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PAPER

Adversarial Domain Adaptation Network for Semantic Role
Classification

Haitong YANG†a), Guangyou ZHOU†, Tingting HE†, Nonmembers, and Maoxi LI††, Member

SUMMARY In this paper, we study domain adaptation of semantic role
classification. Most systems utilize the supervised method for semantic role
classification. But, these methods often suffer severe performance drops on
out-of-domain test data. The reason for the performance drops is that there
are giant feature differences between source and target domain. This pa-
per proposes a framework called Adversarial Domain Adaption Network
(ADAN) to relieve domain adaption of semantic role classification. The
idea behind our method is that the proposed framework can derive domain-
invariant features via adversarial learning and narrow down the gap be-
tween source and target feature space. To evaluate our method, we conduct
experiments on English portion in the CoNLL 2009 shared task. Exper-
imental results show that our method can largely reduce the performance
drop on out-of-domain test data.
key words: argument classification, domain adaption, adversarial domain
adaptation, supervised learning

1. Introduction

Semantic Role Labeling (SRL) is an important fundamen-
tal task in Natural Language Processing (NLP) community
and its goal is to assign a formal semantic structure for
each predicate of a given sentence, like WHO did WHAT
to WHOM, WHEN, WHERE, WHY, HOW. The simple and
pure form of SRL representations has been proved being
beneficial to many NLP tasks, such as question and answer-
ing [1], information extraction [2], [3] and machine transla-
tion [4]–[8].

Currently, most SRL systems take supervised methods
to perform semantic role classification. But, the supervised
methods often suffer severe performance drops on out-of-
domain test data due to giant feature differences between
source and target domain. This problem is usually called
domain adaption. In this paper, we focus on unsupervised
adaption in which besides annotated data from source do-
main, we also have some unlabeled data from target domain.
Our goal is to learn discriminative and domain-invariant
from labeled and unlabeled data so that the learnt model can
be adapted to the target domain.

There have been some works about domain adaption in
NLP community. One line is to use the pivot features to in-
duce a projected feature space in which source and target do-
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main are similar. Blitzer et al. [9] proposed a method called
Structural Correspondence Learning (SCL), which works
well in cross-domain sentiment classification. Following
their work, some research aims to learn better domain-
specific words [10], [11] such that the domain discrepancy
could be reduced. Kim et al., [12] proposed a method of
feature augmentation to make different domains look simi-
lar. Although these works reported promising results, they
have one limit that the performance depends heavily on the
heuristic selection of pivot features. Moreover, the pivot fea-
tures may be sensitive to different applications. The other
research line is to map source and target domain into a com-
mon feature space. Yang et al., [13] utilized Deep Belief
Networks (DBN) to learn the common features across do-
mains. And then the learnt features are fed into a role clas-
sifier like Maximum Entropy.

Our method falls into the second line. But, differ-
ent from Yang et al., [13], we try to perform deep feature
learning and role classification in the same framework to-
gether. Our idea is driven by the theory [14] that a good fea-
ture representation for domain adaption is the one for which
an algorithm cannot learn to identify the domain of the in-
put observation. Specifically, in this paper, we propose a
framework called Adversarial Domain Adaptation Network
(ADAN) to address domain adaptation problem of SRL. The
ADAN framework consists of two core components: (i) role
classifier that predicts the label of a given sample; (ii) do-
main discriminator that predicts whether a sample is from
source domain or target. The two components have differ-
ent objectives. The optimization objective of the role clas-
sifier is to minimize the classification errors on the training
set which can make the learnt features be discriminative for
the final decision while the optimization objective of the do-
main discriminator is to maximize the domain classification
errors which can encourage the domain-invariant features to
emerge. In the implementation (see Fig. 1), we first use a Bi-
LSTM layer to encoder the input sequence and then feed the
hidden states into two full connected layers: the role classi-
fier and the domain discriminator. The model is trained by
optimizing the two components jointly. It is noted that the
training set contains data from source domain and target do-
main and there are only unlabeled data in the target domain.
If the input sample is from target domain, we train the model
only by optimizing the domain discriminator. We carried
out experiments on the out-domain data of the CoNLL 2009
shared task. The experimental results show that compared
with the existing systems, our method can largely reduce
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Fig. 1 The overview of our approach.

the performance drop on out-of-domain test data.
The remainder of this paper is organized as follows.

