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Formal Verification of a Decision-Tree Ensemble Model and
Detection of Its Violation Ranges

Naoto SATO†a), Hironobu KURUMA†, Yuichiroh NAKAGAWA†, Nonmembers, and Hideto OGAWA†, Member

SUMMARY As one type of machine-learning model, a “decision-tree
ensemble model” (DTEM) is represented by a set of decision trees. A
DTEM is mainly known to be valid for structured data; however, like other
machine-learning models, it is difficult to train so that it returns the correct
output value (called “prediction value”) for any input value (called “at-
tribute value”). Accordingly, when a DTEM is used in regard to a system
that requires reliability, it is important to comprehensively detect attribute
values that lead to malfunctions of a system (failures) during development
and take appropriate countermeasures. One conceivable solution is to in-
stall an input filter that controls the input to the DTEM and to use separate
software to process attribute values that may lead to failures. To develop
the input filter, it is necessary to specify the filtering condition for the at-
tribute value that leads to the malfunction of the system. In consideration
of that necessity, we propose a method for formally verifying a DTEM and,
according to the result of the verification, if an attribute value leading to a
failure is found, extracting the range in which such an attribute value exists.
The proposed method can comprehensively extract the range in which the
attribute value leading to the failure exists; therefore, by creating an input
filter based on that range, it is possible to prevent the failure. To demon-
strate the feasibility of the proposed method, we performed a case study
using a dataset of house prices. Through the case study, we also evaluated
its scalability and it is shown that the number and depth of decision trees are
important factors that determines the applicability of the proposed method.
key words: machine learning, formal verification, decision-tree ensemble
model

1. Introduction

Recently, software developed by machine learning has been
used in various systems. Deep learning using deep neural
networks (DNNs) is widely used for predicting and classi-
fying image data, audio data [1], [2], and so on. For struc-
tured data, ensemble learning methods using decision trees,
such as random forests [3] and gradient-boosting decision
trees [4], are also effective [5]–[11], [13].

A decision-tree ensemble model (DTEM) is repre-
sented as a set of decision trees. A DTEM takes a vector of
values—called an “attribute vector”—as input, and an ele-
ment of the vector is called “attribute value.” The DTEM re-
turns a value as output, which is called a “prediction value.”
The prediction value is calculated as the sum or average
value of the scores associated with the leaves of the decision
trees. The DTEM is expected to be generalized, namely, to
return the appropriate prediction value even if the attribute
vector is not included in the training data.
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However, in general, it is difficult to train a DTEM to
return the appropriate prediction value for every attribute
vector, that is, a DTEM returns an inappropriate prediction
value with a certain probability. Therefore, in particular,
when a DTEM is used in a mission-critical system, whose
behavior significantly affects business and society, it is im-
portant to comprehensively detect attribute vectors that lead
to system failures during development, and take appropriate
countermeasures to avoid such failures. Retraining or addi-
tional training of the DTEM are possible countermeasures;
however, for the reason mentioned above, it is difficult to
completely eliminate the possibility of failures occurring.
Accordingly, as a practical measure, it is possible to create
an input filter to control the attribute vector input into the
DTEM and to use separate software to process the filtered
attribute vector that leads to failures (Fig. 1). The implemen-
tation of the separate software is arbitrary. For example, the
separate software might reject the attribute vector and return
an error message.

A policing function [12] is also useful for preventing
failures. Separated from the DTEM, it checks the prediction
value of the DTEM against a certain property at runtime.
If the prediction value does not satisfy the property, that is,
the prediction value leads to a failure, the policing function
rejects the prediction value. However, comparing the input
filter and the policing function reveals that the input filter is
more efficient because it detects and controls failures before
the DTEM runs.

