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An Energy-Efficient Task Scheduling for Near Real-Time Systems
on Heterogeneous Multicore Processors
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Takashi TSUCHIYA††††, Masanori HAYASHIKOSHI††††, Nonmembers,

and Hiroshi NAKAMURA††, Senior Member

SUMMARY Near real-time periodic tasks, which are popular in multi-
media streaming applications, have deadline periods that are longer than the
input intervals thanks to buffering. For such applications, the conventional
frame-based schedulings cannot realize the optimal scheduling due to their
shortsighted deadline assumptions. To realize globally energy-efficient ex-
ecutions of these applications, we propose a novel task scheduling algo-
rithm, which takes advantage of the long deadline period. We confirm our
approach can take advantage of the longer deadline period and reduce the
average power consumption by up to 18%.
key words: adaptive task scheduling, near real-time processing, energy
efficiency, heterogeneous multicore processors

1. Introduction

In most embedded systems, jobs arrive periodically. Input
interval length is defined as the distance between arrival
times of successive jobs. In a recent evolving information
society, processors are required to execute a wide variety
of tasks with different input interval and execution time.
For instance, an IoT sensor, which monitors several kinds of
sensors such as temperature, vibration, and image, executes
the same number of tasks as that of the sensors. Each task
is invoked suitable interval of the corresponding sensor. An
example is shown in Fig. 1. Each task consists of periodic
jobs.

Meanwhile, minimizing the energy consumption of
embedded systems is a very critical concern. To adapt to
such a situation, heterogeneous multicore and DVFS (Dy-
namic Voltage and Frequency Scaling) [1]–[3] can be very
effective. In Fig. 1, there are two processors; MCUhigh,
which is a high-performance MCU (Micro Controller Unit)
and MCUlow, which is an energy efficient MCU. In this
figure, the y-axis shows the relative power consumption.
However, ASAP (As Soon As Possible) scheduling, which
is the most straightforward algorithm, only uses MCUhigh
and cannot take advantage of heterogeneous multicores
(Fig. 1 (a)).
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Therefore, adaptive task scheduling, which includes
execution timing management and adaptive active core se-
lection, is indispensable for low power embedded systems.
To cope with this challenge, several energy efficient algo-
rithms have been proposed [4], [5]. However, most of them
assume that the deadline period is the same as the input
interval and schedule jobs within only one hyper period.
The hyper period is defined as the least common multiple
(L.C.M.) of the input intervals. As a result, they can inde-
pendently minimize the energy consumption only in each
hyper period and realize energy-efficient scheduling within
each interval as shown in Fig. 1 (b). Therefore, this schedul-
ing cannot take advantage of the deadline period that is
longer than the input interval.

To solve this problem a continuous task scheduling al-
gorithm that can take advantage of the longer deadline pe-
riod has been proposed [6] as shown in Fig. 1 (c). In this ex-
ecution, two MCUs are used exclusively to improve energy
efficiency during execution and the number of core switch-
ing is reduced to minimize the energy overhead.

Our approach here is to propose an energy-aware task
scheduling algorithm that can take advantage of the longer
deadline period as shown in Fig. 1 (d) [7]. In this execution,
(A) the usage of energy efficient core (MCUlow) is maxi-

Fig. 1 Scheduling for periodic tasks
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mized, namely MCUlow is always on to maximize energy
efficiency during execution and (B) the energy overhead is
also minimized.

To realize energy-efficient task scheduling, the primary
contributions of this paper are as follows.

• We propose an energy-aware scheduling that takes ad-
vantage of the deadline period that is longer than the
input interval.
• We try to maximize the usage of energy efficient core

and achieve the highest energy efficiency.
• We try to minimize the number of core switching and

achieve significant energy reduction.

The remaining parts of this paper are organized as fol-
lows. Sections 2 and 3 introduce background and related
work respectively. Section 4 presents the target problem and
proposed task scheduling. Experimental results appear in
Sect. 5. Finally, Sect. 6 concludes this paper.