Section 2 introduces the related works. The proposed
method is presented in Sect. 3. The experiments and results
are presented in Sect. 4. Finally, the conclusion is shown in
Sect. 5.

2. Related Work

2.1 Semantic Role Labeling

Semantic Role Labeling (SRL) is an important basic task
in NLP community. Gildea and Jurafsky [15] proposed the
first SRL system which casts SRL as the classification task
of machine learning and defines many manual features for
the classifier. After Gildea and Jurafsky [15], many atten-
tions are payed on feature engineering [16]–[20], efficient
inference [21], [22].

Recent years have witnessed the great success of deep
neural network in Computer Vision (CV) and Natural Lan-
guage Processing (NLP). A series of neural model have been
designed for SRL. Collobert and Weston [23] employed a
Multi-Layer Perceptron (MLP) to fastly parse a sentence.
Based on Convolutional Neural Network (CNN), Collobert
et al. [24] proposed a multi-tasks architecture that can per-
form Part-Of-Speech Tagging, Chunking, Named Entity
Recognition and Semantic Role Labeling jointly. Zhou and
Xu [25] introduced deep bi-directional recurrent network as
an end-to-end system for SRL that performed better that the
previous state-of-the-art system. Similarly, Marcheggiani
et al. [26] also proposed a syntax-agnostic model for de-
pendency SRL and obtained favorable results. These deep
model do not use syntax information. Despite the success of
syntax-agnostic models, many works [15]–[22] think syntax
information is useful for SRL and there have been several
works which focus on leveraging the advantages of syntax.
Roth and Lapata [27] embed dependency path as syntactic

information into a model and exhibited a notable success.
Li et al. [28] extended existing models and proposed a uni-
fied framework to investigate more effective and more di-
verse ways of incorporating syntax into sequential neural
networks. Different from the above works, our work is con-
structed based on a Bi-LSTM neural model and an adver-
sarial domain classifier is incorporated into the model to en-
hance the domain-invariant features to emerge.

2.2 Domain Adaption

Here, we review the works related to domain adaption in
NLP. Blitzer et al. [9] proposed a model called structural
correspondence learning (SCL) and they use the pivot fea-
tures to induce a projected feature space in which source
and target domain are similar. Following the work, Pan et
al. [10] proposed a graph-based model to exploit the rela-
tions between the pivot features and the non-pivot ones. Al-
though these works report promising results, they have one
limit that the performance depend heavily on the heuristic
selection of pivot features. Moreover, the pivot features are
sensitive to different applications.

In the community of SRL, there have been some re-
lated works. Huang and Yates [29] leveraged latent-variable
language models to learn kinds of features that are useful for
SRL in out-of-domain test set. Do et al. [30] tried to replace
important words from semantic frames in the training set by
words in the vocabulary of the testing domain to create new
semantic frames which are closer to the testing set, which
can improve the generalization power of the SRL classier
but the perform of their method rely on many linguistic re-
sources such as WordNet. Based on distributed word repre-
sentations, Hartmann et al. [31] developed a straightforward
approach to frame identification of FrameNet-style SRL and
thanks to the generalization power of distributed word rep-
resentations, their method achieved good results on out-of-
domain test. Yang et al., [13] utilized Deep Belief Networks
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(DBN) to learn the common features across domains. But,
their method use over 1M one-hot features as the input of
DBN which cause DBN to be hard to train. Different from
the above works, this paper focuses on address the domain
adaption of SRL through adversarial learning.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GAN) was originally in-
troduced in the community of Computer Vision. Goodfel-
low et al. [32] firstly proposed the idea of GAN in which a
generator and a discriminator are constructed and the gen-
erator can produce the noise data while the discriminator
should classify whether the data is real or noisy. They re-
ported promising results in the task of image classification
and proved that adversarial networks can narrow two dif-
ferent distributions. Inspired by the idea of Goodfellow
et al. [32], several variants of GAN such as DCGAN [33],
Cycle-GAN [34] has been explored to improve the perfor-
mance. Ganin and Lempitsky [35] utilized a simple gradient
reversal layer to learn discriminative and domain-invariant
features for image classification. Tzeng et al. [36] proposed
a generalized framework for adversarial adaptation in which
discriminative modeling, untied weight sharing, and a GAN
loss are combined together.