To create the input filter, it is necessary to specify
which attribute values should be filtered as the filtering con-
dition. In this paper, we therefore propose a method to for-
mally verify whether a DTEM meets a certain property and,
if that property is not met, extracts the range (part of the
attribute-vector space) in which all attribute vectors violat-
ing the property are included. By setting the range extracted
by the proposed method as the filtering condition of the in-
put filter, it is possible to prevent the failure of the system
due to the DTEM. A property is defined as a predicate for

Fig. 1 Input filter
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an attribute vector and its corresponding prediction value, or
only for the prediction value. A property is thus either vio-
lated or satisfied by an attribute vector and its corresponding
prediction value, or by the prediction value only. Hereafter,
to simplify description, this statement is abbreviated as “a
property is violated/satisfied by an attribute vector.”

The feasibility of the proposed method is evaluated
by showing a case study in which the method was applied
experimentally. Moreover, the scalability of the proposed
method is evaluated by changing the dimension of the at-
tribute vector, the number of decision trees constituting the
DTEM, and the maximum value of the depth of those de-
cision trees. Hereafter, an attribute vector that violates the
property is referred to as a “violating instance.” Similarly,
an attribute vector that satisfies the property is referred to
as a “satisfying instance.” The range in which a violating
instance exists is called the “violation range.” It should be
noted that both violating instances and satisfying instances
are included in the violation range.

As for the proposed method, the decision trees that
compose the DTEM are encoded as a formula, and the for-
mula is verified by using a satisfiability modulo theories
(SMT) solver. Although this approach has mainly been ap-
plied to DNNs [14]–[19], to the authors’ knowledge, this
approach has not been applied to a DTEM. Given that sit-
uation, the first contribution of this paper is to demonstrate
that our approach, namely, logically encoding a machine-
learning model and verifying the model by solving the re-
sulting formula with an SMT solver, is also applicable to a
DTEM.

When a property is violated, as a result of the verifi-
cation, an example of a violating instance (and its corre-
sponding prediction value)—called a “counterexample”—is
obtained. As a naive way to define the filtering condition,
all violating instances are detected by repeating the verifica-
tion. If an attribute vector input into the DTEM matches any
violating instances, it is filtered. However, a large number
of similar violating instances may exist around a certain vio-
lating instance. In particular, if each attribute value is repre-
sented by a continuous numerical variable (not a categorical
variable), attribute vectors obtained by slightly changing the
attribute values of the violating instance are also likely to
violate the property. In this case, since the verification is re-
peated as many times as the number of violating instances,
detecting all the violating instances is not practical in terms
of calculation time.

Targeting a DTEM taking multi-dimensional attribute
vectors whose elements (that is, attribute values) are contin-
uous numerical variables, the proposed method extracts the
violation range by searching around the origin at which a vi-
olating instance was first detected and gradually expanding
the search range until the violating instance is not detected.
This method makes it possible to include the violating in-
stances around the origin within the range. However, satis-
fying instances are also included in the range. Even though
they do not violate the property, they are filtered as well as
the violating instances.

In consideration of the above-described condition, it is
desirable to prevent as many satisfying instances as possi-
ble from being included in the violation range. Therefore,
as for the proposed method, the extracted violation range is
divided into a number of smaller ranges. Then, for each di-
vided range, whether a violating instance exists within the
range is checked. As a result, it is possible to narrow down
the original violation range. As for the second contribu-
tion of this paper, under the assumption that a DTEM takes
multi-dimensional attribute vectors of continuous numerical
values as input, a method to extract the violation range and
narrow it down is proposed. Moreover, the feasibility and
scalability of the proposed method are evaluated through a
case study.

The rest of this paper is organized as follows. In Sect. 2,
a decision tree and a DTEM are formally defined. In Sect. 3,
the proposed method is overviewed. In Sect. 4, among the
procedures that compose the proposed method, the proce-
dure for verifying the DTEM is explained. In Sect. 5, the
procedure for extracting the violation range on the basis of
the verification result is explained. In Sect. 6, the proce-
dure for narrowing down by dividing the extracted violation
range is explained. In Sect. 7, the feasibility and scalability
of the proposed method are evaluated through a case study
using a data set of house prices. In Sect. 8, the usefulness
and applicability of the proposed method are verified. In
Sect. 9, related work is described, and in Sect. 10, the con-
clusions drawn from this study are presented.