2. Background

2.1 Embedded Systems

In this paper, we assume that a system that has heteroge-
neous multicores and any core can be used at any time. We
also assume a set of near real-time tasks as shown in Fig. 1.
In each task, jobs are arrived periodically, nonpreemptive
and their sizes are known and fixed. The execution times
can be calculated by the job sizes and the processor perfor-
mances. The jobs are independent of each other. Within a
task, the jobs are invoked FCFS (First Come First Serve)
policy, but they may finish different order due to perfor-
mance differences of the assigned cores. Their deadline pe-
riods of near real-time tasks are longer than their input in-
tervals.

2.2 Basics of Energy Model

In general, the relation between energy, voltage and clock
frequency can be modeled by following known equation [8].

Eproc = α1T1CV2 f + T2VIleak. (1)

Here, Eproc represents the energy consumption of the
microprocessor. α1,T1,C,V and f represent a constant
value, the execution time, the circuit capacity, the supply
voltage, the operating frequency respectively. T2 and Ileak

represent the total time that includes idle period and the
leakage current respectively.

The first and the second terms represent the dynamic
and the static energy respectively. The former is caused by
switching activities of transistors and essentially consumed
by computing. On the other hand, the latter is caused by
leakage current and always consumed whenever power is
supplied.

The higher performance is realized by higher voltage,
frequency and the larger circuit that causes the larger circuit
capacity.

In general, more powerful processor core consumes
more energy. There exists an empirical model between them
called Pollack’s Rule [9]. The performance is roughly pro-
portional to the square root of a processor’s area. The static
power is proportional to the area while the dynamic power
is more complex and it can be regarded as being roughly
proportional to the performance since switching rates dif-
fer between functional units (FUs) and other parts (in gen-
eral, they switch less frequently than FUs). Therefore, us-
ing smaller core is better from the viewpoint of energy effi-
ciency.

3. Related Work

In this section, we introduce existing energy efficient task
scheduling algorithms.

Frame-based scheduling is widely studied [4], [5],
[10]–[13]. Their target applications consist of multiple
tasks. However, the main drawback of these frame-based
optimization algorithms is they often assume that the dead-
line period is the same as the input interval even if the dead-
line periods are longer than input intervals. In other words,
they always complete any job before the next job that be-
longs the same task arrives. Even though some of them can
manage the longer deadline directory, they consider energy-
efficient scheduling within a hyper period only and same
scheduling is applied repeatedly. Namely, all of the jobs
must be finished before the boundary of the hyper periods.
As a result, the scheduling is optimized within a hyper pe-
riod and the improvement of the energy efficiency is limited.

For example, there are five jobs in a hyper period in
Fig. 1 (b). These five jobs are optimized in a hyper period.
However, due to scheduling flexibility is limited in the hyper
period, both cores are powered on and off very frequently.
Scheduling multiple hyper periods at the same time can be a
solution to this limitation. However, scheduling cost grows
exponentially with the larger scheduling flexibility. To alle-
viate this issue, a heuristics approach is proposed [14].

Another approach that can take advantage of the longer
deadline period has been proposed [6]. This scheduling can
schedule jobs across multiple hyper periods and active core
performance is chosen dynamically based on a slack time,
which is defined as the difference between the current time
and the deadline of the next job. This approach realized
better energy efficiency than the frame-based schedulings.
However, they assume only one core is active at the same
time such as DVFS processors. Due to this limitation, this
approach cannot take advantage of heterogeneous multipro-
cessors.

Another approach is a prediction based schedul-
ing [15]. The effectiveness of this approach relies on the
accuracy of its execution time predictor. Additionally, such
run-time prediction must need additional computation cost
and a waste of energy.
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4. Energy-Aware Task Scheduling

4.1 Problem Definition

Firstly, we introduce input variables, which are related to
hardware and software, as shown in Table 1. These variables
are given or are easily computed from other given parame-
ters.

A task consists of periodical and homogeneous jobs. N
represents the number of tasks. The tasks have IDs j( j =
A, B,C, . . . ) and characterized by an Input interval I( j), a
deadline period d( j) and a size W( j). l( j) represents a load
factor of task j (l( j) = W( j)/I( j)). We assume the higher
load factor task has the later ID j.

