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Improving Slice-Based Model for Person Re-ID with Multi-Level
Representation and Triplet-Center Loss*
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SUMMARY  Person Re-Identification has received extensive study in
the past few years and achieves impressive progress. Recent outstanding
methods extract discriminative features by slicing feature maps of deep
neural network into several stripes. Still there have improvement on fea-
ture fusion and metric learning strategy which can help promote slice-based
methods. In this paper, we propose a novel framework that is end-to-end
trainable, called Multi-level Slice-based Network (MSN), to capture fea-
tures both in different levels and body parts. Our model consists of a dual-
branch network architecture, one branch for global feature extraction and
the other branch for local ones. Both branches process multi-level features
using pyramid feature alike module. By concatenating the global and local
features, distinctive features are exploited and properly compared. Also,
our proposed method creatively introduces a triplet-center loss to elabo-
rate combined loss function, which helps train the joint-learning network.
By demonstrating the comprehensive experiments on the mainstream eval-
uation datasets including Market-1501, DukeMTMC, CUHKO3, it indi-
cates that our proposed model robustly achieves excellent performance and
outperforms many of existing approaches. For example, on DukeMTMC
dataset in single-query mode, we obtain a great result of Rank-1/mAP =
85.9%(+1.0%)/74.2%(+4.7%).

key words: person re-identification, multi-level, body parts, triplet-center
loss, combined loss

1. Introduction

Person Re-Identification(Re-ID) aims at retrieving identical
people across surveillance videos captured from different
cameras under challenging situations, such as posture, oc-
clusion, illumination, background clutter, detection failure,
etc. With the prosperity of deep convolution network, main-
stream Re-ID methods are designed to describe each pedes-
trian with a concise but expressive vector and then match
them in a task-specific metric space like Euclidean metric
space, where the feature vectors of an identical person are
expected to have smaller distances than that of different peo-
ple.

Different from traditional classification problems, there
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is no overlap between the pedestrian identities in the training
datasets and that in testing datasets. Still, in training phase,
most models will use classification loss to strengthen ex-
tracted features’ distinctiveness. Therefore in testing phase,
the vectors we get through the network are considered to be
expressive enough to separate one person from another.

Existing holistic feature extraction methods merely fo-
cus on salient global regions, which is not robust enough
for pedestrian retrieval, therefore researchers turn to de-
velop slice-based methods and these methods can be di-
vided into four types, according to variant part locating
ways: (i)methods with strong structural information, such
as prior empirical knowledge about human bodies or poses;
(ii)methods with region proposal; (iii)methods with fea-
ture enhanced by attention mechanism on salient partitions;
(iv)methods with partitions divided into given stripes in fea-
tures maps. However, there exists some limitation. First,
pose or view of point variation can affect the reliability of
prior part locating methods. Second, such pre-located meth-
ods only focus on specific parts with fixed semantic mes-
sages, but may miss some apparent discriminative informa-
tion. Last but not least, most of them are non-end-to-end
models, which need additional external datasets to train, in-
creasing the inconvenience and difficulty of feature learn-
ing. Zheng et al.[1] uses Spatial Transform Network(STN)
to align input images, and Li et al.[2] divides body parts
roughly into head-shoulder, upper-body and lower-body us-
ing STN as well. [3] trains region proposal model on exter-
nal pose dataset and in [4], authors develop attention mecha-
nism. Still there is something to do like incorporating holis-
tic features with local ones. [5] proposes a spatial-channel
parallelism network for both holistic and partial person Re-
ID to solve occlusion problems.

Also, most methods extract features from the last layer
of deep nerual network, ignoring information of former lay-
ers. Unlike object detection or classification tasks, Re-ID
needs compact and exclusive representation, while features
from the last layer may lack supplementary information.
Hence, fusing features learned at different layers can help
obtain more robust and exclusive representation. Originally,
[6] introduces pyramidal feature hierarchy for object detec-
tion, predicting target location on feature maps with differ-
ent resolutions. And Zhang et al.[7] proposes a method uti-
lizing mid-level attributes, using additional attribute labels.

Although in training phase we regard Re-ID as a classi-
fication task, each identity has only a few samples of differ-
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ent views. With merely classification loss, it is hard to learn
generalized representation. Consequently metric learning is
necessary. Metric learning aims at learning about the sim-
ilarity between dual images, that is, specifically in Re-ID,
similarity of images belong to an identical person should be
larger than that of different people.