2. Preliminaries

An attribute vector is denoted by x, and a prediction value
is denoted by y. A DTEM M can be defined as a func-
tion from X to Y , which is denoted by M : X −→ Y .
X represents a set of attribute vectors, and Y represents a
set of prediction values. If x is included in X, its cor-
responding y is also included in Y . It is assumed that
x is represented by a vector of length s ≥ 2 such that
[x[0], . . . , x[k], . . . , x[s − 1]]. It is also assumed that all the
elements of x, that is, x[0], . . . , x[k], . . . , x[s − 1], are con-
tinuous numerical variables although original decision trees
can deal with discrete, categorical, or Boolean values as in-
put. It is also supposed that X gives the maximum and min-
imum values of x[k] (0 ≤ k ≤ s − 1), which are denoted by
X[upper][k] and X[lower][k], respectively. When x is con-
sidered as an input to M, x[k] is upper and lower bounded
by X.

First, in Sect. 2.1, the decision trees that compose M
are formally defined. Next, in Sect. 2.2, M is formally
defined.

2.1 Decision Tree

A decision tree represents a procedure for determining the
class to which a given attribute vector belongs [20], [21].
A decision tree consists of decision nodes, edges, and leaf
nodes. The conditional expression for an attribute value is
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associated with the decision node (Fig. 2). In this paper, the
conditional expression of the decision node is called an “at-
tribute test.” Each decision node has multiple child nodes,
and each child node is connected by an edge. Each edge is
labeled with the evaluation result of the attribute test. When
an attribute value is given, the edge with the same label as
the result of evaluating the attribute test is selected. Here-
after, the evaluation result of the attribute test is called the
“test value.” If the child node connected to the selected edge
is a decision node, the same procedure as described above
is performed for that decision node. If the child node is a
leaf node, the value associated with that leaf node becomes
the name of the class to which the attribute vector belongs.
As for the decision trees making up the DTEM, numerical
values—called “decision values”—are used as class names.

An arbitrary decision tree can be expressed in the form
(Nd,Nl, n1, E, attr, tv, dv), where Nd represents a set of deci-
sion nodes, Nl represents a set of leaf nodes, and n1 rep-
resents a root node included in Nd. E is a set of edges,
each of which edge is represented by a pair consisting of a
connection-source node and a connection-destination node.
That is, it can be defined as E ⊆ Nd × (Nl ∪ (Nd \ {n1})).
Here, attr : Nd −→ A is a function that associates an at-
tribute test with a decision node. A represents a set of ar-
bitrary expressions for attribute x[0], . . . , x[k], . . . , x[s − 1].
Similarly, tv : E −→ V is a function that associates a test
value with an edge, where V represents a set of test val-
ues. In the example in Fig. 2, V = {True, False}. Here,
dv : Nl −→ R is a function that associates a decision value
with a leaf node. The decision tree is acyclic and defined as
∀n ∈ Nd ∪ Nl · 〈n, n〉 � E+ by using transitive closure E+ of
E.

It is assumed that the decision tree that constitutes the
DTEM, which is the subject of this paper, has more than one
decision node, and branches from a decision node to at least
two child nodes. Therefore, if the number of nodes included
in Nd is expressed as card(Nd), card(Nd) ≥ 1 holds. In a
similar manner, card(Nl) ≥ 2 also holds. As for the number
of edges, card(E), card(E) ≥ 2 holds.

2.2 Decision-Tree Ensemble Model (DTEM)

Arbitrary M can be expressed as (T, ensem). T represents

Fig. 2 Structure of decision tree

a set of decision trees constituting M. If the number of de-
cision trees included in T is taken as card(T ), the decision
trees included in T can be expressed as t1, . . . , ti, . . . , tcard(T ).
The decision values of trees t1, . . . , ti, . . . , tcard(T ) are repre-
sented as y1, . . . , yi, . . . , ycard(T ), respectively.

