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PAPER

A Hybrid Feature Selection Method for Software Fault Prediction

Yiheng JIAN†, Student Member, Xiao YU††a), Zhou XU††b), and Ziyi MA†††, Nonmembers

SUMMARY Fault prediction aims to identify whether a software mod-
ule is defect-prone or not according to metrics that are mined from soft-
ware projects. These metric values, also known as features, may involve
irrelevance and redundancy, which hurt the performance of fault prediction
models. In order to filter out irrelevant and redundant features, a Hybrid
Feature Selection (abbreviated as HFS) method for software fault predic-
tion is proposed. The proposed HFS method consists of two major stages.
First, HFS groups features with hierarchical agglomerative clustering; sec-
ond, HFS selects the most valuable features from each cluster to remove
irrelevant and redundant ones based on two wrapper based strategies. The
empirical evaluation was conducted on 11 widely-studied NASA projects,
using three different classifiers with four performance metrics (precision,
recall, F-measure, and AUC). Comparison with six filter-based feature se-
lection methods demonstrates that HFS achieves higher average F-measure
and AUC values. Compared with two classic wrapper feature selection
methods, HFS can obtain a competitive prediction performance in terms
of average AUC while significantly reducing the computation cost of the
wrapper process.
key words: fault prediction, feature selection, hierarchical agglomerative
clustering

1. Introduction

Fault prediction aims to predict whether or not a particu-
lar software module is defective via learning from histor-
ical defect data [1], [2]. Therefore, fault prediction is of-
ten used to help to reasonably allocate limited development
and maintenance resources [3]–[5]. Many learning models
have been proposed for fault prediction. The performance
of these models is still vulnerable to irrelevant and redun-
dant module features that undermine the prediction effect.
Previous results have shown that the performance of predic-
tive models improve when irrelevant and redundant features
are eliminated from the original dataset [6], [7]. It is crucial
to apply feature selection to fault prediction since feature
selection can filter out irrelevant and redundant features by
evaluating the contributions of module features.

There are two main types of feature selection methods:
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the filter method and the wrapper method. The former se-
lects a feature subset based on some evaluation criteria, such
as information gain and chi-square statistics. The process
does not involve any classification algorithms. Therefore,
the computational complexity is less but the prediction error
is higher. Contrary to the filter method, the wrapper method
employs the prediction accuracy as an evaluation criterion
and searches the best feature subset through an exhaustive
search on all feature subsets. The wrapper method is opti-
mized directly for a given classifier, therefore it improves the
accuracy but also greatly increases the computational com-
plexity [24].

Recent research efforts on feature selection for fault
prediction mainly focus on the filter methods. For example,
Chen et al. [8] and Liu et al. [9] proposed two filter-based
feature selection method using both feature clustering and
feature ranking. In [10], we proposed a filter-based feature
selection method, i.e., MICHAC, which employs Maximal
Information Coefficient (MIC) [17] to rank candidate fea-
tures to remove irrelevant ones, and groups features with
Hierarchical Agglomerative Clustering (HAC) and selects
one feature from each resulted group. Since MICHAC is a
filter-based feature selection method, and the training pro-
cess doss not involve any classification algorithms, the pre-
diction error is higher than the wrapper method. There-
fore, we want to employ the wrapper-based feature selection
strategy to further improve the performance of MICHAC.

In this paper, we extend MICHAC and propose a hybrid
feature selection (HFS) method for fault prediction, which
combines feature clustering with wrapper-based feature se-
lection strategies. In the stage of feature clustering, HFS
groups features according to the correlation between every
pair of features using HAC, such that redundant features can
be grouped into the same cluster. While MICHAC selects
one feature from each cluster, HFS employs Maximal Infor-
mation Coefficient (MIC) to calculate the relevance between
features and labels, and selects the most valuable features
from each cluster based on two wrapper-based strategies.

HFS is generally superior to MICHAC through the
two wrapper-based strategies, because it determines the fi-
nal feature subset according to the prediction accuracy of
fault prediction model. In addition, adding the most rele-
vant feature or removing the most irrelevant feature from
each cluster at each iteration not only can filter out irrelevant
and redundant features, but also may reduce the number of
wrapper evaluations (proportional to the computation cost).

We evaluate our proposed method, HFS, by answer-
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ing two research questions on effectiveness and efficiency.
Experiments are conducted on 11 widely-studied NASA
projects. Experimental results show that HFS can effec-
tively and efficiently select features to improve existing fault
prediction methods. On most of projects under evalua-
tion, HFS performs the best AUC and F-measure values
compared with six state-of-the-art filter-based feature se-
lection methods. HFS BE with the model built with RF
achieves the highest average F-measure value (0.399), and
1.79% − 43.48% higher than the compared methods. In ad-
dition, HFS BE with the model built with RF achieves the
highest average AUC value (0.820), and 1.61% − 44.37%
higher than the compared methods. We also compare our
method with two classic wrapper-based feature selection
methods. This experiment shows that HFS can yield a com-
petitive prediction performance against the compared meth-
ods in fault prediction, while significantly reducing the com-
putation cost of the wrapper process.

This paper makes the following contributions: We pro-
pose a hybrid feature selection method, HFS, which com-
bines feature clustering with wrapper-based feature selec-
tion. To the best of our knowledge, this is the first time to
combine feature clustering with wrapper-based feature se-
lection to filter out irrelevant and redundant features in the
field of fault prediction. In this way, HFS can not only con-
struct a more optimized feature subset, but also may sig-
nificantly decrease the computation cost of classic wrapper-
based feature selection methods.