Inspired by the works in CV, adversarial training has
also been explored in some typical NLP tasks. Wang et
al. [37] used adversarial learning for microblog sentiment
classification. Then, Li et al. [38] proposed to use adver-
sarial training for open-domain dialogue generation.

3. Methodology

In this section, we describe the proposed method in detail.
The main idea is that we use adversarial learning to learn
domain-invariant features from both source domain and tar-
get domain. It is noted that all data of target domain are
unlabeled, thus our model belongs to unsupervised adaption
methods which does not use any labeled data of target do-
main.

3.1 Model Overview

The overview of our model is shown in Fig. 1. As shown
in Fig. 1, our model consists of four main modules: (1) the
word layer that transforms the word sequence into vector
representations via a lookup table; (2) the Bi-LSTM layer
that transforms the vector representations into a latent vec-
tor with a fixed length; (3) the role classifier that predicts
the label of the input argument; (4) the domain discrimina-
tor that predicts whether the data comes from the source do-
main or the target. We assume that we have a set of labeled
training samples {s1, . . . , sN} from the source domain and a
set of unlabeled data {sN+1, . . . , sM} from the target domain.
In the next, we will illustrate the four modules in detail.

3.2 Word Layer

The word layer is mapping discrete language symbols into
distributed real vectors. Usually, an embedding matrix is
built to store all embedding vectors. In the task of semantic
role labeling, argument classification is related to the predi-
cate directly, thus the predicate-related features are also in-
troduced. Following Li et al. [27], in this paper, for a word
ei in a sentence s, we construct the concatenation of the
following features: a randomly initialized word embedding
xr

k, a pretrained word embedding xp
k , a randomly initialized

lemma embedding xl
k, a randomly initialized POS tag em-

bedding xpos
k , and a predicate-specific feature x f

k , which is a
binary flag indicating whether the current word is the given
predicate. The whole distributed real vectors for the word
xk in a sentence s is [xr

k, x
p
k , x

l
k, x

pos
k , x

f
k ].

3.3 Bi-LSTM Layer

We use a Bi-LSTM layer to transform the input text into
a vector with a fixed length. Many neural models have
been investigated to model texts such as recurrent neural
networks [24], convolutional neural networks [23]. Here we
adopt recurrent neural network with long short-term mem-
ory (LSTM) due to their superior performance in addressing
long-term dependencies [23], [24].

Here, we give a brief formulation about LSTM. Let us
use X = (x1, x2, . . . , xN) to denote an input sequence where
xk ∈ R, 1 ≤ k ≤ N. At each position k, there is a set of
internal vectors, including an input gate ik, a forget gate fk,
an output gate ok and a memory cell ck. All these vectors are

used together to generate a d-dimensional hidden state
−→
hk as

follows:

ik = σ(W ixk + V ihk−1 + bi)

fk = σ(W f xk + V f hk−1 + b f )

ok = σ(W oxk + V ohk−1 + bo)

ck = fk � ck−1ik + tanh � (Wcxk + Vchk−1 + bc)
−→
hk = ok � tanh(ck)

where σ is the sigmoid function, � is the element-wise mul-
tiplication of two vectors, and all W∗ ∈ Rd×l, V∗ ∈ Rd×d,
b∗ ∈ Rd are weight matrices to be learned.

The above LSTM processes the input sequence in the
forward direction, and we can get a d-dimensional hidden

state
−→
hk. Similarly, we can also process the input sequence

in the backward direction and we can get a d-dimensional

hidden state
←−
hk. By concatenating the two states, we get a

contextual representation hk = [
−→
hk,
←−
hk], which will be taken

by the next layer of our framework.
Formally, the BiLSTM layer can be formulated as the

following equation,

hk = lstm(xk; θl)
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Where θl is the parameters of the Bi-LSTM layer.