The decision values are used to calculate prediction
value y. Thus, a function ensem that takes y1, . . . , ycard(T ) as
arguments and returns y is introduced here. The specifica-
tion of ensem depends on the implementation of DTEM. For
example, in the case of random forests, the average of the
decision values is y. Alternatively, in the case of a gradient-
boosting decision tree, the sum of the decision values is y.
In this paper, function ensem is not specified.

3. Outline of Proposed Method

The proposed method is outlined in Algorithm 1. ϕ denotes
a property of DTEM M. Parameters ra, rb, and rc are de-
scribed later. Property ϕ is defined as a predicate for x and
y, or for y only. Algorithm 1 returns the value of variable
vranges, which is a set of violation ranges for ϕ. On line
1, function dom returns domain X of M. On line 3, func-
tion within returns formula ρ, meaning that “x is included
in X.” On line 5, procedure f ormal veri f ication verifies
whether there is an attribute vector that satisfies constraint
ρ and violates ϕ. If such an attribute vector is detected, it
is assigned to variable ce as a violating instance. If no such
attribute vector is detected, “None” is assigned to ce. Pro-
cedure f ormal veri f ication is described in detail in Sect. 4.
On line 7, procedure range extraction extracts the violation
range for ϕ from around ce. The extracted range is assigned
to variable vio. Moreover, a range in which no violating
instance exists is extracted along with vio; therefore, a set
of such ranges is returned as variable novios. Hereafter, a

Algorithm 1 Violation Ranges Detection
Input: M, ϕ, ra, rb, rc

Output: vranges

1: X ← dom(M)
2: vranges← ∅
3: ρ← within(X)
4: while True do
5: ce← f ormal veri f ication(M, ϕ, ρ)
6: if ce � None then
7: vio, novios← range extraction(ce, M, ϕ, ρ, ra, X)
8: core← vio
9: while continue division(core, X, rb)

10: ∧ novios � ∅ do
11: iv← novios.pop()
12: core, surrds← range division(core, iv, ρ, rc, M, ϕ)
13: vranges← vranges ∪ surrds
14: end while
15: vranges← vranges ∪ core
16: ρ← ρ ∧ outside(vio)
17: else
18: break
19: end if
20: end while
21: return vranges
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range in which no violating instance exists is referred to as a
“no-violation range.” Procedure range extraction is shown
in detail in Sect. 5.

The extracted violation range, vio, is divided as fol-
lows. First, on line 8, vio is copied to variable core.
On line 9, continue division implements the condition to
stop dividing the violation range. As long as it returns
“True”, range division is executed iteratively. Parame-
ter rb is used as a reference value to decide whether to
execute range division again. Although the details of
continue division are not specified here, for example, it can
be implemented so as to return “True” if the volume of core
is equal to or more than rb percent of the volume of X. On
line 12, procedure range division divides core into multi-
ple pieces. This division is performed on the basis of a no-
violation range, which is an element of novios. Of the ranges
obtained by division, the inner range including ce (which is
the starting point of range extension) is taken as a new core,
and the set of other outer ranges is taken as surrds. The
range division is explained in detail in Sect. 6.

If novios contains a number of no-violation ranges,
the range pushed to novios last (which is the outermost
no-violation range in terms of ce) is used for the division.
Therefore, the ranges stored in surrds do not include no-
violation ranges because they are outside the outermost no-
violation range. Accordingly, the elements of surrds are
added to vranges without dividing them further (line 13).
On the contrary, the new core might include a no-violation
range. Therefore, on line 9, whether core will be divided
further is evaluated by continue division. If core is not di-
vided any more, it is added to vranges.