This paper is based on our conference paper [10]. The
extensions of the conference paper which are made in this
paper are as follows:

1. We modify the strategy of selecting features from
each cluster. MICHAC selects one feature from each clus-
ter, while HFS selects the most valuable features from each
cluster based on two wrapper-based strategies.

2. We provide a comprehensive evaluation and com-
parison of HFS against two classic wrapper-based feature
selection methods, and address new research question about
the computation cost when conducting feature selection.

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 describes our
proposed HFS method. Section 4 and Sect. 5 show the ex-
periment setup and experiment results, respectively. Sec-
tion 6 discusses the threats to validity. Finally, Sect. 7 ad-
dresses the conclusion and points out the future work.

2. Related Work

A number of prior studies have investigated feature se-
lection methods on predicting defective software modules.
For example, Gao et al. [11] studied four different filter-
based feature selection methods with five different classi-
fiers on a large telecommunication system and found that
the Kolmogorov-Smirnov method performed the best. Gao
et al. [2] proposed a hybrid feature selection method, which
first uses feature ranking to reduce the search space and then

applies feature subset selection. The results indicated that
removing 85 percent of features does not adversely affect
prediction performance. Shivaji et al. [12] utilized six fea-
ture selection methods to iteratively remove irrelevant fea-
tures until achieving the best performance of F-measure. He
et al. [13] performed an empirical study to investigate the
feasibility of the fault prediction model built with a sim-
plified feature set, and found that the model built with the
simplified feature set provides acceptable prediction results.

Recent works have proposed some combined frame-
works to apply feature selection to eliminate both irrelevant
and redundant software features from the original dataset.
Chen et al. [8] proposed a two-stage data preprocessing
framework, TC, which combines feature selection and in-
stance reduction. In the feature selection phase, they pro-
posed a new algorithm using feature selection and threshold-
based clustering. Liu et al. [9] proposed a new feature se-
lection framework, FECAR, to conduct feature clustering
and feature ranking. FECAR first clusters features via k-
medoids method and then selects several representative fea-
tures from each cluster. In our work, HFS has a simi-
lar feature selection framework to FECAR. But the differ-
ences between HFS and FECAR are significant. FECAR
employs the k-medoids clustering to group features into
groups, while HFS employs HAC and can automatically
determine the number of clusters. Meanwhile, FECAR se-
lects a certain number of relevant features from each cluster,
while HFS selects the most valuable features based on two
proposed wrapper-based strategies.

3. The HFS Method

We propose HFS as a novel feature selection method, which
combines feature clustering with wrapper-based feature se-
lection. In the stage of feature clustering, HFS groups fea-
tures according to the correlation between every two fea-
tures using Hierarchical Agglomerative Clustering (HAC),
such that redundant features can be grouped into the same
cluster. In the stage of wrapper-based feature selection, HFS
employs Maximal Information Coefficient (MIC) to calcu-
late the relevance between features and labels, and selects
the most valuable features from each cluster based on two
wrapper-based strategies. As a result, HFS constructs an
optimized subset of module features to replace the original
feature set in fault prediction.

3.1 Feature Clustering Stage

The main goal of the feature clustering stage is to group re-
dundant features that have similar effect with other features
in distinguishing modules with different labels. We use the
HAC algorithm to cluster the features. HAC is an iterative
process which merges current clusters continuously. It is
possible that a current cluster only contains one feature, e.g.,
each feature is treated as one cluster at the beginning of the
iteration. In HAC, features are merged into clusters accord-
ing to the distances between current clusters. We employ the
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average linkage method to define the distance of two current
clusters [14]. The average linkage between two clusters is
defined as the average of the distance between any pair of
features from two clusters. Suppose that Ua and Ub are two
current clusters during the clustering process. The distance
of the two clusters Da,b can be calculated by the following
formula:

Da,b =
1

mamb

∑

xi∈Ua,x j∈Ub

di, j (1)

where ma and mb are the number of features inside clusters
Ua and Ub, respectively, and di, j is the distance between two
features xi and x j. We define the distance di, j of two features
xi and x j with Pearson correlation coefficient ci, j as follows:

di, j = 1 − ci, j (2)

For two given features, Pearson correlation coefficient
measures the relevance between numeric values of both
features in instances [15]. Given two module features xi

and x j, the observation vectors of features are symbol-
ized as n-dimension vectors, i.e., < xi1, xi2, · · · , xin > and
< x j1, x j2, · · · , x jn >, respectively, where values xik and x jk

denote the numeric values of the features xi and x j in the kth
instance (k = 1, 2, · · · , n) and n is the number of instances in
the dataset. Then the correlation coefficient ci, j for features
xi and x j is calculated by the following formula:

ci j =

∑n
k=1(xik − xi)(x jk − x j)√∑n

k=1(xik − xi)2
∑n

k=1(x jk − x j)2
(3)

where xi =
1
n

∑n
k=1 xik and x j =

1
n

∑n
k=1 x jk (i =

1, 2, · · · , p, j = 1, 2, · · · , p, and p is the number of features).
In this step, we record all information during clustering, in-
cluding the orders of merging and distances between clus-
ters.

