: DX,Y = supz |FX(z) − FY (z)|, where sup refers to the
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Table 5 The KS statistics of the 29 features used in WearAuth. The larger value indicates more
discrepancy of the feature.

Move Features Grip Features
Ewrist SCwrist SBwrist SEwrist Ephone SCphone SBphone SEphone μθ σθ

0.9651 0.8442 0.3070 0.8106 0.9558 0.2815 0.4765 0.3522 0.9163 0.1524

Similarity Features (Maxi(|corrp |))
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

0.9366 0.9380 0.9414 0.9406 0.9369 0.9345 0.9316 0.9276 0.9236

Touch Features
LPH1 LPH2 LPH3 LPH4 LPH5 LPL1 LPL2 LPL3 LPL4 LPL5
0.7393 0.7608 0.7666 0.7650 0.7574 0.2012 0.2143 0.2823 0.3391 0.3669

Fig. 7 The boxplots of the move features comparing between the sitting state and walking state. The
four graphs above indicate the features from the wristwear, while the four graphs below indicate the
features from the smartphone. Each boxplot contains the median (red line), inter-quartile range (blue
box), extreme values (whiskers), and outliers (‘+’ symbol).

supremum function, and FX and FY indicate the CDFs of X
and Y , respectively. The null hypothesis that the two sam-
ples come from the same distribution is rejected at level α
if

DX,Y >c(α)

√
NX + NY

NXNY
, where c(α)=

√
−1

2
ln

(
α

2

)
,

(16)

and NX and NY are the sizes of X and Y , respectively.
Table 5 shows the KS statistics of the features used

in WearAuth. To compute the KS statistic of each feature,
we used the different dataset depending on the own purpose
of each feature described in Sect. 4.3. Specifically, the two
datasets used for each feature are summarized as follows:

• Move features: Sit (Sit-Same+Sit-Diff) vs. Walk
(Walk-Same+Walk-Diff).
• Grip features: Same (Sit-Same+Walk-Same) vs. Diff

(Sit-Diff+Walk-Diff).
• Similarity features: Same (Sit-Same+Walk-Same) vs.

Attacks (only Same-hand).
• Touch features: Diff (Sit-Diff+Walk-Diff) vs. Attacks

(only Diff-hand).

Move features - Sit vs. Walk. Figure 7 depicts the
boxplots of the move features. As expected, both wristwear
and smartphone had higher energy when they were in the
walking state (see Fig. 7 (a) and 7 (e)). Figure 7 (b) and 7 (f)
depict that the sitting state had higher SCs than walking
state. This is because the devices were mainly influenced
by touch interactions in the sitting state and by gait in the
walking state, where the touch interactions have higher fre-
quency components than the gait. The spectral bandwidth
(see Fig. 7 (c) and 7 (g)) and spectral entropy (see Fig. 7 (d)
and 7 (h)) indicate that the spectral components were more
concentrated in the walking state because the gait dominated
both devices. The result implies that the energy feature
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Fig. 8 The mean vs. standard deviation of inner angles for the four hand
grip conditions. The graph depicts that the different-hand state (NW) has
smaller inner angles than the same-hand state (WW, WN, and BB).

Fig. 9 The cumulative distribution function of the first largest approxi-
mate correlation used as the similarity feature. The figure depicts that the
same-hand state has higher correlation than the attack cases.

played a major role in distinguishing the moving state, and
the remaining features support it.

Grip feature - Same-hand vs. Different-hand. Fig-
ure 8 shows the plot of the mean and standard deviation
of the inner angles for the four hand grips. As expected,
the same-hand state induced the larger inner angles than the
different-hand state (0.7 rad vs. 0.2 rad). However, the stan-
dard deviation did not show much discrepancy that its KS
statistic is lower than the mean (0.1524 vs. 0.9163) as shown
in Table 5.