On line 16, function outside is used to create a con-
straint representing “x is out of the range indicated by vio.”,
and that constraint is conjunctively appended to ρ. After
that, by re-executing f ormal veri f ication on line 5 in the
while loop, whether there is a violating instance outside vio
is verified. If a violating instance is detected as a result of
the re-execution, another violation range is extracted and di-
vided by the same procedure. In a similar manner, several
different violation ranges are extracted until the while loop
is ended. When f ormal veri f ication returns “None” on line
5, the while loop is interrupted by the break statement on
line 18. This means that no violating instance is found out-
side the violation ranges extracted until then. Therefore, it
is guaranteed that the extracted violation ranges include all
the violating instances in X when Algorithm 1 terminates.
vranges extracted by Algorithm 1 represents the range in
which a violating instance exists. Therefore, by creating an
input filter (shown in Fig. 1) based on vranges, it is possible
to filter the violating instance.

4. Formal Verification of Decision-Tree Ensemble
Model

The procedure of f ormal veri f ication in Algorithm 1 is ex-
plained in detail hereafter. For any decision tree ti ∈ T that
constitutes DTEM M, a set of all paths extractable from ti

is denoted by Pi. As stated in Sect. 2.1, since a decision
tree is assumed to be acyclic, the elements of Pi are paths
of finite length. Arbitrary path p ∈ Pi can be represented
by a sequence of nodes, np

1 , n
p
2 , . . . , n

p
d , n

p
d+1. Among these

nodes, np
1 , . . . , n

p
d represent decision nodes, and np

d+1 repre-
sents a leaf node. Since ti has one or more decision nodes,
1 ≤ d holds. Here, the specification of arbitrary path p of ti
is defined as f p

i by using functions attr, tv, and dv (defined
in Sect. 2.1) as follows:

f p
i

def
=

⎛⎜⎜⎜⎜⎜⎜⎝
d∧

j=1

attr(np
j )(x) = tv(〈np

j , n
p
j+1〉)
⎞⎟⎟⎟⎟⎟⎟⎠

→ (yi = dv(np
d+1)) (1)

The argument 〈np
j , n

p
j+1〉 of function tv represents an edge

between nodes np
j and np

j+1. The specification of ti is repre-
sented by Fi as

Fi
def
=
∧
p∈Pi

f p
i (2)

As explained in Sect. 2.2, prediction value y of M is calcu-
lated by ensem from decision values y1, . . . , yi, . . . , ycard(T ).
Therefore, the specification of M is expressed by FM as

FM
def
=

⎛⎜⎜⎜⎜⎜⎜⎝
card(T )∧

i=1

Fi

⎞⎟⎟⎟⎟⎟⎟⎠
∧ (y = ensem(y1, . . . , yi, . . . , ycard(T ))) (3)

Furthermore, F is defined by using ϕ (i.e., a property of M)
and constraint ρ (which indicates that x is included in X) as

F
def
= FM ∧ ¬ϕ ∧ ρ (4)

F is input into the SMT solver to determine its satisfiability.
If F is unsatisfiable, it is guaranteed that there is no violat-
ing instance in the range constrained by ρ. If F is satisfiable,
the SMT solver detects x and y satisfying F. Then, proce-
dure f ormal veri f ication returns detected x as the violating
instance, ce. It is thus possible to verify whether M meets
ϕ by encoding M as formula F and solving the satisfiability
problem by using the SMT solver.

5. Extraction of Violation Range

5.1 Overview

As for range extraction, to find a violating instance as a
starting point, the range around violating instance ce is
searched by using f ormal veri f ication. If a violating in-
stance is detected, the range is extracted as the violation
range. Here, to promote intuitive understanding, it is as-
sumed that variable x is represented by a two-dimensional
vector, namely, [x[0]], x[1]]. The method for extracting the
violation range by range extraction is outlined in Fig. 3.
The violation range is extended by alternately increasing the
values of x[0] and x[1]. In step (1), the violating instance ob-
tained on line 5 of Algorithm 1 is set as the initial value of
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Fig. 3 Extraction of violation range by range extraction

Fig. 4 Extraction of no-violation range by range extraction

the violation range. In step (2), a search range is set from the
initial value in the upward direction of x[0], and whether a
violating instance exists within that search range is verified
by the method described in Sect. 4. If a violating instance is
detected in the search range, as shown in step (3), the search
range is imported into the violation range. In step (4), the
search range is set in the upward direction of x[1]. From
then on, to extend the violation range, the same procedure is
repeated. Although omitted in Fig. 3, in a similar manner as
described above, the violation range is also extended in the
downward directions of x[0] and x[1].