The cores also have IDs c (c = c1, c2, c3, . . . , cM). For
heterogeneous multicore systems, each ID corresponds to
a logical core. On the other hand, for a processor that
has DVFS technology, each ID corresponds to each perfor-
mance mode. M represents the number of available cores
and p(c) represents the performance of core c. We assume
the higher performance core has a larger ID. et( j, c), P(c),
Ps(c) represent the execution time of task j on core c and
the dynamic and static power of core c respectively. Here,
et( j, c) is defined as follows.

et( j, c) =
W( j)
p(c)
. (2)

EOV (c) and TOV (c) represent total energy and latency
overhead of power on and off transition on core c. This over-
head can contain cold start overhead of assigned tasks.

We assume that the higher performance core executes
any jobs faster with larger power consumption. Therefore,
the following inequalities are satisfied.

∀ j,For px < py :

et( j, cx) > et( j, cy) (3)

P(cx) < P(cy) (4)

Ps(cx) < Ps(cy) (5)

Additionally, we also introduce a hyper period HP,

Table 1 Input variables

Variables Definition

N Number of tasks
I( j) Input Interval of task j
d( j) Deadline period of task j
W( j) Size of task j
l( j) Utilization of task j (l( j) = W( j)/I( j))
M Number of cores
p(c) Performance of core c
et( j, c) Execution time of task j on core c
P(c) Dynamic power of core c
Ps(c) Static power of core c
EOV (c) Overhead energy of power state transitions of core c
TOV (c) Overhead latency of power state transitions of core c

HP Hyper period
L Number of jobs in HP

which is defined as L.C.M. of I( j). In an HP, there are L
jobs. L is given as follows.

L =
∑

j

HP
I( j)
. (6)

We also define Lc as the number of jobs on core c in an HP.
Our ultimate goal is to minimize the energy consump-

tion under performance constraint. As a result, objective
function and the constraint condition are as follows. In the
following sections, we solve this optimization problem.

min (Average energy consumption of cores per input)

s.t. (Satisfy deadline constraints)

4.2 Core Selection

When there are M available cores and their performance is
different from each other, the number of possible core se-
lection is 2M − 1. If some cores have DVFS capability,
each frequency mode is regarded as independent core and
some physically impossible combinations are removed from
2M − 1 candidates beforehand. Here we define a set of se-
lected cores as C′m′ and its total throughput tp(C′m′ ) is also
defined as follows.

tp(C′m′ ) =
∑

c∈C′
m′

p(c). (7)

We assume the higher performance set of cores has the
larger ID.

To minimize energy consumption, some of them are
obviously removed from the candidates. Namely, a set
that has lower performance but consumes more energy than
other sets should be removed. To find valuable sets, we in-
troduce power efficiency pe. The power efficiency of set C′m′
is defined as follows.

pem′ =

∑
c∈C′

m′
(P(c) + Ps(c))

tp(C′m′ )
(8)

When x-axis and y-axis are throughput (tp) and power
consumption (P) respectively as shown in Fig. 2.

From these sets, the first valuable set is the most power
efficient set, namely line that has the smallest gradient. In

Fig. 2 Power efficiency
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this example, C′1 is chosen. If there are lower performance
sets than that, they are marked as useless sets. Then the
same procedure is applied for remaining sets until all sets are
classified. Finally, there are three valuable sets (C′1,C

′
3,C

′
6),

which are marked with red color, in this example. These
valuable sets are defined as Cm (m = 1, 2, . . . ). Cm is ob-
viously Pareto optimal. Namely, any performance between
tp(C′1) and tp(C′6) can be realized by a combination of C′1,
C′3 and C′6 with the minimum power consumption.

Utilization on core set Cm is defined as follows.