Similarity feature - Similar motion or not. Table 5
shows that the similarity features had high discrepancy with
the KS statistics greater than 0.92. Figure 9 depicts the
CDFs of the first largest approximate correlation for each
case. The figure shows that about 90% of the same-hand
state had the correlation of 0.8 or more. On the con-
trary, about 90% of the Random, Mimic-Phone, and Mimic-
PC attacks had the correlation smaller than 0.45, 0.7, and
0.62, respectively. The result implies that the approximate

Fig. 10 The cumulative distribution functions of the peak height and
peak location used as the touch features. The figure indicates that both
of the two different-hand states (Sit-Diff and Walk-Diff) have higher values
of the peak height and smaller values of the peak location than the attack
cases.

correlation is appropriate to measure the motion similarity
between the two devices.

Touch feature - Touch-specific motion or not. Ac-
cording to Table 5, the PHs were better to distinguish the
different-hand state from the attack cases than the PLs.
(0.7393∼0.7666 vs. 0.2012∼0.3669). Figure 10 depicts the
CDFs of the LPH1 and LPL5 for each case. As can be
seen, the legitimate usage case had larger peak heights and
smaller peak locations except for the Mimic-PC case. The
figure also implies that the touch features are effective even
in the walking state. The reason for the small PL values of
the Mimic-PC attack was because the subjects mainly chose
the tap inputs in that case (see Table 3). Since the largest
possible PL value is the half duration of the touch time
((tend − tstart)/2), the tap inputs, which were usually short,
induced the small PL values. Nonetheless, the Mimic-PC
attacks could not obtain high PHs. The result implies that
the mimicking attacks were not very helpful in negating the
effectiveness of the touch features.

5.3.2 Security and Usability Analysis

To evaluate the security and usability of WearAuth, we
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Table 6 The performance comparison of the classifiers with different
machine-learning algorithms.

Algorithm EER AUC F1 Score
Decision Tree 0.0239 0.9926 0.9652
Naive Bayes 0.0360 0.9931 0.9468

Support Vector Machine 0.0332 0.9945 0.9505
Random Forest 0.0153 0.9987 0.9783

AdaBoost 0.0069 0.9997 0.9901

employed widely used k-fold cross-validation with k = 10;
the collected data was randomly partitioned into k equal-
sized sets with k − 1 sets used as training data and the re-
maining set used as testing data. This process was repeated
k times, and their average was used as the result. Note that
we built a general classifier model for all users as described
in Sect. 4.4.

In this paper, the same-ownership (authorized access)
is considered as positive (P) and the different-ownership
(unauthorized access) is considered as negative (N). If the
positive is classified correctly, it is called true positive (T P),
otherwise false negative (FN). Similarly, if the negative is
classified correctly, it is called true negative (T N), otherwise
false positive (FP). WearAuth’s performance is measured
with the following metrics:

• False negative rate (FNR). The FNR is the proportion
of legitimate users’ segments misclassified as attack-
ers’ written as: FNR = FN/P = FN/(T P + FN).
• False positive rate (FPR). The FPR is the propor-

tion of attackers’ segments misclassified as legitimate
users’ written as: FPR = FP/N = FP/(T N + FP).
• Equal error rate (EER). The EER is the rate where

the FNR and FPR are equal. The lower EER indicates
the better performance of classifiers.
• Area under the ROC curve (AUC). An ROC curve

is a two-dimensional depiction where the true positive
rate is plotted on the Y axis and the FPR is plotted on
the X axis. The AUC is another metric to measure the
performance of a classifier which ranges between 0 and
1, where the higher value indicates the better perfor-
mance.
• F1 score. F1 score is the harmonic mean

of the precision and recall written as: F1 =

2T P/(2T P + FP + FN). Its value will be between 0
and 1, where the higher value indicates the better accu-
racy.

Table 6 shows the performance comparison of the clas-
sifiers of the five machine-learning algorithms mentioned in
Sect. 4.4. To evaluate the performance, we used MATLAB
R2018a [20], where the parameters for each classifier were
optimized before the evaluation. As can be seen, all of the
classifiers obtained the proper EERs ranging from 0.69%
to 3.60%, which implies that our features are effective re-
gardless of the classifier algorithms. Among the algorithms,
the two ensemble-based algorithms, random forest and
AdaBoost, achieved better performance than the others.

Table 7 shows the error rates for each of the four

Table 7 The error rates of WearAuth for the legitimate usage and attacks
cases. AdaBoost, which shows the best performance in Table 6, was used.