In our work, we choose the number of final clusters by
maximizing the increment of inconsistency coefficient dur-
ing the clustering process of HAC. Inconsistency Coefficient
(IC) is used to quantitatively express the relative consistence
of a link [16]. A link denotes an action of merging two cur-
rent clusters. The value of inconsistency coefficient can be
calculated by comparing the distance of the current link and
the average distance of its neighbors. The neighbors of a
specific link denote all children links that lead to this link as
well as the link itself. For each link, we count its IC value of
a link Lcurr to measure the change of clustering as follows:

IC(Lcurr) =
DLcurr − avg(DLneighbor )

S td(DLneighbor )
(4)

where S td(DLneighbor ) denotes the standard deviation of all
links in its neighbors. We define the increment of IC val-
ues between two links as ΔLcurr ,Lprev = IC(Lcurr) − IC(Lprev),
where Lcurr and Lprev denote a current link and its previ-
ous link, respectively. Then we find the link with the max-
imal increment value and stop the process of HAC before

Fig. 1 A simple clustering dendrogram with three features.

this link [16]. We use a simple clustering dendrogram to
visualize the above concept. Figure 1 shows a clustering
dendrogram including three module features f1, f2, and f3.
At first, features f1, f2, and f3 are treated as three initial
clusters. As shown in Fig. 2, f1 and f2 are first linked to a
cluster, labeled f4; then f4 and f3 are linked to a cluster, la-
beled f5. The link L1,2 between f1 and f2 and the link L4,3

between f4 and f3 are shown in the dendrogram. Accord-
ing to Eq. (2) and Eq. (3), the distance between f1 and f2 is
D1,2 = d1,2 = 1 − c1,2, where c1,2 denotes the Pearson cor-
relation coefficient of f1 and f2. d1,2 denotes the distance
of two features f1 and f2, and D1,2 denotes the distance of
two clusters (initialized based on f1 and f2). Meanwhile,
according to Eq. (1), the distance between f4 and f3 is the
average distance between any feature pair between cluster
f4 and cluster f3, namely D4,3 = (d1,3 + d2,3)/2.

The inconsistency coefficient value of the link L4 (at
the depth of two in the dendrogram) can be calculated as
follows:

IC(L4,3) =
D4,3 − D1,2+D4,3

2

S td
(5)

where Std denotes the standard deviation of D1,2 and D4,3.
We determine the final number of clusters according

to the increment of inconsistency coefficient. The details
of selecting the number of final clusters are as follows. In
the process of merging two clusters, i.e., building a link, a
higher increment of inconsistency coefficient indicates that
the link of merging previous clusters will lead to a better
clustering result. Then we determine the optimized number
S of clusters according to the maximal increment of incon-
sistency coefficient. Specifically, for all the links, if the in-
crement of the inconsistency coefficient of one link is the
maximal, we take the cluster number of the pervious one of
this link as the final cluster number.

3.2 Feature Selection Stage

In the stage of feature selection, we select several features
from the clusters to represent the whole feature subset based
on two wrapper-based strategies. Feature selection stage
consists of two major steps.

In the first step, we mainly conduct the relevance anal-
ysis between each feature and the class label. We calculate
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Fig. 2 An example of our proposed approach, HFS

the MIC values between each feature x and the class label
y. Maximal Information Coefficient (MIC) was developed
as a robust indicator of measuring the correlation between
two variables by Reshef et al. in 2011 [17]. In the second
step, we select the most valuable features from each cluster
based on the wrapper-based strategies, which are explained
immediately below.

1. Forward Selection (FS): we start with having no fea-
ture in the fault prediction model. In each iteration, we keep
adding the most relevant feature from each cluster till an ad-
dition of new ones does not improve the performance of the
model.

2. Backward Elimination (BE): we start with all the
features and remove the most irrelevant feature from each
cluster at each iteration until no improvement of the fault
prediction model is observed on removal of features.

We use a simple example to explain these two wrapper-
based strategies. As shown in Fig. 2, there are ten features
( f0, f1, f2, f3, f4, f5, f6, f7, f8, and f9) in the original feature
set. We group these features into three clusters, such that
the first cluster contains f0, f1, f4, and f8, the second cluster
contains f2, f6, and f9, and the third cluster contains f3, f5,
and f7. Then, we employ MIC to calculate the relevance
between features and labels, and rank these features. For
example, in the first cluster, f1 has the highest relevance and
f4 has the lowest relevance.

According to the FS strategy, we start with having no
feature in the fault prediction model. In the first iteration,
we add the most relevant features from each cluster, i.e., f1,
f6, and f7, into the current feature subset. Then, we train the
fault prediction model based on this current feature subset

and take the F-measure as the quality criterion for evaluat-
ing this feature subset. In principle, any other measures can
be used. In the second iteration, we select the most rele-
vant features from each cluster, i.e., f8, f2, and f3, and add
them to the current feature subset, such that the new fea-
ture subset is { f1, f2, f3, f6, f7, f8}. Next, we train the fault
prediction model based on this new feature subset, and then
evaluate it. Suppose that the new feature subset has a higher
F-measure value than the current feature subset generated in
the first iteration, then it replaces the current feature subset
and the algorithm continues. In the third iteration, we con-
struct the new feature subset { f0, f1, f2, f3, f5, f6, f7, f8,
f9} and evaluate it in the same way. Suppose that the new
feature subset has a lower F-measure value than the current
feature subset generated in the second iteration, then the al-
gorithm terminates, and the final feature subset is the current
feature subset, i.e., { f1, f2, f3, f6, f7, f8}.