U(Cm) =
∑

j

l( j)
tp(Cm)

=
∑

j

W( j)
I( j) · tp(Cm)

(9)

If U(Cm) > 1, such core set Cm cannot execute all tasks.
Therefore, a core set that has U(Cm) less than or equal to 1
is required. If U(Cm) = 1, such core set can execute all tasks
continuously and core set Cm can be the optimal core set. In
this case, further discussion is not required. Hereafter, we
focus on other cases.

To minimize the average energy consumption, dynamic
core selection is the key. First, we should choose a core
set Clow that have the smallest U(Clow) greater than 1 and a
core Chigh that have the largest U(Chigh) less than 1. Then,
(1−U(Chigh))/(U(Clow)−U(Chigh)) of total tasks are executed
on set Clow and the remaining tasks are executed on set Chigh.
The execution will continue endlessly on either core set.

If total task size is too small and Clow is not found,
heterogeneous multicores are not required and intermittent
scheduling algorithms such as [16] should be considered.

4.3 Task Assignment

In this section, we introduce how to assign tasks to each core
in a core set.

Now, there are M′ cores in a core set Cx, and these
cores are defined as cx

m(m = 1, 2, . . . ,M′) and utilization of
each core is defined as u(c). To minimize core set switching,
the utilization of each core should be as same as possible. To
realize such a task assignment, we introduce the following
algorithm.

When core utilization is ideally balanced, the ratio of
assigned job size is same as that of core performance p(cm).
Therefore, the ideal utilization of core cm is defined as fol-
lows.

uideal(cm) =
p(cm)

∑
j l( j)

tp(Cx)
. (10)

First, the smallest task is assigned to the lowest per-
formance core (c1). Then, if its utilization does not exceed
uideal(c1), the next smallest task is assigned to c1. When
the utilization exceeds uideal(c1), there are two possibilities,
whether the last assigned task is assigned to the current core
(c1) or the next core (c2). To find the best assignment, we
search for both possibilities concurrently. As a result, we
can get 2M′−1 combinations.

Finally, we calculate sum of the difference from ideal

utilization and the best assignment, which minimizes the er-
ror, as follows.

min
∑

m

|uideal(cm) − u(cm)| . (11)

In the above discussion, we assume every job that be-
longs to the same task is assigned to the same core, in other
words, this is per-task basis assignment. To realize more
flexible assignment, per-job basis assignment is possible. In
this case, the jobs in a hyper period should be considered
independently at the same time. In the rest of this paper, to
simplify the discussion, we use per-task assignment.

Additionally, the utilization of every core in Chigh must
satisfy the following condition.

∀c ∈ Chigh, u(c) ≤ 1. (12)

Otherwise, deadline violation will happen. If this condition
is not satisfied, we should choose a higher performance core
set as Chigh. If there does not exist such core, there is no
solution.

Meanwhile, the execution time of any task on a core in
set Clow and Chigh must shorter than the deadline period d( j).
This condition is given as follows.

∀ j,∀c ∈ (Chigh ∪Clow), et( j, c) < d( j). (13)

4.4 Job Scheduling

We adopt a lumped execution [17], which executes multiple
jobs continuously. To realize this execution, a job is not exe-
cuted immediately after it arrives but postponed until several
jobs arrive. Then, these ready jobs are executed continu-
ously on the core set Clow. In case the deadline violation is
predicted during execution, the working core set is changed
to the core set Chigh. After a while, in case that the lumped
execution is not possible on Chigh due to lack of ready jobs,
then the core set is switched to Clow.

In the end, it comes down to a problem that when the
execution starts and how many jobs are executed on each
core set Chigh and Clow.

4.4.1 Scheduling Algorithm

The proposed task scheduling is based on the lumped exe-
cution. In the following part, to apply lumped execution, we
assume d( j) ≥ HP. As long as this condition is satisfied,
Chigh can guarantee to meet deadline constraint. Otherwise
higher performance core set than Chigh may be required. The
detail of the scheduling when d( j) < HP will be discussed
in Sect. 4.4.3.