Case Error Rate
Legitimate usages

Sit-Same 0.65%
Sit-Diff 3.60%
Walk-Same 0.00%
Walk-Diff 0.00%

Attacks
Random-Sit 0.29%
Random-Walk 0.00%
Mimic-Phone-Naive-All 1.47%
Mimic-Phone-Opp-All 1.69%
Mimic-Phone-Opp-Tap 1.28%
Mimic-PC-Opp-All 0.84%
Mimic-PC-Opp-Keyboard 0.49%

legitimate usage cases and seven attack cases introduced
in Sect. 5.2.1 and 5.2.2. Among the legitimate cases, the
Sit-Diff case obtained the highest FNR of 3.60%. This is
because the Sit-Diff case mainly depends on the touch fea-
tures that have less discrepancy than the similarity features
as shown in Table 5. On the other hand, the Walk-Diff case
achieved 0% error rate by exploiting the benefits of both
touch-specific movements as well as the strong correlation
induced from the gait. For the attack cases, the Mimic at-
tacks achieved better success rates than the Random attacks
(0.49∼1.69% vs. 0∼0.29%). We note that all of the Random-
Walk attacks, where the two devices have different moving
states, were detected by WearAuth. Among the Mimic at-
tacks, the Mimic-Phone cases showed the higher attack suc-
cess rates than the Mimic-PC cases. That is because the
victim using the smartphone gave better opportunities to the
attacker than using the PC. Comparing the Mimic-Phone-
Naive-All (1.47%) and Mimic-Phone-Opp-All (1.69%), the
opportunistic strategy gave little improvement of the attack
success rate to the subjects. One unexpected result was
shown that the Mimic-Phone-Opp-All (1.69%) achieved the
higher FPR than the Mimic-Phone-Opp-Tap (1.28%), and
the Mimic-PC-Opp-All (0.84%) achieved the higher FPR
than the Mimic-PC-Opp-Keyboard (0.49%). Before con-
ducting the experiment, we had assumed that the strategy
of mimicking the simple actions only, i.e., tapping and typ-
ing, would give better opportunities to attackers. However,
the result led to the opposite conclusion. We believe this is
because the victim’s simple actions were shorter than other
interactions which made the attackers hard to match their
mimicry to the victim’s wrist movements.

5.4 Comparative Evaluation

We compared the performance of WearAuth and CSAW.
Since no implementation of CSAW was available, we fol-
lowed the description of its architecture in the paper [1]. We
used the same parameter values if available. For instance,
we used the same values such as sampling rate, motion seg-
ment size and segment overlapping rate.

The main purpose of the evaluation is to show how
much performance changes when CSAW is used with our
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Table 8 The error rates of CSAW. AdaBoost which showed the best per-
formance was used. M2MC (M) and M2IC (I) exclusively targeted at the
same-hand state and different-hand state, respectively.

Case Error Rate
Grip detection 4.95%

Legitimate usages
Sit-Same 0.28%
Sit-Diff 16.40%
Walk-Same 0.06%
Walk-Diff 8.35%

Attacks
Random-Sit 0.19%(M) / 2.08%(I)
Random-Walk 0.02%(M) / 19.10%(I)
Mimic-Phone-Naive-All 0.30%(M) / 14.18%(I)
Mimic-Phone-Opp-All 21.34%
Mimic-Phone-Opp-Tap 5.91%
Mimic-PC-Opp-All 15.56%
Mimic-PC-Opp-Keyboard 8.11%

collected data. For that, we focused on the performance
of the following components of CSAW for continuous
authentication: grip detector, motion-to-motion correlator
(M2MC), and motion-to-input correlator (M2IC). We con-
structed and evaluated each component using the datasets
for each purpose; for example, M2MC targeted at the data
of the same-hand state, while M2IC targeted at the data of
the different-hand state. We omitted the further evaluation
such as the decision policy, confidence booster and scorer.
The overall result of CSAW is summarized in Table 8.