According to the BE strategy, in contrast, we start with
having all the features in the fault prediction model, such
that the current feature subset is { f0, f1, f2, f3, f4, f5, f6,
f7, f8, f9}. We train the fault prediction model based on this
feature subset and take the F-measure as the quality crite-
rion for evaluating it. In the first iteration, we remove the
most irrelevant features from each cluster, i.e., f4, f9 and f5,
such that the new feature subset is { f0, f1, f2, f3, f6, f7, f8}.
Then, we train the fault prediction model based on this new
feature subset, and then evaluate it. Suppose that the new
feature subset has a higher F-measure value than the current
feature subset generated in the first iteration, then it replaces
the current feature subset and the algorithm continues. In the
second iteration, we construct the new feature subset { f1, f6,
f7, f8} and evaluate it in the same way. Suppose that the
new feature subset has a higher F-measure value than the
current feature subset generated in the second iteration, then
it replaces the current feature subset and the algorithm con-
tinues. In the third iteration, we construct the new feature
subset f1 and evaluate it in the same way. Suppose that the
new feature subset has a lower F-measure value than the cur-
rent feature subset generated in the third iteration, then the
algorithm terminates, and the final feature subset is the cur-
rent feature subset, i.e., { f1, f6, f7, f8}.

4. Experimental Setup

4.1 The NASA Dataset

Our experiments are mainly conducted on 11 widely-studied
projects in the NASA dataset [18]. The NASA dataset was
donated by Menzies and was cleaned by Shepperd et al. [19].
Software modules in these projects are characterized with
static code metrics, such as LOC counts, Halstead complex-
ity metrics, McCabe complexity metrics. Table 1 shows the
details of the 11 projects in the NASA dataset, where # fea-
tures, # modules, # defective modules and % defective mod-
ules denote the number of features, the number of modules,
and the number of defective modules, and the percentage of
defective modules, respectively.
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Table 1 Projects in the NASA dataset used in our experiment

Project # features # modules
# defective
modules

% defective
modules

CM1 37 344 42 12.2%
JM1 21 9593 1759 18.3%
KC1 21 2096 325 15.5%
KC2 21 522 107 20.5%
MC1 38 9277 68 0.7%
MC2 39 127 44 34.6%
MW1 37 253 27 10.7%
PC1 37 759 61 8.0%
PC3 37 1125 140 12.4%
PC4 37 1399 178 12.7%
PC5 38 1711 471 27.5%

4.2 Research Questions

Since our feature selection method aims to improve the per-
formance of existing feature selection methods, but also
greatly reduce the computational complexity, our evaluation
focuses on answering two Research Questions (RQs), in-
cluding both effectiveness and efficiency.

RQ1. Does our method, HFS, perform better than the
state-of-the-art filtered-based feature selection methods on
fault prediction?

This question validates the important criterion of defect
prediction: the performance improvement in terms of de-
fective precision, recall, F-measure and AUC (as defined in
Sect. 4.3). To answer this question, we compare our method
against three classic feature selection methods, i.e., Chi-
Square, Gain Ratio, and ReliefF.

In the domain of software fault prediction, the Chi-
Square (CS) statistic measures the independence between
the feature f and the class label c [20]. Gain Ratio (GR)
is an updated version of the information gain by penaliz-
ing multi-valued attributes to counter the bias [21]. ReliefF
(ReF) is an extension of the Relief method that can solve the
multi-class learning problem [22]. The number of features
in these methods is set to [log2 m] where m is the number of
original features. This setting is suggested by Khoshgoftaar
et al. [23] and Gao et al. [2]. Their works show that various
classifiers in fault prediction are appropriate to this setting.

We also compare our work with three existing feature
selection methods, which are originally designed for defect
prediction: TC, FECAR [9], and MICHAC [10], as to be de-
scribed in the related work.

RQ2. Are the wrapper-based feature selection strate-
gies effective and efficient, comparing with two classic se-
quential wrapper feature selection methods?

HFS mainly consists of two stages, feature clustering
stage and wrapper-based feature selection stage. To inves-
tigate the effectiveness and efficiency of the two wrapper-
based strategies, we compare HFS with two classic sequen-
tial wrapper feature selection methods, i.e., Sequential For-
ward Selection (SFS) and Sequential Backward Elimination
(SBE) [24].

SFS starts with an empty feature subset, and each time

adds one feature that results in the highest prediction accu-
racy, until no improvement of the defect prediction model is
observed. SBE starts with all the features and remove them
one by one, at each round removing the one that decreases
the prediction error most, until a removal of new ones in-
creases the prediction error.

4.3 Evaluation Metrics

In this empirical study, we use F-measure and AUC as main
metrics to compare the performance of classifiers, because
the defect datasets are imbalanced.

(1) F-measure: There are four possible outcomes from
a binary predictive model on a test set: classifying a defec-
tive module as defective (nd→d), classifying a defective mod-
ule as defect-free (nd→ f ), classifying a defect-free module
as defect-free (n f→t), and classifying a defect-free module
as defective (n f→d). Based on the possible output, the de-
fective precision, defective recall, defective F-measure are
defined as follows:

defective precision, P(d) =
nd→d

nd→d + n f→d
(6)

defective recall,R(d) =
nd→d

nd→d + nd→ f
(7)

defective F-measure, F(d) =
2 × P(d) × R(d)

P(d) + R(d)
(8)

Note that defective F-measure is the harmonic mean
of defective precision and defective recall. In general, the
greater the F-measure is, the better the prediction perfor-
mance of the classifier is.

(2) AUC: AUC (Area Under the ROC Curve) is widely
used in fault prediction. An ROC is a curve plotted on a
two dimensional plane with the true positive rate as y-axis
and the false positive rate as x-axis, so this curve is used to
visualize the performance of binary classifiers. The curve
of ROC illustrates the trade-off between true positive and
false positive. This curve is used to evaluate the different
classifier performance.