Here, we explain the details of the proposed task
scheduling algorithm. The initial state is S 0, which indi-
cates that all of the processors are off. The other states are
S high and S low. They correspond to Chigh and Clow are active
respectively.
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4.4.2 Obtaining Energy-Efficient Scheduling

In this section, we explain how to obtain energy-efficient
scheduling. Every job has been assigned to suitable core on
each core set in the previous section. In each core, jobs that
assigned the same core will be executed FCFS policy.

As an example, we assume two tasks (denoted as A
and B) are executed on two heterogeneous cores (denoted
as MCUhigh and MCUlow). The input interval of task A is
2/3 of that of task B. As a result, HP is same as the double
of the input interval of task B. In a HP, there are 5 jobs
(L = 5).

To realize continuous execution with two different per-
formance core set, periodical core switching is necessary.
To minimize energy consumption, the switching interval
should be maximized.

First, we start from S 0, which is power off state. Now,
we explain how to obtain start, which indicates when the
first job should start. When first L jobs are executed on S low,
if any job will not be ready, the execution should not be
started yet to avoid unnecessary idle time.

To obtain start, the current time is set to be 0 and then
the first job in HP has just arrived now. In each core which
belongs to Clow, begin time of ith job is denoted as bi and
given by follows.

bi = b1 +

i−1∑

k=1

et(id(k), c) (i = 2, 3, . . . , Lc). (14)

Here, id(i) represents a task ID of ith job. Since the first job
just arrives, b1 is 0. If any bi is earlier than its arrival time,
the arrival violating time is denoted as vi. The maximum
value of them maxi(vi) gives the threshold start. Finally,
start is given by follows.

start = d −max
i

(vi) ∗ N. (15)

Here, d is a sum of slack times in Clow when the first job
arrives. When just before execution, the sum of slack times
is calculated and compared with the threshold start. If the
sum of slack times is larger than start, the execution should
be delayed until the condition will be satisfied.

Next, we discuss when core performance should in-
crease from S low to S high. When the next job is executed on
S low and then next L jobs are executed on S high, if any dead-
line violation occurs, the working state must be changed to
S high before executing the next job to meet deadline con-
straint.

Now, we explain whether the next job should be ex-
ecuted on Clow or Chigh with Fig. 3. In this example, Clow

consists of {MCUlow}. MCUlow executes both task A and
B. Chigh consists of {MCUhigh,MCUlow}. MCUlow executes
task A. MCUhigh executes task B. If multiple tasks are ar-
rived at the same time, we will schedule task A first.

Let’s assume the current state is S low and the next job
is B4. Now, we simulate the execution of the next job (B4)
on S low. After this execution, we also simulate next L jobs

Fig. 3 Scheduling from low to high

Fig. 4 Scheduling from high to low

(A6, A7, A8, B5 and B6) will be executed on S high as shown
with dashed boxes in Fig. 3 (a). Then the completion times
of these jobs are easily expected. If any job violates deadline
constraint, the next job (B4) should be executed on S high.
In this example, since the jobs B4, A6 and A7 violate its
deadline constraint as shown with black boxes, the next job
(B4) must be executed on S high as shown with a thick box in
Fig. 3 (b).

This procedure is repeatedly applied until any deadline
violation is expected. When it is expected, the current state
is changed to S high.

Next, we discuss when core performance should de-
crease from S high to S low. When the next job is executed on
S high and then next L jobs are executed on S low, if any job
will not be ready and any deadline violation is not expected,
the working state must be changed to S low before executing
the next job.

Now, we explain whether the next job should be exe-
cuted on S high or S low with Fig. 4. Let’s assume the current
state is S high, job A9 has been scheduled on S high and the
next job is B7. Now, we simulate an execution of the next
job (B7) on S high. After this execution, we also simulate
next L jobs (A10, A11, A12, A13, and B8) will be executed
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on S low as shown with dashed boxes in Fig. 4 (a). Then be-
gin and completion times of these jobs are easily expected.
If any job will not be ready and any deadline violation is not
expected, the next job (A10) should be executed on S low.
Otherwise, the current state must stay on S high. In this ex-
ample, since the jobs B7 is not ready as shown with a black
box, the next job (A10) must be executed on S low as shown
with a thick box in Fig. 4 (b).