3.4 Role Classifier

We use a softmax layer to make the final role prediction.
The role classifier takes the output vector hk of Bi-LSTM
layer as the input and its output is denoted as ŷk. The role
classifier f can be formulated as follows,

ŷk = f (hk; θy)

Where θy is the parameters of the role classifier f . The pa-
rameters of the role classifier f can be trained to minimize
the cross-entropy of the predicted role ŷ j

k and gold role y j
k.

The objective function of f is

Lossrc(hk; θy) = −
N∑

k=1

lk∑

j=1

y j
k log(ŷ j

k)

where lk denotes the length of the sentence and y j
k is the

ground-true label at the position k of the sentence with the
length lk.

3.5 Adversarial Training

If we only use the cross-entropy loss of the role classifier to
train the model, our method can be seen as a standard super-
vised model which performs poorly on the out-of-domain
evaluation due to the divergence between source domain
data distribution and target domain data distribution. There-
fore, we introduce adversarial learning to learn a domain-
invariant features space.

Recent years have witnessed great successes of adver-
sarial networks. Its idea is to learn a generative distribution
pG(x) that matches the real data distribution pdata(x) Specif-
ically, GAN learns a generative network G and discrimina-
tive model D, in which G generates samples from the gener-
ator distribution pG(x) and D learns to determine whether a
sample is from pG(x) or pdata(x). Adversarial networks can be
optimized by playing a max-min game in which discrimina-
tive model D is trained to classify the real samples correctly
and fails to classify the samples generated by the generator
distribution pG(x).

The main reason for the domain adaption problem is
the giant difference between source domain data distribu-
tion and target domain data distribution. The problem can
be tackled if we can construct a new vector space where
the divergence between the two distributions are very small.
Some works [28], [29] suggest that the adversarial loss can
measure the H-divergence between two distributions. Thus,
this paper incorporates adversarial learning to narrow down
the divergence between the source distributions and the tar-
get.

We first introduce the domain discriminator in adver-
sarial learning. The domain discriminator takes the out-
put hk of Bi-LSTM layer as the input, and predicts whether
the input sequence is from source domain or target domain.

Here, we also use a softmax layer to build the domain dis-
criminator fd. The output of the domain discriminator is de-
noted as d̂k. The domain discriminator fd can be formulated
as the following equation,

d̂k = fd(hk; θd)

where θd is the parameters of the domain discriminator fd.
The loss lossadv of the domain discriminator is defined as
the cross-entropy of the predicted domain label d̂k and the
ground-true domain label dk.

Lossadv(hk; θd) = −
M∑

k=1

lk∑

j=1

d j
k log(d̂ j

k)

where d j
k is the ground-true domain label at the position k of

the sentence.
Formally, we consider the joint loss function in below,

Loss(θ f , θy, θd) = Lossrc(θ f , θy) − λLossadv(θ f , θd) (1)

Following the setup of the adversarial training [28], we
design a min-max game to optimize the whole network. The
train process consists of the following two parts.

(θ̂ f , θ̂y) = arg min Loss(θ f , θy, θ̂d)

(θ̂d) = arg max Loss(θ̂ f , θ̂y, θd)
(2)

The saddle point (θ̂ f , θ̂y, θ̂d) is obtained by training the
two parts alternately and each part is optimized according
to the different parameters. In the max step, the param-
eters θ̂d of the domain discriminator seek to minimize the
domain classification errors (since it enters with the minus
sign). In the min step, the parameters θ f and θy are updated
jointly. The parameters θ̂y of the role classifier seek to min-
imize the role classification loss while the optimization of
the parameters θ̂ f has two goals. One goal is to minimize
the role classification loss, which make the learnt features
are discriminative for role classification and the other is to
maximize the domain classification loss which enhances the
domain-invariant features to emerge up. The parameter λ
is the hyper-parameter which makes a trade-off between the
min and max game.