Grip Detector. CSAW’s grip detector obtained the er-
ror rate of 4.95% using the threshold of 4.949m/s2 simi-
lar to the original scheme. With the same data, WearAuth
had the error rate of 1.79% using the two grip features, i.e.,
mean and standard deviation of relative orientation. Note
that WearAuth does not have an individual classifier of each
component, thus we built an extra classifier using AdaBoost
which classifies the hand state only.

The error rate of CSAW’s grip detector does not seem
so severe, but their scheme involves a fatal weakness. Fig-
ure 11 shows the difference of Z-axis acceleration used in
CSAW and the relative orientation used in WearAuth for the
same subject data. Each sub-figure contains the time series
data of the four hand grip conditions of the subject. This
subject did not hold the smartphone horizontally with the
ground when in the BB grip condition. As a result, CSAW
could not distinguish the BB grip from the NW grip, while
WearAuth could differentiate them.

M2MC. With the results in Table 7 and Ta-
ble 8, M2MC obtained slightly better performance than
WearAuth. For the Sit-Same case, for example, M2MC had
an FNR of 0.28%, while WearAuth had an FNR of 0.65%.
The interesting part of the results was the attack case. Com-
pared to the random attacks, the mimic attack did not seem
very helpful for the attackers in obtaining motion similar-
ity of the two devices (0.02∼0.19% vs. 0.30%). M2MC did
not have results of the opportunistic attacks because we ex-
cluded the same-hand state for the attacks as mentioned in
Sect. 5.2.2.

WearAuth is better than M2MC in terms of the

Fig. 11 Comparison between the difference of Z-axis acceleration and
relative orientation for the same subject data. CSAW cannot differentiate
Same-BB and Diff-NW while WearAuth can differentiate them.

overhead of communication and computation. For every 2s
(segment size: 4s, overlapping rate: 0.5), the entire sam-
ples (800) of each motion signal of the wristwear should
be transferred to the smartphone in CSAW, while only 30
DFT coefficients are transferred in WearAuth. In addition,
M2MC computes and uses 256 features for every segment
while WearAuth uses only 9 approximate correlation coeffi-
cients. The further discussion is addressed in Sect. 6.2.

M2IC. CSAW’s M2IC worked improperly with our
data. First, M2IC could not differentiate peaks occurred
from touch interactions and from gaits. With the results
of comparing Sit-Diff (16.40%) vs. Walk-Diff (8.35%), and
Random-Sit (2.08%) vs. Random-Walk (19.10%), we con-
cluded that M2IC tended to misclassify peaks from gaits
as from legitimate touch inputs. On the contrary, Wear-
Auth obtained less error rates of 0∼3.60% for the legiti-
mate cases and 0∼0.29% for the random attacks. Second,
M2IC could not detect the mimic attacks well. M2IC ob-
tained 5.91∼21.34% of FPRs for the mimic attacks which
were worse than WearAuth’s results of 0.49∼1.69%.

We believed that the bad results of M2IC were due to
its simple feature design. M2IC used 12 standard statistics
for each of accelerometer and gyroscope magnitudes of the
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wristwear. Thus, the feature vector lacks of information
about axis-specific movements, and it can only determine
whether the magnitudes of motion signals change in short
time of touch interactions. In addition, since the M2IC’s
feature vector is computed from raw motion data, time-
sensitive motion information highlighted at high-frequency
cannot be obtained. As a result, the evaluation of M2IC with
the data of gait and mimic attacks showed its weaknesses.

With the results of the mimic attacks, we address the
additional findings as follows: 1) the strategy of the op-
portunistic attacks gave improvement of the attack success
rate to the subjects (14.18% for Mimic-Phone-Naive-All vs.
21.34% for Mimic-Phone-Opp-All and 15.56% for Mimic-
PC-Opp-All), 2) exploiting the victim’s wrist movements of
using a PC gave the subjects opportunities to defeat M2IC
(15.56% for Mimic-PC-Opp-All and 8.11% for Mimic-PC-
Opp-Keyboard), 3) like WearAuth, mimicking longer inter-
actions gave better opportunities to the subjects (21.34% for
Mimic-Phone-Opp-All vs. 5.91% for Mimic-Phone-Opp-
Tap, and 15.56% for Mimic-PC-Opp-All vs. 8.11% for
Mimic-PC-Opp-Keyboard).