This procedure is also repeatedly applied until any job
will not be ready. When it is expected, the current state is
changed to S low. At this moment, at least one core will be
powered off. If any job is running on the core, the core will
be powered off after the job is finished.

Consequently, while maintaining deadline restrictions,
the switching interval is maximized then the total energy
consumption is minimized.

4.4.3 Practical Scheduling

Schedulability of proposed algorithm relies on a condition
d( j) ≥ HP. To make our approach more practical, we ex-
plain how to guarantee the schedulability when d( j) < HP.

When any d( j) is smaller than HP, proposed schedul-
ing may violate deadline constraints during S high. For ex-
ample, when the next job X is executed on S low and then
next L jobs are executed on S high, if any deadline violation
does not occur, the job X is executed on S low. However,
when d( j) > HP, this algorithm cannot guarantee deadline
constraints and the future job may violate its deadline. It
means the job X must be executed on S high. If necessary, the
previous jobs of the job X must also be executed on S high.

To avoid this kind of rollback in a real execution, offline
scheduling is required. To guarantee schedulability for in-
definitely long times, fixed scheduling for fixed length must
be applied repeatedly. Therefore, if we can find periodicity
in our scheduling, the schedulability is strictly guaranteed
even when d( j) < HP.

To find the periodicity, we simulate proposed schedul-
ing with rollback mechanism. When the state is changed
from S high to S low, record next job on the new state and ex-
ecuting jobs and their slack times in other cores. If we find
the same transition as the previous transition, these transi-
tions are the beginning and the end of the loop of schedul-
ing. This condition can be expressed as follows.

∀c J(ki, c) = J(k j, c) ∧
s(ki, c) = s(k j, c) ∧ i < j. (16)

Here J(k,c) is job ID (1 · · · L) in HP when kth transition on
core c and s(k, c) is a slack time which is defined as the
difference between the finish time and the deadline on core
c. Once we find i and j, which satisfy the above condition,
after jth transition is done, scheduling from i to j can be
applied repeatedly.

One concern of this method is the size of the schedul-
ing table which stores scheduling from initial state to jth
transition. To alleviate this issue, we can relax the condition

as follows.

∀c
(
J(ki, c) = J(k j, c) ∧
s(ki, c) ≤ s(k j, c) ∧ i < j

)
∧

∑

c

(
s(k j, c) − s(ki, c)

)
≤ ε. (17)

Here, ε is a threshold, which is larger than 0. This condi-
tion allows for ambiguous matching. When this condition is
satisfied, by adding small sleep after jth transition on each
core c, from ith to jth scheduling can be applied repeatedly.
By adjusting the value of ε, we can manage the trade-off
between the size of the scheduling table and the energy re-
duction.

5. Evaluation

5.1 Evaluation Setup

5.1.1 Target Applications

To evaluate the energy efficiency of the proposed schedul-
ing, we considered the most important variation parameter
that is the utilization. Additionally, we focus on applications
whose deadline periods are longer than their input intervals,
which is a characteristic of near real-time periodical tasks.
If their deadline periods are shorter than or equal to their in-
put intervals, our scheduling can still guarantee the deadline
constraints.

In this evaluation, we use an application that consists of
multiple tasks. Task parameters are synthetically generated
and shown in Table 2. This application models a system that
has some distance sensors and some cameras. The task for
a distance sensor is small and the task for a camera is large.
To evaluate with a wide range, the number of task is varied.
We assume there are three distance sensor tasks and three
camera tasks at maximum.