Algorithm 1 illustrates the pseudo-code of adversarial
training. In the beginning, we initialize the model parame-
ters θ f , θy, θd and the batch size is set to S . During the train-
ing, for each batch we first make a forward propagation and
compute the loss to update θ f , θy using SGD; then, compute
the loss again to update θd using SGD.
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4. Experiments

4.1 Experiment Setup

To evaluate the proposed method, we conduct experiments
on a benchmark: the English portion of CoNLL 2009 shared
tasks. In the dataset, the training data comes from WSJ cor-
pus while the out-of-domain test data comes from Brown
corpus. Our method belongs to the unsupervised adaption
method which needs a large set of unlabeled data. Here,
we use unlabeled data consisting of the following sections
of the Brown corpus: K, L, M, N, P. The proposed method
is expected to learn domain-invariant features from both la-
beled and unlabeled data. The labeled training data from
WSJ contains 39279 sentences while the unlabeled data
from Brown contains 16407 sentences.

In the experiments, we use the pretrained GloVe em-
bedding vectors† to initialize the word vectors and the di-
mension of word embedding as 100. All other vectors are
randomly initialized, the dimension of lemma embeddings
is 100, and the dimension of POS tag embedding is 64. The
BiLSTM layers contains 256-dimensional hidden units. The
dropout rate is set to 0.1, the batch size is 32, the learning
rate is 0.001 and the max epoch is 30. The hyper-parameter
λ is set to 1.

4.2 Metrics and Comparison Systems

We use the official tool†† to score the outputs of different
systems. The metrics about SRL in the tool are Precision
(P), Recall (R) and labeled F1 score (F1). In this paper, we
compare the proposed method with the below systems,

• SourceLabeler. The system is a standard supervised
model which only takes classifications errors as the op-
timization objective.

• Zhao09. The system [17] reaches the best results on
the out-of-domain test of the CoNLL 2009 shared task.

• Yang15. The system [13] utilizes deep belief network
to learn a latent feature representation (LFR) for differ-
ent domains in SRL.

• Liu15. We implement a multi-task learning frame-
work [39] in which the hidden layers are shared by
two domains while keeping two domain-specific out-
put layers. Training the framework need labeled data
of the target domain. Here, we utilize SourceLabeler
to classify unlabeled data of Brown.

• Kim16. The system [12] proposes an easy feature aug-
mentation method for domain adaption. We implement
their method based on SourceLabeler system.

• Roth16. The system [27] jointly learns embeddings for
dependency paths and feature combinations in a neural
sequence-to-sequence model.

• Marcheggiani17. The system [26] proposes a version
†https://nlp.stanford.edu/projects/glove/
††https://ufal.mff.cuni.cz/conll2009-st/eval09.pl

Table 1 Comparison results.

of graph convolutional networks for semantic role la-
beling.

4.3 Results and Discussions

Table 1 shows the results of all comparison systems on WSJ
and Brown test set. From the table, we have the following
observations.

First, the F1 scores of all systems on Brown test set
drop severely about 10 points compared with on WSJ test
set, which experimentally confirms the domain adaption
of semantic role classification. Our method achieves 78.6
F1 score on Brown test set, 1.8 points improvement over
SourceLabeler system, which suggests that the features
learned by adversarial learning are beneficial to classifying
roles of Brown corpus. It is also noted that our method per-
forms poorer slightly on WSJ test set compared with Source-
Labeler. We think the reason is that our method fails to
learn some exclusive and discriminative features of source
domain.

Second, we compare our method with Kim16. Kim16
employs an easy feature augmentation method for domain
adaption and achieves 77.5 F1 score on Brown test set, 0.7
points higher than SourceLabeler which shows that the fea-
ture augmentation manner helps relieve domain adaption but
the improvement of their method is limited.

Third, we compare our method with Yang15. Yang15
utilizes deep belief network to learn a latent feature repre-
sentation (LFR) for different domains and they report good
results. But, one limit of their method is that they take one-
hot features as the input of the network. There are more than
1,000,000 original features in the system, and thus their net-
work is very huge. Training such a huge network is very
costly and inefficient while our method can be trained effi-
ciently due to its compact architecture. Therefore, although
their method achieves comparable results with ours, our
method is be superior to theirs in efficiency. Besides, the
features and the classifier in their model are learned inde-
pendently while our method can perform deep feature learn-
ing and role classification in the same framework together.