Motivated by the improvement of multi-level feature
pyramid and metric learning on slice-based model, in this
paper, we propose a strategy combining both global and
local information, creatively absorbing the merit of utiliz-
ing multi-level features and adding an objective function:
triplet-center loss. With our proposed MSN model, for
instance, performance on DukeMTMC increase to 85.9%
rank-1 accuracy(+1.0%) and 74.2% mAP(+4.7%), surpass-
ing many of mainstream methods.

The remainder of paper is organized as follows. Sec-
tion 2 offers related work of person re-identification meth-
ods such as multi-level representations, slice-based models
and metric learning. We describe our model in Sect. 3. Ex-
perimental results are compared and discussed in Sect. 4,
followed by implementation details in Sect.5. In the end,
we make a conclusion on this paper in Sect. 6.

2. Related Work

This method focuses on learning deep partitioned and multi-
level features for improving the Re-ID accuracy as well as
designing appropriate objective function, which has tight re-
lationship with part-slicing methods, multi-level represen-
tations and metric learning. Thus we briefly review some
related aspects with Re-ID.

2.1 Slice-Based Models

Recently some slice-based methods have pushed the Re-
ID performance to a new level. [8] horizontally slices the
feature maps and merges these local features with bidirec-
tional LSTM, combining with global features. While [9]
also uniformly slices maps horizontally, concatenating local
features as final representation, applying Refined Part Pool-
ing(RPP) module to optimize part features’ mapping vali-
dation, it is proved to have outstanding performance with
high-level identification rates and mean average precision.

Still global information and auxiliary messages hidden
in slightly shallow layers can be utilized to promote slice-
based models.

2.2 Multi-Level Representation

Both utilizing feature maps from various layers, Zhang et
al.[7] proposes obtaining auxiliary “mid-level” attributes
from various blocks of ResNet-50 while Res50M [10] pro-
poses “multi-level” representations extracted from different
layers in the last block of ResNet-50. The latter performs
better for containing adequate high dimensional semantic
information than the former.

Although Res50M is designed for holistic Re-ID,
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“multi-level” representations should also be applied to slice-
based model. Further more, with metric learning strategy,
performance of Res50M is better than the author claims
(from Rank-1/mAP=80.43%/63.88% to 82.0%/67.5% in
DukeMTMC-relD dataset).

2.3 Metric Learning

Common loss function used in training Siamese architec-
tures include Contrastive loss, Triplet loss [11], Triplet loss
with batch hard mining (TriHard loss)[12], Quadruplet
loss [13] and MSML [14]. These losses compel the network
to contract intra-class distance of positive pair (the Anchor
sample and the Positive sample) and increase inter-class dis-
tance of negative pair (the Anchor sample and the Negative
sample). Other than these functions mentioned, the Center
Loss [15] simultaneously learns a center for deep features of
each identity and penalizes the distances between features
and their corresponding class centers, which focuses on re-
ducing intra-class variations but omits inter-class variations,
leading to probable overlap between diverse classes. Re-
cently, [16] proposes a variant of center loss called Triplet-
center Loss (TCL), which has significant improvement in
multi-view 3D object retrieval, contributing to both intra-
and inter-class variations, eliminating the defect of center
loss.

2.4 Data Augment

Data augmentation is introduced to make network more ro-
bust. Jon et al.[17] adopts an image “cut-out” strategy con-
sisting of adding random noise to image regions in random
size to augment the data. With the help of GAN, [18] ex-
pands the original training set without collecting extra data
while Zhong et al.[19] generates camera style adaptation
samples for Re-ID.

3. Multi-Level Slice-Based Network

In this section, we begin describing the dual-branch network
architecture for multi-level feature learning. Then we de-
scribe the elaborate objective function that provides super-
vision to enforce the features to be correctly clustered.

3.1 Architecture of MSN

The dual-branch structure of Multi-level Slice-based Net-
work (MSN) is shown in Fig. 1. With many alternative net-
works designed for image classification tasks as options,
e.g., VGG Network, Google Inception and ResNet, we em-
ploy ResNet-50 as the backbone of our network not only for
its competitive performance in some Re-ID methods [20],
[9], but also considering its special architecture suitable for
our framework: the feature maps of the last three layers have
the similar structure, which is convenient to partition stripes
and achieve feature fusion.