In the experiments, we perform 10-fold cross valida-
tion, since it is used in many defect prediction studies. In the
10-fold cross validation, a dataset is divided into 10 folds at
random. Nine of the ten folds take turns to be used as the
training set while the other fold is used as the test set. The
training data are used to build a classifier; then the built clas-
sifier is evaluated on the test data. This cross-validation is
repeated ten times so that each partition is used exactly once
as the test data. The above procedure is repeated 20 times in
total to avoid sample bias. The final results of all methods
are estimated by averaging the results over 20 runs of the
10-fold cross-validation.

4.4 Defect Prediction Models

In order to compare the performance of feature selection
methods, we employ three representative classifiers in fault
prediction, Naive Bayes (NB), Random Forest (RF), and
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Table 2 Performance of 11 NASA projects with the three classifiers on precision, recall, and F-
measure.

Model Metric HFS FS HFS BE Full CS GR RF TC FECAR MICHAC

NB

AverageP 0.429 0.434 0.407 0.44 0.454 0.35 0.41 0.442 0.427
AverageR 0.405 0.412 0.429 0.332 0.366 0.424 0.342 0.376 0.397
AverageF 0.382 0.385 0.35 0.359 0.36 0.355 0.346 0.367 0.373
MedianF 0.352 0.385 0.331 0.393 0.376 0.351 0.351 0.388 0.395
W/D/L(1) 4/0/7 8/0/3 9/0/2 7/0/4 6/0/5 8/0/3 7/0/4 7/0/4
W/D/L(2) 7/0/4 9/0/2 9/0/2 8/0/2 7/0/4 8/0/2 7/0/4 7/0/4

RF

AverageP 0.559 0.562 0.54 0.488 0.498 0.468 0.526 0.501 0.56
AverageR 0.315 0.307 0.288 0.302 0.311 0.258 0.287 0.321 0.311
AverageF 0.397 0.399 0.372 0.366 0.377 0.326 0.367 0.385 0.392
MedianF 0.395 0.419 0.417 0.363 0.363 0.331 0.372 0.375 0.401
W/D/L(1) 4/0/7 4/0/7 7/0/4 7/0/4 8/0/3 7/0/4 6/0/5 5/0/6
W/D/L(2) 7/0/4 6/0/5 9/0/2 9/0/2 8/0/3 8/0/3 6/0/5 6/0/5

RIPPER

AverageP 0.567 0.558 0.488 0.535 0.536 0.423 0.498 0.53 0.55
AverageR 0.294 0.282 0.268 0.266 0.255 0.171 0.237 0.267 0.28
AverageF 0.373 0.374 0.333 0.345 0.334 0.23 0.309 0.344 0.351
MedianF 0.372 0.425 0.4 0.374 0.362 0.216 0.289 0.364 0.358
W/D/L(1) 5/0/6 8/0/3 5/0/6 6/0/5 9/0/2 9/0/2 7/0/4 7/0/4
W/D/L(2) 6/0/5 8/0/3 5/0/6 5/0/6 9/0/2 8/0/3 7/0/4 7/0/4

Repeated Incremental Pruning to Produce Error Reduction
(RIPPER). The reason we choose these classifiers is that
they fall into three different families of learning methods.
NB is a probabilistic classifier; RF is a decision-tree classi-
fier; and RIPPER is a rule-based classifier.

In this study, experiments were conducted on a work-
station with an Intel Core i7-4790 CPU with 3.60 GHz. We
implemented the feature selection methods in Java with the
Weka package, and used the classifiers inside Weka with the
default parameter settings. We calculate MIC values via the
MINE toolkit [25] and implement HFS in Matlab 7.0.

4.5 Statistical Analysis

We perform the Wilcoxon signed-rank test [26] to analyze
whether the performance values of HFS are statistically sig-
nificant different from those of the compared methods on
three classifiers over all projects. The Wilcoxon signed-
rank test is a non-parameter method of statistically signif-
icant test. For the performance values of any two methods
compared, the null hypothesis is that there exists no signif-
icant difference between the two methods. If the p-value
that results from Wilcoxon test is less than 0.05, the null hy-
pothesis is rejected. That is, the difference between the two
methods is identified as statistically significant. The signif-
icant test is implemented in IBM SPSS Statistics. In addi-
tional, we calculate the effect size (i.e., Cliff’s δ) to mea-
sure the differences between median results achieved by the
two methods over all datasets. By convention, the magni-
tude of the difference is considered negligible (0 < Cliff’s
δ < 0.x147), small (0.147 < Cliff’s δ < 0.33), medium
(0.33 < Cliff’s δ < 0.474), or large (Cliff’s δ > 0.474) [27].

5. Experimental Results

In this section, we present the experimental results as an
attempt to answer the two research questions raised in
Sect. 4.2.

5.1 Does Our Method, HFS, Perform Better than the State-
of-Art Filtered-Based Feature Selection Methods on
Fault Prediciton?

To answer RQ1, we compare our method HFS with three
widely-studied feature selection methods (CS, GR, and
ReF) and three recently-proposed methods in fault predic-
tion (TC, FECAR and MICHAC).

Table 2 records the average defective precision, recall
and the average and median F-measure of all 11 NASA
projects with all feature selection methods on three classi-
fiers, NB, RF and RIPPER. The column “Full” denotes the
training set without involving any feature selection method;
P, R, and F denote the defective precision, recall, and F-
measure, respectively; W/D/L(1), short for Win/Draw/Loss,
presents the number of projects, on which HFS FS performs
better than, the same as, or worse than another method, in
terms of F-measure. In the same way, W/D/L(2) presents
the comparison results between HFS BE and other meth-
ods. According to the results of W/D/L, we can know the
percentage of datasets on which HFS performs better than
the existing methods.