Fourth, we compare our method with Liu15. Liu15 im-
plements a multi-task learning framework in which the hid-
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Fig. 2 The performance curve of our method as more unlabeled data be-
ing added.

den layers are shared by the two domains and the hidden
layers are expected to learn generalized features for SRL.
However, the performance of their method heavily depends
on the quality of automatically labeled data of target domain
while our method only needs unlabeled data of target do-
main.

Last, we compare our method with Zhao09, Roth16
and Marcheggiani17. These systems explore syntax in-
formation for semantic role classification. Many previous
works [14]–[17] show that syntax information is important
for role classification but syntax information between dif-
ferent domains have giant difference which causes poor per-
formance on Brown test set. Our method achieves large im-
provement over these methods.

4.4 Effects of Unlabeled Data from Brown Corpus

The proposed method in this paper is expected to learn
domain-invariant features from both source domain and tar-
get domain, thus the performance is influenced by the unla-
beled data of Brown corpus. Here, we investigate the effects
of unlabeled data on the performance. Figure 2 shows the
curve of the performance on Brown test set as more unla-
beled data being added. From the figure, we can see that
the performance of our method can improve as more unla-
beled data being added. This suggests that unlabeled data
from Brown corpus is crucial to our method and our method
can learn discriminative and domain-invariant features. Af-
ter 10k sentences are added, the curve reaches a peak and
although even more data being added, there is not signifi-
cant improvement.

4.5 Effects of the Length of the Sentences

Previous work shows that the performance of SRL is influ-
enced by the length of the input sentence. Thus, we furtherly
investigate the effects of the sentence length. Here, we com-
pare our method with SourceLabeler system. We divide all
sentences of Brown test set into six groups [1-5], [6-10],
[11-20], [21-30], [31-50] and [51-]. The statistics about dif-
ferent groups are shown in Table 2. Most sentences fall in
the groups [6-10], [11-20] and [21-30].

Figure 3 shows the performance comparisons of the

Table 2 The statistics about different groups of Brown test set.

Fig. 3 The comparisons on different groups of Brown test set.

Fig. 4 The performance curve of the role classifier and the domain dis-
criminator as training progresses.

two methods. From the figure, we can see a shared trend of
the two methods is that the performance drops as the length
of the sentences and the group [1-5] reaches the best per-
formance while the group [51-] reaches the poorest perfor-
mance. Our method achieves better results than SourceLa-
beler over all groups. An interesting point is that the perfor-
mance gap of the two methods on the group [1-5] is smaller
than other groups, which indicates that our method can per-
form better on long sentences than SourceLabeler.

4.6 Discussions about Adversarial Learning

In this paper, we use adversarial learning to drive the
domain-invariant features to emerge up. Here, we further
investigate how adversarial learning works in the training
process. Figure 4 shows the performance curve of the role
classifier and the domain discriminator on the training set as
training progresses. The vertical axis means F1 score for the
domain classifier and accuracy for the domain discrimina-
tor. As can be seen from the figure, in the first 5 epochs, the
accuracy of domain classification improves slowly. Then,
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it fluctuates around random chance level (50%) with a big
wave. After 20 epochs, the accuracy of domain classifica-
tion is stable, which indicates that the learnt features can
confuse the domain discriminator and adversarial learning
successfully make domain-invariant features to emerge up.
Different from the performance curve of the domain dis-
criminator, the F1 score of the domain classifier improves
fluctuantly in the whole training process and converges af-
ter 30 epochs. In summary, the two curves prove that the
learnt features by adversarial learning are domain-invariant
and discriminative for SRL.

5. Conclusions

Current SRL systems face severe domain adaption problem,
which limits the system’s application on other domains. The
reason is the giant feature difference between source and tar-
get domain. To relieve the problem, this paper proposes an
adversarial domain adaption network for SRL. The core of
our idea is to learn domain-invariant features via adversar-
ial learning. We conduct experiments on CoNLL2009 share
tasks and experimental results evaluate the effectiveness of
our method. The domain-invariant features learned by ad-
versarial learning can narrow down the discrepancy between
different domains and relieve the domain adaption problem
of SRL greatly.
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