Table 1 lists the configuration of the two branches. In
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Fig.1  MSN architecture. The ResNet-50 backbone is split into two branches after res_conv4_0 resid-
ual block: Global Branch, Local Branch. When evaluating, the dimension-reduced local feature vectors
are concatenated together with global vector as the final representation of a pedestrian image. The 1 x 1
convolutions for dimension reduction and fully connected layers for identity prediction in each branch
are independent, which have exclusive weights. Each path from the feature to the specific loss function
represents an independent supervised back propagation. Best viewed in color.

Table 1  Comparison of the settings for two branches in MSN. The size of input images is set to
256x128. ”Branch” refers to the name of branches. ”Slicing Number” refers to the number of partitions
on last three feature maps on each branch. "Mapping Size” refers to the size of last three output feature
maps from each branch. "Mid Dim”, ”Final Dim” and ”Reduction Dim” refers to the dimensionality and
number of features for the different stages. ”Features” means the symbols for the feature representations.

Branch ‘ Slicing Number ‘ Mapping Size ‘ Mid Dim ‘ Final Dim ‘ Reduction Dim ‘ Features

Global 1 8 x4 2048 x2 | 2048 x 1 - g5l 88
Lt 3 i3

Local 4 16x 8 2048 x 8 2048 x 4 384 x4 g";lilizolj:O’ gf’ Ij:()

the upper branch, which is named Global Branch and em-
ploys original ResNet-50’s parameters, we connect a global
average pooling(GAP) layer in parallel after each convolu-
tion layer of the last three. We define features g |!_ mid-
level features and vector g¢ final-layer feature then fuse
mid-level features through a fusion module composed of
a fully connected layer(FC) with batch normalization(BN)
and ReLU to reduce 4096-dim vector to 1024-dim.This
branch captures global feature representation by concatenat-
ing dimensionality-reduced vector f¢ and final-layer feature
g? without partition, and so it is called the Global Branch.
The other branch is called Local Branch. One of no-
table variances between the two branches is that in the Lo-
cal Branch we modify the default stride of res50_conv4_0
layer from 2 to 1, by which we are capable to receive more
adequate response feature maps containing more info. The
mapping size doubles from 8 to 16x8. The other difference
is that we adopt the horizontal slicing operation on response
local maps from the last three convolution layers. Feature
maps are equally partitioned into 4 independent parts (from
16x8 to 4x8x4). Each stripe employs similar but independent
feature fusion operation as that in Global Branch. Also we
apply a 1 x 1 convolution layer for reducing dimension after
each 3072-dim vector (to 384 dimensions), supervising the
four local representation processes with combined objective

function.

During test phase, global feature vector is concatenated
with all local feature vectors, adequately utilizing the com-
plement information of different scales.

3.2 Combined Loss Function

To learn discriminative features of pedestrians, specific ob-
jective functions are adopted to supervise different parts of
network in training procedure.

On one hand, in training phase, we regard the Re-ID
representation task approximately as a multi-identity classi-
fication problem with few samples. Nevertheless, adopting
initial form of cross entropy loss may raise over-fitting and
reduction of adapting ability [21], for model becoming too
confident about its predictions. Thus we adopt classification
loss function with label smoothing encouraging the model
to be less confident:

eW)T,.f
pi)=—r
Z]f:lewykf
qky=(1 - epyy+ekK (1)

K
Leas= ) log(p(k)(k)
k=1
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where W corresponds to a weight matrix, with size of
vector’s dimension N and number of training identities K.
Among them p(k) means the predicted probability of iden-
tity k, while g(k) refers to the modified ground-truth distri-
bution of the identity, which is a mixture of ground-truth
distribution 6y y(equals 1 when y =k and O otherwise) and a
fixed distribution u(k) = 1/K, with weights 1—€ and e.

On the other hand, we treat Re-ID tasks as metric learn-
ing problems. Thus the embedding are trained with metric
losses to enhance clustering performance, in which batch-
hard triplet loss and triplet-center loss are used as follows:

B T
Ltriplet = ZZ

i=1 a=1 @)

[ max [I£” £l min (€€ [l +al,

p=1..T n=1..T

J=1B
JFL

where fc(,i) ,f,(,i) ,f,(,i) are dimension-reduced features in two
branches captured from anchor, positive and negative sam-
ples respectively, and « is a margin hyper-parameter to con-
trol the gap of intra and inter distances.[e], means maximiz-
ing operation compared to value 0. In per training batch,
there are B selected identities and 7" images with each iden-
tity. With such definition, candidate triplets consist of hard-
est positive and negative sample pairs, improving the robust-
ness of metric learning.