6. Discussions

6.1 Inapplicable Hand Condition

WearAuth is inapplicable only when the two devices are
completely irrelevant to each other. As described in
Sect. 3.2, we have assumed that the wristwear-worn hand
either holds the smartphone or makes touches on it, for ap-
plying WearAuth. Thus, the case where the wristwear-free
hand both holds and makes touches on the smartphone is
excluded. According to [21], 49% of smartphone use is
performed by one-handed. Since the hand can be either
wristwear-worn hand or wristwear-free hand, about 25% of
the smartphone use can be inapplicable. WearAuth may ask
users to either hold or touch with the wristwear-worn hand
when authentication is required, or combining WearAuth
with other approaches such as using motion-dependent vari-
ations of radio signal strength [22] can be applicable for the
case, and we will continue to study to solve this issue.

6.2 Efficiency of the DFT-Based Approximate Correlation

The DFT-based approximate correlation helps reduce the
communication overhead. In our setting shown in Table 4,
we compute 21 correlation coefficients with 9 motion seg-
ments, where each segment contains 800 data samples. For
the approximate correlation, we use 30 DFT coefficients.
Without the approximate method, the wristwear needs to
send the entire motion segments to the smartphone peri-
odically. Naively speaking, the data transmission can be
reduced from 7200 (9×800) to 270 (9×30) with the ap-
proximate method. The number of computations of the
Euclidean distance is also decreased from 16800 (21×800)
to 630 (21×30). However the approximate method requires
additional computations of 30 DFT coefficients of both

devices.
The further evaluation is needed, because 1) the power

consumption for the communication and computation are
different, 2) the overhead highly depends on the parame-
ters such as the sampling rate, segment size, and number of
DFT coefficients used, and 3) the above mentioned approach
can be more optimized; for example, if we set a minimum
threshold (ρmin) for the similarity measure and the approxi-
mate correlation computed with the fewer DFT coefficients
(e.g., 5) is smaller than the threshold, we do not need further
DFT computations because corr30 ≤ corr5 ≤ ρmin.

6.3 Optimization

Since WearAuth operates in mobile devices, its optimization
should be considered. For example, if we decrease sampling
rate or motion segment size, the overall power consumption
decreases but the performance would also decrease. Simi-
larly, if we tune WearAuth to use less number of features,
there would be the same trade-offs.

We tested the performance of our proposed features of
Move, Similarity and Touch. Since it was hard to evaluate
WearAuth with all possible combinations of features, we ad-
ditionally trained feature-specific classifiers and evaluated
them separately by adjusting the number of used features.
The positive and negative datasets used for the models were
same with the ones used to compute KS statistics addressed
in Sect. 5.3.1. For move features, we chose Km features from
each device in order of magnitude of KS statistics shown
in Table 5. We selected the Ks largest absolute values of
approximate correlation coefficients for similarity features,
and the Kt largest PHs and its PLs for touch features as de-
scribed in Sect. 4.3.3 and 4.3.4.

Table 9 shows the error rates of the individual classi-
fiers with the varying number of used features. As expected,
the performance of each classifier degrades with the less
number of features. We found that 1) the classifier using
features of higher KS statistics obtained better performance;
for example, the classifier of move features was better than
the classifier of touch features, 2) even a single approximate
correlation coefficient can work in the same-hand state with
error rate of 1.97%, and 3) though the less number of touch
features of WearAuth outperformed the M2IC’s 24 features,
the touch features need to cooperate with others for better
performance in the different-hand state.

Table 9 The error rates of feature-specific classifiers with varying num-
ber of used features. All classifiers were trained using AdaBoost like the
original model of WearAuth.

Classifier using Move Features
Km = 1 Km = 2 Km = 3 Km = 4
0.77% 0.56% 0.37% 0.29%

Classifier using Similarity Features
Ks = 1 Ks = 3 Ks = 5 Ks = 7 Ks = 9 Ks = 11 Ks = 13
1.97% 1.43% 1.36% 1.35% 1.35% 1.32% 1.31%

Classifier using Touch Features

Kt = 1 Kt = 2 Kt = 3 Kt = 4 Kt = 5 Kt = 6 Kt = 7
12.67% 10.95% 9.17% 8.66% 8.52% 8.49% 8.41%
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Though we empirically evaluated WearAuth in
Sect. 5.3.2, we cannot simply choose the proper number of
each type of features because the overall model, which uses
all types of features, may work differently with different
number of features. In addition, a user of WearAuth may
require different degree of power consumption and perfor-
mance of security and usability with different applications.
Thus, we leave the further tuning of WearAuth as the future
work.