Table 2 shows that on all three classifiers, HFS FS
and HFS BE obtain better F-measure values than all filter-
based methods. For the NB classifier, HFS BE achieves
the best average F-measure value, but fails in the best pre-
cision or recall. Regarding the average precision, HFS FS
and HFS BE are inferior to the CS, GR and FECAR; regard-
ing the average recall, HFS FS and HFS BE are inferior to
Full and ReF. For the RF classifier, HFS BE can achieve the
best precision and F-measure values, but fail in the best re-
call. Regarding the average precision, HFS FS is inferior
to MICHAC; regarding the average recall, HFS FS is infe-
rior to FECAR. For the RIPPER classifier, HFS FS achieves
the best values in terms of precision and recall. Mean-
while, HFS BE achieves the best F-measure value. Over-
all, HFS BE with the model built with RIPPER achieves
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Table 3 AUC values on the 11 NASA projects using naive Bayes with the Wilcoxon test (p-value)
and Cliff’s δ value.

Project HFS FS HFS BE Full CS GR RF TC FECAR MICHAC
CM1 0.734 0.746 0.694 0.729 0.75 0.752 0.72 0.75 0.725
JM1 0.685 0.674 0.678 0.629 0.629 0.624 0.682 0.636 0.642
KC1 0.797 0.782 0.791 0.783 0.774 0.782 0.798 0.78 0.791
KC2 0.81 0.838 0.832 0.816 0.817 0.827 0.833 0.825 0.836
MC1 0.968 0.923 0.892 0.768 0.812 0.845 0.87 0.883 0.917
MC2 0.8 0.784 0.717 0.637 0.637 0.627 0.666 0.63 0.722
MW1 0.916 0.92 0.728 0.714 0.714 0.737 0.736 0.735 0.774
PC1 0.771 0.795 0.768 0.663 0.701 0.673 0.795 0.777 0.788
PC3 0.775 0.782 0.743 0.783 0.778 0.784 0.735 0.784 0.785
PC4 0.848 0.834 0.825 0.823 0.835 0.823 0.807 0.823 0.837
PC5 0.608 0.613 0.69 0.651 0.617 0.64 0.708 0.624 0.66
AVG 0.792 0.79 0.76 0.727 0.733 0.738 0.759 0.75 0.771
W/D/L(1) 5/0/6 9/0/2 8/0/3 7/0/4 7/0/4 7/0/4 6/0/5 7/0/4
p-value(1) 0.79 0.075 0.05 0.05 0.091 0.213 0.109 0.374
Cliff’s δ(1) 0.02 0.376 0.746 0.655 0.591 0.391 0.453 0.236
W/D/L(2) 6/0/5 8/0/3 8/0/3 8/0/3 7/1/3 7/1/3 8/0/3 7/0/4
p-value(2) 0.79 0.1 0.033 0.021 0.047 0.139 0.033 0.248
Cliff’s δ(2) 0.02 0.372 0.759 0.662 0.594 0.387 0.45 0.225

Table 4 AUC values on the 11 NASA projects using random Forest with the Wilcoxon test (p-value)
and Cliff’s δ value.

Project HFS FS HFS BE Full CS GR RF TC FECAR MICHAC
CM1 0.798 0.803 0.782 0.732 0.728 0.75 0.812 0.728 0.795
JM1 0.776 0.779 0.76 0.721 0.721 0.733 0.692 0.729 0.742
KC1 0.793 0.814 0.83 0.793 0.744 0.789 0.796 0.793 0.802
KC2 0.829 0.833 0.825 0.782 0.808 0.798 0.81 0.795 0.812
MC1 0.927 0.925 0.923 0.879 0.918 0.916 0.929 0.937 0.93
MC2 0.694 0.689 0.682 0.588 0.588 0.575 0.691 0.573 0.658
MW1 0.727 0.729 0.716 0.696 0.696 0.641 0.719 0.754 0.737
PC1 0.868 0.866 0.844 0.839 0.854 0.844 0.84 0.804 0.858
PC3 0.867 0.874 0.864 0.835 0.844 0.85 0.822 0.849 0.848
PC4 0.94 0.947 0.944 0.887 0.916 0.887 0.845 0.914 0.942
PC5 0.758 0.762 0.8 0.759 0.749 0.759 0.777 0.755 0.754
AVG 0.816 0.82 0.815 0.774 0.779 0.777 0.794 0.785 0.807
W/D/L(1) 4/0/7 5/0/6 10/0/1 10/0/1 9/0/2 7/0/4 07/01/04 8/0/3
p-value(1) 0.055 0.422 0.007 0.003 0.004 0.109 0.073 0.109
Cliff’s δ(1) 0.051 0.008 0.507 0.415 0.434 0.295 0.352 0.11
W/D/L(2) 7/0/4 6/0/5 10/0/1 10/0/1 10/0/1 7/0/4 8/0/3 8/0/3
p-value(2) 0.055 0.182 0.003 0.003 0.003 0.05 0.018 0.016
Cliff’s δ(2) 0.051 0.058 0.553 0.458 0.476 0.346 0.396 0.158

the highest median F-measure value (0.425), and 7.59% −
96.76% higher than the compared methods; HFS BE with
the model built with RF achieves the highest average F-
measure value (0.399), and 1.79%− 43.48% higher than the
compared methods.

The Win/Draw/Loss values show that, on the three
classifiers, HFS FS outperforms the others on over half of
projects in terms of F-measure, except for the Full and
MICHAC methods on RF classifier, and the CS method on
RIPPER classifier. Meanwhile, HFS BE outperforms others
on over half of projects in terms of F-measure, except for the
CS and GR method on RIPPER classifier.