Further more, the triplet-center loss is defined as:

B T
. ) ) ) .
ch = ZZ[”f;l)_c(l)”z_n;;P IIf;')—c(])Hz +ﬂ]+ (3)

i=1 a=1

where ¢® means the learnt center feature of identity i,
and B is another margin hyper-parameter to control the
gap of corresponding-center and irrelevant-center distances.
Batch-hard triplet loss truly pushes the two hardest feature
samples away but triplet-center loss compel the features of
identical person to cluster around corresponding class cen-
ters and get far away from the most confusing class centers.
Ultimately, the combined loss is defined as:

L=Lys+ /llLtriplet +AoLse (4)
in which A; and A, are scale factors.

4. Experiment

To evaluate our proposal, we conduct extensive experiments
on three large-scaled datasets accepted by mainstream meth-
ods.

4.1 Datasets

The three datasets are: Market 1501, DukeMTMC-relD and
CUHKO3.

Market 1501 This dataset consists of images of 1,501
pedestrians captured from 6 different cameras, which are
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cropped with bounding-boxes predicted by DPM-detector.
The whole dataset is divided into training set with 12,936
images of 751 persons and testing set with 3,368 query im-
ages and 19,732 gallery images of the other 750 persons.

DukeMTMC-relD It is a subset of the DukeMTMC
which is designed for person re-identification. It contains
36,411 images of 1,812 persons from 8 different high-
resolution cameras. 16,522 images of 702 persons are ran-
domly selected from the dataset as the training set, and the
remaining 702 persons are divided into the testing set that
contains 2,228 query images and 17,661 gallery images.

CUHKO3 This dataset consists of 14,097 images of
1,467 persons from 5 different pairs of cameras. Two
types of subsets are provided in this dataset: dataset ’la-
belled’ (pedestrian bounding boxes manually labelled) and
dataset ’detected’(DPM-detected bounding boxes). With
uniform test protocols as the other two datasets, the
CUHKO3 might be the most challenging dataset at present
for person retrieving, because of its obviously less train-
ing images number(7,365) compared to DukeMTMC-
relD(16,522) and Market-1501(12,936).

4.2 Evaluate Protocols

In our experiments, to evaluate the performances of Re-ID
methods in a mainstream standard, we adopt mean average
precision(mAP), and the cumulative matching characteris-
tics(CMC) at rank-1, rank-5 and rank-10 on all the candi-
date datasets above, which are complementary to reflect the
retrieving performance.

In this paper we deploy the single query evaluate proto-
col. During evaluation, we finally extract the concatenated
features of query and gallery images to compute Euclidean
distance and select the nearest 50 gallery samples for each
query sample to compute mAP and CMC. For each query
image, instances of identical person from the same camera
in gallery images will be discarded during computation. Fol-
lowing experiments all deploy the same mode and testing
samples of various datasets are fixed.

4.3 Comparison with State-of-the-Art Methods
We compare the performance of our proposed method with

current state-of-the-art methods on all the candidate datasets
to show advantage over all the existing competitors. Results

Table 2  Comparison of results on Market-1501, 'RPP’ refers to imple-
menting refined part pooling.

Methods ‘ Rank-1 ‘ mAP

Mid-Level [10] 89.9% | 75.6%
HA-CNN [22] 91.2% | 75.7%
DuATM [23] 91.4% | 76.6%
PCB [9] 923% | 77.4%
GSRW [24] 92.7% | 82.5%
DNN_CRF[20] | 93.5% | 81.6%
PCB+RPP [9] 93.8% | 81.6%

| 93.4% | 82.8%

MSN(Ours)
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Table 3  Comparison of results on DukeMTMC-reID, where 'RPP’
refers to implementing refined part pooling.

Methods ‘ Rank-1 mAP
HA-CNN 80.5% 63.8%
Deep-Person [8] 80.9% 64.8%
MLEN [25] 81.2% 62.8%
Mid-Level 81.5% 66.6%
DuATM 81.8% 64.6%
PCB 81.9% 65.3%
PCB+RPP 83.3% 69.2%
Part-aligned [26] 84.4% 69.3%
DNN_CRF 84.9% 69.5%

MSN(Ours)

85.9% | 74.2%

Table 4 Comparison of results on CUHKO3-detected, 'RE’ refers to
implementing random erasing, 'RPP’ refers to implementing refined part
pooling.