6.4 Users in a Vehicle

Though we have considered the four hand grips and two
moving states, we have not evaluated the usage cases of
users being in a vehicle. If a user is in a car, bus, or subway,
the external factors from the vehicle would affect the motion
sensors of both devices. We believe that the motion incurred
from the vehicle would not contain much of short-time and
high-frequency components, thus MODWT-MRA can still
extract the desired touch-specific movements. In addition,
both devices may experience similar motions from the ve-
hicle, and WearAuth can exploit the similarity to determine
the same-ownership. We leave the further evaluation for the
future work.

7. Related Work

In WearAuth, a wristwear works as a security token which
provides the proximity of a user to her smartphone. In-
stead of using a simple network connection between the
two devices, WearAuth determines the proximity by lever-
aging naturally occurring wrist movements during smart-
phone usage. In this section, we first address the prior
works of conventional proximity-based approaches and their
drawbacks. Thereafter, we point out the major differences
of WearAuth from the following two prior approaches of
wristwear-assisted authentication: one introduces the bilat-
eral authentication—comparing different types of data, i.e.,
input and motion, of the two devices; the other utilizes each
user’s distinct motion traits recorded in both devices.

7.1 Proximity-Based Authentication

Proximity-based automatic authentication has inspired a
long list of works. Unlike the biometrics that rely on per-
son’s inherent traits (e.g., fingerprint, face, voice or iris) or
unique behavioral dynamics (e.g., gait [23], keystroke [24],
and touch [25]), the proximity-based approach usually re-
lies on the instant data that always changes. To verify the
proximity of two or multiple devices, the following types
of information have been widely used: network connection,
motion, and ambience.

Recently, the network-based methods have been
mounted on the COTS devices. Google’s Smart Lock [26]
and Apple Watch’s Auto Unlock [27] provide the zero-effort
authentication for smartphones and laptops based on the
wireless connection(s) between a target device and a trusted

device. Nonetheless, this approach implies a potential risk
of not being able to directly identify users—anyone who
stays within the coverage range can use automatically un-
locked device.

The motion-based approach compares the motion sig-
nals simultaneously collected by multiple devices. The mo-
tion includes the gait [28], hand shaking [29], and finger
movements [30]. WearAuth differs from these prior works
as it does not require user intervention, specific actions, or
specific positions between devices for authentication.

The ambience-based approach verifies the co-presence
of devices without user intervention. Its convenience is par-
ticularly useful in situations where many of small devices
such as Internet of Things are installed. The popular sources
are audio [31], [32] and radio signals [33], and multiple sen-
sor modalities [34]. Although the proximity range can be
adjusted, the ambient-based approach still lacks a way to
directly identify users.

7.2 Wristwear-Assisted Authentication

Mare et al. [2] introduced a zero-effort bilateral authenti-
cation scheme called ZEBRA. Instead of comparing the
same type of data, ZEBRA compares terminal inputs with
wrist motions that occur naturally in typing on a keyboard,
scrolling a mouse, and switching between the keyboard and
mouse. ZEBRA continuously verifies a user and automati-
cally deauthenticates the user if terminal inputs are not cor-
related with the user’s wrist motions. Nonetheless, ZEBRA
has been successfully attacked by opportunistic attacks [9]
that can evade detection by mimicking only a portion of
easy-to-mimic interactions.

ZEBRA was later extended to CSAW [1] for smart-
phones. CSAW consists of three components: M2MC,
M2IC, and grip detector. M2MC correlates wristwear’s mo-
tions to smartphone’s motions by comparing the four sig-
nals (X, Y , Z, and magnitude) from the accelerometer and
gyroscope. M2IC is used when M2MC is not reliable, i.e.,
the different-hand state. It correlates wristwear’s motions to
smartphone inputs. The grip detector identifies the grip us-
ing the wristwear’s orientation relative to the smartphone’s
orientation, which helps choose an appropriate correlator.