For the sake of space limitation, in this paper we only
list the detailed p-values and Cliff’s δ values in term of AUC
for the NASA dataset since AUC is widely used as a perfor-
mance evaluation metric in fault prediction. Tables 3, 4, and
5 present the detailed AUC values of each project on the
three classifiers with the p-values and Cliff’s δ values.

From these tables, we can observe that HFS FS and

HFS BE achieve the best AUC values on all three classifiers.
HFS BE with the model built with RF achieves the highest
average AUC value (0.820), and 1.61%−44.37% higher than
the compared methods. The Win/Draw/Loss records also
indicate that HFS FS and HFS BE win the other filter-based
methods on most projects on the three classifiers. Although
only nearly half of p-values are lower than 0.05, the non-
negative Cliff’s δ values indicate that in all cases, HFS FS
and HFS BE have a small or medium effect than the other
filter-based methods.

Since HFS shares most of the procedure and the formu-
las with MICHAC, they would select the similiar features.
Since different features are selected on each run of 10-fold
cross-validation on the same dataset, it is difficult to list the
detailed selected features on each dataset. Therefore, we
only count the selected features by HFS and MICHAC, and
find that cyclomatic density, normalized cyclomatic com-
plexity, and halstead effort are selected by HFS most times,
but not by MICHAC. The three features are related to code
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Table 5 AUC values on the 11 NASA projects using RIPPER with the Wilcoxon test (p-value) and
Cliff’s δ value.

Project HFS FS HFS BE Full CS GR RF TC FECAR MICHAC
CM1 0.548 0.554 0.516 0.542 0.513 0.494 0.51 0.55 0.541
JM1 0.564 0.561 0.553 0.56 0.554 0.541 0.54 0.545 0.563
KC1 0.597 0.593 0.578 0.59 0.582 0.588 0.599 0.594 0.587
KC2 0.746 0.745 0.698 0.722 0.641 0.711 0.727 0.71 0.749
MC1 0.622 0.625 0.626 0.614 0.632 0.623 0.614 0.612 0.619
MC2 0.585 0.589 0.576 0.573 0.582 0.595 0.601 0.582 0.584
MW1 0.617 0.623 0.633 0.682 0.682 0.581 0.63 0.657 0.602
PC1 0.553 0.556 0.581 0.569 0.578 0.5 0.554 0.565 0.558
PC3 0.568 0.565 0.538 0.527 0.551 0.542 0.539 0.561 0.574
PC4 0.757 0.754 0.73 0.689 0.689 0.528 0.6 0.694 0.761
PC5 0.601 0.606 0.623 0.615 0.61 0.54 0.628 0.623 0.591
AVG 0.614 0.616 0.605 0.608 0.601 0.568 0.595 0.608 0.612
W/D/L(1) 5/0/6 7/0/4 8/0/3 7/0/4 10/0/1 6/0/5 7/0/4 7/0/4
p-value(1) 0.261 0.213 0.374 0.306 0.01 0.248 0.477 0.306
Cliff’s δ(1) -0.017 0.14 0.1 0.204 0.696 0.297 0.091 0.036
W/D/L(2) 6/0/5 7/0/4 8/0/3 7/0/4 10/0/1 7/0/4 7/0/4 6/0/5
p-value(2) 0.261 0.182 0.213 0.247 0.008 0.182 0.374 0.286
Cliff’s δ(2) 0.017 0.158 0.118 0.224 0.72 0.318 0.11 0.053

Table 6 T-Test comparison of HFS FS and HFS BE

F-measure AUC Total
HFS FS 5 4 9
HFS BE 7 6 13
Neither 21 23 45

complexity, Nam et al. pointed out that higher complexity
causes more defect-proneness [29]. Therefore, the selected
features by HFS can make the classification model predict
the defective modules more accurately. This may be the rea-
son that HFS outperforms MICHAC.

Then, we directly compare HFS FS and HFS BE to ob-
tain a more precise comparison. We revert to computing a
standard two sample t-statistic [28] to compare the means
of these two approaches presented by a performance met-
ric. Table 6 compares only HFS FS and HFS BE, with a
two-sample t-statistic calculated for each classifier and data
set. Therefore, each column totals to 33 (3 classifiers × 11
datasets), and in total, 66 pairwise comparisons between
HFS FS and HFS BE were performed, each with a 95%
confidence level. The first row represents the numebr of
times that HFS FS significantly outperforms HFS BE, the
second row denotes the number of times that HFS BE sig-
nicantly outperforms HFS FS, and the final row represents
the cases with no signicant difference between HFS FS and
HFS BE. Overall, HFS FS is comparable to HFS BE, par-
ticularly in terms of the F-measure and AUC performance
measure.

As a conclusion of the above observation, our method
can yield better prediction results than the filter-based fea-
ture selection methods in fault prediction.

5.2 Are the Wrapper-Based Feature Selection Strategies
Effective and Efficient, Comparing with Two Classic
Sequential Wrapper Feature Selection Methods?

To answer RQ2, we compare our method with two classic
wrapper-based feature selection methods, i.e., SFS and SBE.

For the sake of space limitation, Table 6 only presents
the detailed AUC values of each method on each project,
since AUC is widely used as a performance evaluation
metric in fault prediciton. For the NB classifier, HFS FS
achieves the best average AUC value. However, the average
AUC value by HFS BE is lower than that by SFS, while it
is the same as that by SBE. For the RF classifier, HFS FS
and HFS BE obtain better average AUC value than SFS and
SBE. For the RIPPER classifier, HFS FS and SFS achieve
the best AUC value. In addition, we count the selected faa-
tures by HFS, SFS and SBE, and find that there is not sig-
nificant difference of the selected features by these methods.