Methods Rank-1 mAP
HA-CNN 41.7% 38.6%

MLEN 52.8% 47.8%
Mid-Level 54.1% 52.1%

DaRE [27] 55.1% | 51.3%
TriNet+RE [28] | 55.5% | 50.7%
PCB 61.3% | 54.2%
PCB+RPP 63.7% | 57.5%

MSN(Ours) | 64.8% | 62.7%

in detail are given as follow:

Comparison on Market-1501 The results on Market-
1501 dataset is shown in Table 2. In evaluating protocol
we adopted, our proposed MSN achieves highest 82.8% in
mAP and the third best 93.4% in Rank-1, while competi-
tive method PCB+RPP achieved the best rank-1 result, and
GSRW achieved the second highest mAP.

Comparison on DukeMTMC-reID As is shown
in Table 3, the performance of MSN is excellent on
this challenging dataset. MSN achieves result of Rank-
1/mAP=85.9%/74.2%, outperforming all the given methods
in both rank-1 and mAP.

Comparison on CUHKO03 According to Table 4, our
MSN achieves Rank-1/mAP= 64.8%/62.7% on this ex-
tremely hard CUHKO3 detected subset, still the best in both
mAP and Rank-1. The reason why there is an tremendous
gap between results of CUHKO03-detected and the other two
datasets is that the imbalance of dataset size and the few
instances of each identity limit our model to learn discrimi-
native message.

4.4 Qualitative Analysis on Effective Components

Part slicing As Fig. 2 shows, part-sliced deep network can
learn preliminary prominence on different parts, according
to potential semantic information. Such as focused thermal
regions in Fig.2(a), they give attention against view varia-
tion. In Fig.2(b), although the two instances are not part-
aligned, the responses of Region 1 can both focus on their
heads.
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Fig.2  Visualization of feature maps on final layer of proposed MSN’s
Local Branch in training phase using Grad-CAM [29]. Region 1, 2, 3 in-
dicate the horizontally sliced feature stripes. Global indicates the feature
map from Global Branch.

Dual Branch Dual-branch setting is very common for
person Re-ID tasks. The Global Branch extracts discrim-
inative representation focusing on the whole body while
the Local Branch gives attention to semantic part patterns
that the Global Branch may omits. Figure 2(c) reveals that
the Global Branch cares about the region around the pink
bag, when the Local Branch cares about different semantic
parts. In 2nd to 4th rows of Table 5 we acknowledge the ef-
fectiveness of dual branch, with which the performance can
reach great promotion especially in mAP.

Multi-level Feature Fig.3 presents different weight-
focusing regions of feature response maps from different
layers in Local Branch of MSN, with a certain input im-
age. The explanation why weight-focusing regions of final-
layer are much bigger than that of fused layerO is that our
multi-level features have experienced dimensionality reduc-
tion operation, which is concatenated as auxiliary features.
Observing the heatmaps, we can notice the multi-layer0 in
deep block focus on slightly different parts compared to
final-layer that may give attention to background, which of-
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Fig.3  Visualization of feature maps on two layers from last of proposed
MSN’s Local Branch in training phase. Regionl indicates the first hori-
zontally sliced feature stripe. The *final-layer’ means the last layer and the
’multi-layer0’ means the third layer from last.

Table 5 The influence of different branch setting. In Local Branch,
gani|i1:0 indicate multi-level features, f,’,;ilil:0 indicate middle-level features
from shallow blocks and g& refers to final-layer feature. All of them are
evaluated on Market 1501 dataset.

Branch setting ‘ Rank-1 ‘ mAP

Global only 90.6% | 78.3%
Local only 92.7% 80.5%

Both 93.4% | 82.8%
2 932% | 82.7%
4 93.4% | 82.8%
8 92.8% | 82.0%
gy 90.9% | 78.2%
gk 90.6% | 77.1%

f
frlioandg; | 91.3% | 80.2%

ghlioandg; | 93.4% | 82.8%

fers complimentary information.