Compared with CSAW, WearAuth has the following
differences:

• WearAuth additionally extracts features to infer the
moving states of the devices. Since the motion data
of each devices is highly affected by its moving state,
the features are useful for determining the usage cases
(Sect. 4.3.1).
• To infer the grip, CSAW assumes the smartphone is

horizontal with the ground and computes the difference
in Z-axis acceleration between the two devices. We re-
fer to the smartphone’s Z-axis acceleration as aZ , of
which the range of the difference can be from 0 (when
the two devices face the same direction), to 2aZ (when
the two devices face the opposite directions). Thus,
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if aZ keeps changing, which easily happens when the
user is moving, it is hard to set a threshold to deter-
mine the grip. In addition, when the wristwear’s ori-
entation is orthogonal (90 degrees) to the smartphone’s
orientation, the wristwear’s Z-axis is irrelevant to the
smartphone’s Z-axis. Thus, the difference in Z-axis
acceleration cannot help to infer the grip. To han-
dle the problem, WearAuth computes the inner angle,
which is the direct measure of the relative device ori-
entation, between Z-axes of the two devices in the ECS
(Sect. 4.3.2).
• WearAuth reduces the communication overhead by us-

ing the DFT-based approximate correlation. Moreover,
to measure the motion similarity of the two devices,
CSAW compares the motion signals of the same axis
pairs only, e.g., X-to-X or Y-to-Y , while WearAuth
compares all possible pairs of the axes, e.g., X-to-Y or
Z-to-X. This is because the associated axis pairs of the
two devices depend on the relative device orientation
(Sect. 4.3.3).
• With the help of the MODWT-MRA, WearAuth can

highlight the touch-specific movements regardless of
the moving state. CSAW’s M2IC is applicable to the
case where the user is stationary, only. (Sect. 4.3.4).

Recently, implicit continuous authentication for smart-
phones called iAuth [35] which leverages motions recorded
in the smartphone and wearable device was introduced,
and was later extended to SmarterYou [36] with context-
awareness. Their schemes are based on the idea that the be-
havioral patterns collected in both devices are distinct from
each person and each moving context. Compared to iAuth
and SmarterYou, WearAuth has the following differences:

• WearAuth does not depend on user-specific behavioral
traits. Instead, our scheme leverages motion similar-
ity of the two devices and touch-specific movements
of the wristwear which occur naturally for most peo-
ple. Accordingly, model retraining is not necessary in
WearAuth.
• WearAuth additionally considers the context of relative

positions of the two devices, i.e., the same-hand state or
different-hand state, combined with the moving state.
The wristwear exhibits different motion patterns with
different contexts of the hand states and moving states.

8. Conclusion

In this paper, we propose a wristwear-assisted user au-
thentication method for smartphones. Our method adopts
MODWT-MRA to decompose the motion signals into the
smooth and detail components, and analyzes them sepa-
rately. To verify the same-ownership of the two devices,
WearAuth extracts the four types of features. The move
and grip features are used to infer the four usage cases of
Sit-Same, Sit-Diff, Walk-Same, and Walk-Diff. The simi-
larity features measure how much the wristwear’s motion is
similar to the smartphone’s motion, where the DFT-based

approximate correlation is used for reducing the communi-
cation overhead. To assess the touch specific movement, the
touch features are extracted from the peaks highlighted at
the high-frequency components of the wristwear’s motions.

We have evaluated the effectiveness of the features with
the two sample KS test, and evaluated the performance
of security and usability of WearAuth by conducting two
experiments with 50 subjects. The classifier showing the
best performance obtained the EER, AUC, and F1 score
of 0.69%, 0.9997, and 0.9901, respectively. Specifically,
WearAuth shows FNRs of 3.6% or less for the four legiti-
mate usage cases, and FPRs of 1.69% or less for the seven
attack cases. The results imply that our proposed features
are effective, and WearAuth properly operates regardless of
the moving and hand states and is robust to the sophisticated
attacks.
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