Table 8 presents the runtime of each method on each
project. We can also observe that HFS FS and HFS BE re-
quire less runtime than SFS and SBE. The runtime of SFS
and SBE is almost four times than those of HFS FS and
HFS BE. The reason is that adding the most relevant fea-
ture or removing the most irrelevant feature from each clus-
ter at each iteration can significantly reduce the number of
wrapper evaluations.

To sum up, our methods can obtain competitive pre-
diction performance against the two classical wrapper-based
feature selection methods in fault prediction, while signifi-
cantly reducing the computation cost of the wrapper pro-
cess.

5.3 Discussion

Overall, HFS achieves higher average F-measure and AUC
values, compared with the six filter-based feature selection
methods. But HFS takes average 42-49 seconds to find the
features (see Table 8), while the six filter-based feature se-
lection methods only take less than 10 seconds to find the
features (We do not list the detailed runtime of each filter-
based feature selection method due to the space limitation).
Compared with two classic wrapper feature selection meth-
ods, HFS can obtain a competitive prediction performance
in terms of average AUC while significantly reducing the
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Table 7 AUC values on 11 NASA projects using three classifiers

Project
NB RF RIPPER
HFS FS HFS BE SFS SBE HFS FS HFS BE SFS SBE HFS FS HFS BE SFS SBE

CM1 0.734 0.746 0.737 0.744 0.798 0.803 0.794 0.802 0.548 0.554 0.549 0.552
JM1 0.685 0.674 0.676 0.671 0.776 0.779 0.742 0.753 0.564 0.561 0.572 0.565
KC1 0.797 0.782 0.785 0.779 0.793 0.814 0.805 0.798 0.597 0.593 0.589 0.594
KC2 0.81 0.838 0.817 0.824 0.829 0.833 0.831 0.822 0.746 0.745 0.747 0.751
MC1 0.968 0.923 0.942 0.938 0.927 0.925 0.916 0.91 0.622 0.625 0.628 0.618
MC2 0.8 0.784 0.795 0.803 0.694 0.689 0.658 0.661 0.585 0.589 0.582 0.595
MW1 0.916 0.92 0.908 0.911 0.727 0.729 0.723 0.734 0.617 0.623 0.628 0.619
PC1 0.771 0.795 0.788 0.784 0.868 0.866 0.872 0.861 0.553 0.556 0.572 0.553
PC3 0.775 0.782 0.785 0.787 0.867 0.874 0.828 0.833 0.568 0.565 0.561 0.558
PC4 0.848 0.834 0.846 0.839 0.94 0.947 0.944 0.952 0.757 0.754 0.75 0.752
PC5 0.608 0.613 0.611 0.623 0.758 0.762 0.757 0.759 0.601 0.606 0.594 0.599
AVG 0.792 0.79 0.79 0.791 0.816 0.82 0.806 0.808 0.614 0.616 0.616 0.614

Table 8 Runtime of each method on 11 NASA projects using three classifiers

Project
NB RF RIPPER
HFS FS HFS BE SFS SBE HFS FS HFS BE SFS SBE HFS FS HFS BE SFS SBE

CM1 24 22 76 77 24 22 80 77 21 23 80 77
JM1 95 93 332 317 80 105 331 294 95 94 31 316
KC1 30 22 95 104 29 30 101 96 34 27 94 103
KC2 19 13 61 62 19 15 62 59 17 18 62 64
MC1 103 78 312 348 92 98 335 319 91 92 346 349
MC2 23 20 76 75 20 24 80 74 23 20 77 74
MW1 22 15 68 71 18 18 71 74 21 19 67 70
PC1 46 39 142 154 47 41 150 138 50 43 154 152
PC3 51 52 176 165 45 41 176 153 60 47 170 174
PC4 62 63 198 203 53 67 215 207 64 59 189 205
PC5 58 46 186 185 52 49 193 188 56 52 181 189
AVG 48.5 42.1 156.5 160.1 43.5 46.3 163.1 152.6 48.4 44.9 157.4 161.2

computation cost of the wrapper process. That is, HFS can
make a tradeoff between the performance improvement and
the computation cost. Therefore, HFS is recommended as
an effective and efficient feature selection method for defect
prediction.

6. Threats to Validity

As a preliminary result, we have performed the experi-
ments on the NASA datasets to explore the generality of
our method. Although the datasets have been widely used
in many software defect prediction studies, we cannot claim
that HFS outperforms the existing methods on other project
datasets. We choose three state-of-the-art classifiers, which
represent three categories: NB as a probabilistic model, RF
a decision-tree model, RIPPER as a rule-based model. For
the implementation, we use WEKA and the MINE tools to
avoid the potential faults during the implementation process
of the experiment. In our experiments, we mainly use F-
measure and AUC metrics to measure the effectiveness of
the defect prediction performance using different feature se-
lection methods on the three classifiers. However, the choice
of these two metrics is based on previously published empir-
ical work and we have not provided any proof.

7. Conclusion and Future Work

In this paper, we have presented a novel feature selection

method, HFS, to select an optimized feature subset towards
improving fault prediction performance. HFS leverages the
HAC algorithm to group the redundant features into the
same cluster, and employs two wrapper-based strategies to
select the valuable features from each cluster. Experiments
on the 11 NASA projects indicate that the proposed method,
HFS, can effectively and efficiently select features to im-
prove the performance of fault prediction models. In the
future, we would like to employ complex projects that con-
tain more features to validate the generality of our feature
selection method.
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