As for range extraction, when the violation range is
extracted, no-violation ranges existing in that range are also
extracted. The method of extracting no-violation ranges is
outlined in Fig. 4. In step (1) of Fig. 4, the search range is
set in the upward direction of x[0]. It is assumed that no vi-
olating instance exists in the search range. In that case, the
no-violation range is created as shown in step (2). After the
violation range is extended in the upward direction of x[1]
in step (3), the search range is reset in the upward direction

of x[0] in step (4). If a violating instance still does not ex-
ist in the search range, the no-violation range set in step
(2) is extended by step (5). It is assumed that the violation
range can be extended in steps (6), (7), and (8). In that case,
the extension of the no-violation range is ended. Accord-
ingly, when no violating instance exists in the search range,
the search range is extracted as the no-violation range. As
shown in step (9), multiple no-violation ranges may be cre-
ated finally. One of the features of the proposed method is
to extract this no-violation range. The extracted no-violation
range is the utilized in range division described in Sect. 6.

As for the strategy for extending the violation range,
the values of x[0] and x[1] are alternately increased. Other
strategies for extending the violation range, however, may
be considered. For example, the values of x[0] and x[1] can
be increased simultaneously. Strategies for extending the
violation range are discussed in Sect. 8.

5.2 Algorithm

The procedure of range extraction is shown in detail in Al-
gorithm 2. Algorithm 2 returns vio, which represents a vi-
olation range for ϕ, and novios, which represents a range
in which no violating instance exists. The violation range
can be defined by the lower-limit values and the upper-limit
values of variables x[0], . . . , x[s − 1]. It is therefore sup-
posed that violation range vio is composed of vio[lower]
and vio[upper], where lower and upper represent 0 and 1
respectively. The lower-limit value of each variable x[k]
(0 ≤ k ≤ s − 1) is represented by vio[lower][k]. Similarly,
the upper-limit value is represented by vio[upper][k].

On lines 2 and 3, vio is initialized with ce. On line
10, whether vio has been extended in the previous loop is
checked, and if vio has been extended, lines 13 and 14 try
to extend vio further. On line 12, the variable for which
the range is to be expanded, x[k], is selected. For the se-
lected x[k], line 13 attempts to expand the upper limit of the
variable, and line 14 tries to expand the lower limit of the
variable. If neither the upper limit nor the lower limit can
be expanded for all variables x[0], . . . , x[s− 1], cont f lag =
False is returned, and the procedure ends.

On lines 13 and 14, the upper and lower limits are
extended by EXPAND. The procedure of EXPAND is de-
scribed below in the case that the upper limit is expanded.
Parameter dir of EXPAND represents the direction of ex-
pansion. That is, in this example, upper is passed as an
argument. On line 22, whether the violation range can be
expanded in the upward direction of x[k] is checked. As
described in Sect. 2, X[upper][k] is the maximum value of
x[k]. If vio[upper][k] reaches X[upper][k], the upper limit
of the violation range is not further expanded in the upward
direction of x[k]. In that case, line 23 returns “False”. On
line 25, variable sr is initialized with vio, where sr rep-
resents the search range. On line 27, sr[upper][k] is up-
dated to vio[upper][k] + mgn(ra)[k], where mgn is a func-
tion that accepts parameter ra as an argument and returns
a vector of the same length as x. Since the search range
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Algorithm 2 Algorithm of range extraction
Input: ce, M, ϕ, ρ, ra