5.1.2 Hardware Environment

We also measured energy parameters using an evaluation
board. The board is equipped with an RL78 [18] Micro Con-
troller Unit (MCU) and an RX63N [19] MCU, some sensors,
a communication unit and an external NVM. Sensors on
the board can help us to measure the energy consumption
of each unit separately. In this evaluation, we collect en-
ergy parameters of the MCUs, MCU1 and MCU4 are RL78
and RX63N respectively. MCU2 and 3 are generated by
interpolating between parameters retrieved from RL78 and
RX63N. Since these MCUs have different ISAs, we should

Table 2 Evaluation settings for tasks

Parameters Task J1, J2, J3 Task J4, J5, J6

Task ID j 1, 2, 3 4, 5, 6
Input interval I( j) 100 ms 50 ms
Deadline period d( j) 250 ms
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Table 3 Evaluation settings for the hardware platform

MCU1 MCU2 MCU3 MCU4

core ID c c1 c2 c3 c4

Relative Performance p(c) 1.0 2.0 3.0 4.0
Power Consumption in

Active state P(c) [mW] 15.4 36.8 90.9 231
Sleep state Ps(c) [μW] 0.69 2.07 6.20 18.6

Energy Overhead EOV(c)[μJ] 51.0 124 253 430
Exec time of

task J1, J2, J3 [ms] 2.4 1.2 0.8 0.6
task J4, J5, J6 [ms] 54.6 27.3 18.2 13.65

prepare two execution binaries for each task. If the board
is equipped with homogeneous ISA MCUs, we may share
the same execution binaries. The collected and assumed pa-
rameters are shown in Table 3. The energy parameters are
calculated from the power and execution time. The perfor-
mance ratio of these two MCUs is 4 and the execution time
of each task is measured as shown in Table 3.

5.1.3 Implementation

To implement the energy-efficient scheduling on a real sys-
tem, simple calculations to obtain completion times are re-
quired. When a target system starts, our scheduler indicates
when the first core set should be invoked by start. In each
active core, the slack time, which is defined as the difference
between the current time and the deadline of the next job, is
calculated and compared with the thresholds start. If the
slack time reaches the threshold, the first job starts.

When any job is completed, completion times of next
(L + 1) jobs are calculated and deadline or arrival time vio-
lations are checked. If any violation is detected, the active
core set is switched to the other core set.

If there exists no ready job, the core should be switched
to a sleep mode. Since the wake up time is easily calculated
from the current time and the arrival time of the next job,
the appropriate sleep mode can be determined and a simple
timer will wake the core up.

We estimate the energy consumption by software sim-
ulation with energy parameters which are measured using
an evaluation board. Since the computation cost of these
procedures is negligibly small, we assumed the scheduler
consumed no energy.

5.2 Energy Efficiency

To clarify the merit of our task scheduling algorithm, we
evaluate the average power consumption with an in-house
simulator, which refers to collected energy parameters.

To evaluate the average power consumption, we first
calculate the energy consumption E in a sufficiently long
time period T as follows.

E = et( j, ca( j,i))P(ca( j,i)) +∑

c∈(Chigh∪Clow)

Ps(c) +

Table 4 Core selections

4 tasks 5 tasks 6 tasks
Scheduling (J1 to J4) (J1 to J5) (J1 to J6)

Exclusive MCUlow c1 c2 c3

MCUhigh c2 c3 c4

Proposed Clow {c1} {c1} {c1, c2}
Chigh {c1, c2} {c1, c2} {c1, c2, c3}

Fig. 5 Average power consumption vs. numbers of tasks with different
scheduling algorithms (4,5,6 tasks)

∑

c∈(ChighΔClow)

(NOV (c) · EOV (c)). (18)

Here, a( j, i) indicates core ID which executes ith job of task
j, NOV indicates the number of state switching in T . The first
and second terms indicate the dynamic and the static energy
respectively. The third term indicates the overhead energy
of state switching. Here, Δ indicates a symmetric difference
of two sets. Then, the average power consumption P is ob-
tained as follows.

P =
E
T
. (19)

For comparison, we also calculate the power consump-
tion of Exclusive scheduling [6], which is the same as the
proposed scheduling except only one core can be active at
the same time. Used cores of each scheduling algorithm are
summarized in Table 4.

Any frame-based schedulings repeatedly apply the
same scheduling in every HP (100 ms in this evaluation).
For comparison, we obtained the Optimal frame-based
scheduling, which is the theoretical lower bound, by brute
force search. In addition to this, since the optimality de-
pends on the length of the HP, we also evaluate longer HPs,
such as 200 ms, 500 ms, 1 s. In these longer HPs, there exist
2, 5 and 10 times jobs respectively.