In some cases it is useful to incorporate multiple spatial
granularities of information such as image-to-image synthe-
sis problems (utilizing features from shallow blocks). How-
ever, in our case we aim to extract expressive representation
for pedestrian matching, and features from shallow blocks
lack semantic information. Incorporating such mid-level
features damages semantic representation. According to 8th
to 11th rows of Table 5, not only can we see that the joint
usage of gl |l and g]Lc can get better performance than just
using any of them, but also we can find that multi-level fea-
tures from deep block perform exactly better than mid-level
features from shallow blocks.

Combined Loss with Triplet-center Loss We treat
Re-ID as a multi-classification mission in training phase
with lots of known identities and few corresponding sam-
ples that vary in position and posture. However, there is no
overlap between test set and training set. Thus besides cor-
rect classification, we need corresponding features to clus-
ter around so that in test phase features belong to same un-
known identities can have shorter distance. Triplet loss en-
hances clustering through sample distance which is useful
but not enough while triplet-center loss makes further ef-
forts on clustering by learning identity centers. The 2nd
to 6th rows of Table 6 demonstrate the promotion of accu-
racy performance using combined loss and proves the sig-
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Table 6  Different performance with various settings of combined loss
on DukeMTMC-relD dataset. ’CELS’ means cross entropy label smooth-
ing loss function, ’CE’ means standard cross entropy loss function, "Htri’
means batch-hard triplet loss function, ’Tri-center’ means triplet center loss
function. In the second part of table, numbers in ’()’ indicates (11, A2, ini-
tial LR for class center) in Local Branch.

Objective Function

Rank-1 | mAP

CELS only 82.5% 68.2%

CELS + Htri 84.5% 71.9%

CE + Htri 80.2% 70.1%

CELS + Tri-center 85.1% 71.5%
CELS + Htri + Tri-center | 85.9% | 74.2%
(1,0.01,0.1) 83.1% 70.8%
(5,0.01,0.1) 84.0% 71.2%
(5,0.05,0.1) 84.4% 71.0%
(5,0.01,0.01) 85.4% 73.6%
(5,0.02,0.01) 85.9% | 74.2%

nificance of triplet-center loss.

Also, values of scale factors and learning rate of class
center can make a great difference, experiment results in 7th
to 11th rows of Table 6 also illustrate this. The reason why
scale factor A, of triplet-center loss is much smaller than
that of triplet loss is that in the beginning of training our
class centers are randomly initialized so the center distance
can be very large. If we use similar scale as 4, the training
process is hard to converge. Additionally, we can obviously
observe effects using triplet-center loss that the performance
on mAP improves more than that on Rank-1 accuracy, which
proves the positive effects of triplet-center loss on average
meaning.

5. Implementation

To accelerate the training phase, we load the pretrained
weights of ResNet-50 on ImageNet to initialize the back-
bone and two branches of MSN. We set B =32and T =4
to train our proposed model and the mini-batch selection for
triplet losses is stochastic. Each triplet consists of farthest
positive pair and hardest negative pair which is stochastic
along with stochastic batch sampling. About the hyperpa-
rameter margin « and B for triplet loss and triplet-center
loss, we set to 2 and 3. In the label-smoothing regular-
ization, we set the € = 0.1. Finally, the scale factors A, of
the combined loss is set to 0.02. We choose Adam as the
optimizer with weight decay 5e-4. As for the learning rate
strategy, we set the initial learning rate to 2e-4, and decay
the learning rate to 2e-5 and 2e-6 after training for 30 and
60 epochs. In addition, the learning rate of class centers is
set to 0.01. The total training process lasts for 90 epochs.
And during per epoch, we train two branches independently
while freezing the other branch for these two branches have
different partitions, thus the objective function should have
different forms. We adopt 4; =1 in the Global Branch and
A1 =5 in the Local Branch.

During evaluation, we ultimately extract the global fea-
ture concatenated with local dimensionality-reduced fea-
tures to compute mAP and CMC in Euclidean metric space.
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Our work is implemented on PyTorch 0.4.0 framework. All
our experiments on different datasets follow the settings
above.

6. Conclusion

This paper proposes a Multi-level Slice-based Network
(MSN), a novel deep network for learning discriminative
representations in person re-identification tasks using effec-
tive objective function. Both branches utilize the multi-level
messages in slightly shallow layers with different partitions.
Adequate experiments indicate that proposed MSN achieves
excellent performance on several mainstream person Re-ID
datasets and confirmed components’ effectiveness.
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