Figure 5 shows a comparison of the energy consump-
tion and the energy breakdown. The number of tasks N is
fixed to 4, 5 and 6 respectively. When N tasks are executed,
J1 to JN are used. In this figure, each item in the legend
represents the dynamic energy of each processor, overhead
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Fig. 6 Average power consumption under different task size

is core switching overhead. The y-axis shows the average
power consumption.

With 4 tasks, all of Exclusive, Optimal frame-based
and Proposed use both MCU1 and MCU2 to minimize dy-
namic energy. This result also shows the Proposed schedul-
ing achieves the lowest power consumption. Optimal frame-
based (T = 100ms) consumes non-negligible overhead en-
ergy due to their frequent core switching. On the other hand,
both Exclusive and Proposed successfully reduce the fre-
quency of core switching. As a result, the energy consump-
tion of overhead is negligibly small.

With 6 tasks, Since, Exclusive uses both MCU3 and
MCU4 to meet deadline constraint, the dynamic power be-
comes significantly high. In contrast, Optimal frame-based
and Proposed does not use MCU4 but uses MCU1, 2 and 3.
As a result, their schedulings can drastically reduce power
consumption. Additionally, Proposed consumes the low-
est power and 18% lower power than Optimal frame-based
(T = 100ms).

When comparing power consumption with different
utilization (4, 5, 6 tasks) to evaluate the Proposed schedul-
ing, these results clearly show that MCU1 is always used,
because it is the most energy efficient core. Thus, to mini-
mize the dynamic power, the Proposed scheduling success-
fully uses energy efficient core as much as possible.

5.3 Scalability

To clarify the scalability of the scheduling, we also evaluate
power consumption with randomly generated task sets.

Figure 6 shows the result with 20,000 task sets. Each
task set consists of from 3 to 40 tasks. Their execution times
(i.e. task sizes) are randomly set within the range from 1 to
150 ms. Their intervals are also randomly set within the
range from 10 to 200 ms. Their deadlines are fixed to 250
ms. In this figure, the x-axis shows total job size, which
normalized by throughput (tp). The y-axis shows the av-
erage power consumption. The valuable core sets (Cx) of
Proposed and Exclusive, which explained in Sect. 4.2, are
also shown with the white circles and triangles respectively.
A broken lines connected these circles and triangles show
lower limits of power consumption. From these results, in
most cases, the energy efficiency is very close to the optimal.
These results also show Proposed can successfully reduce

Fig. 7 Average power overhead under different deadline period

power consumption, which is smaller than theoretical lower
limit of Exclusive, when relative total task size is larger than
2.

To clarify the energy efficiency, cumulative frequency
of power overhead from the lower limit is shown in Fig. 7. In
this evaluation, the deadline period is also varied. When the
deadline period is 250 ms, more than 90% of cases achieve
lower than 4% of power overhead. When the deadline pe-
riod is longer than 500 ms, more than 90% of cases achieve
less than 0.4% of power overhead. This is because of less
frequent core switching thanks to longer deadline period.
The maximum power overhead is 19.0% when relative total
job size and deadline period are 2.56 and 250 ms respec-
tively. This result clearly shows that more energy reduction
is possible with longer deadline periods.

6. Conclusion

Near real-time data processing, which is popular in multi-
media streaming applications, has a deadline period that is
longer than its input interval. Under this situation, energy ef-
ficient task scheduling is important while meeting the dead-
line strictly.

To cope with this challenge, we proposed an energy-
aware task scheduling. This scheduler throttles core perfor-
mance to minimize energy consumption. This scheduling is
obtained from hardware and task parameters at design time.

We confirm that our approach can reduce the av-
erage power consumption by 18% compared to optimal
frame-based execution. We conclude that our energy-aware
scheduling can drastically reduce the energy consumption of
embedded systems while strictly guaranteeing the deadline
constraint.
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