Output: vio, novios

1: X ← dom(M)
2: vio[lower]← ce
3: vio[upper]← ce
4: novios← ∅
5: for each k in {0, . . . , s − 1} do
6: tmp nv[lower][k]← None
7: tmp nv[upper][k]← None
8: end for
9: cont f lag← True

10: while cont f lag = True do
11: cont f lag← False
12: for each k in {0, . . . , s − 1} do
13: rtn upper← EXPAND(upper, k, vio, tmp nv, ρ, M, ϕ, X)
14: rtn lower← EXPAND(lower, k, vio, tmp nv, ρ, M, ϕ, X)
15: if rtn upper = True ∨ rtn lower = True then
16: cont f lag← True
17: end if
18: end for
19: end while
20: return vio, novios

21: procedure expand(dir, k, vio, tmp nv, ρ, M, ϕ, X)
22: if vio[dir][k] = X[dir][k] then
23: return False
24: end if
25: sr← vio
26: if dir = upper then
27: sr[dir][k]← vio[dir][k] + mgn(ra)[k]
28: if sr[dir][k] > X[dir][k] then
29: sr[dir][k]← X[dir][k]
30: end if
31: else // dir = lower
32: sr[dir][k]← vio[dir][k] − mgn(ra)[k]
33: if sr[dir][k] < X[dir][k] then
34: sr[dir][k]← X[dir][k]
35: end if
36: end if
37: sr[opposite(dir)][k]← vio[dir][k]
38: ρ′ ← ρ ∧ within(sr)
39: ce′ ← f ormal veri f ication(M, ϕ, ρ′)
40: if ce′ � None then
41: vio[dir][k]← sr[dir][k]
42: if tmp nv[dir][k] � None then
43: novios.push(tmp nv[dir][k])
44: tmp nv[dir][k]← None
45: end if
46: return True
47: else
48: tmp nv[dir][k]← sr
49: return False
50: end if
51: end procedure

is bounded by X, sr[upper][k] should be smaller than or
equal to X[upper][k]. Therefore, sr[upper][k] is changed to
X[upper][k] if it is greater than X[upper][k] (lines 28 and
29). On line 37, sr[lower][k] is updated to vio[upper][k].
opposite is a function that returns the direction opposite to
the extension direction indicated by dir. Accordingly, the
search range of x[k] is set to the range vio[upper][k] <
x[k] ≤ (vio[upper][k] + mgn(ra)[k]) (if vio[upper][k] +

mgn(ra)[k] is smaller than or equal to X[upper][k]). Be-
cause the search range of variable x[k′] (k′ � k) is not up-
dated, it is given as vio[lower][k′] ≤ x[k′] ≤ vio[upper][k′].
As a result, sr is created on the upper bound of vio in the
x[k] direction.

The upper-limit or lower-limit value of sr, that is,
sr[upper][k] or sr[lower][k] is sometimes not included in
the search range. Accordingly, it is necessary to hold that in-
formation about whether each sr[upper][k] and sr[lower][k]
are included in the search range. To simplify the following
explanation, how to keep that information in sr is omitted.

On line 38, ρ′ is created by conjunctively appending
the constraint “x is included in sr” to ρ. Line 39 verifies
whether M meets ϕ under constraint ρ′. As a result of that
verification, if a violating instance is detected within sr, the
upper limit of the violation range, vio[upper], is extended to
sr[upper] (line 41).

Lines 42, 44, and 48 create an element of novios. If
no violating instance is detected in the search range as a
result of the verification on line 39, the search range is saved
in tmp nv[upper][k] (line 48). tmp nv[upper][k] stores a
tentative no-violation range in the upward direction of x[k].
The range stored in tmp nv[upper][k] will be extended as
long as a violating instance is not detected in the upward
direction of x[k] (line 48). If a violating instance is detected
in that direction, the latest range stored in tmp nv[upper][k]
is finalized as a no-violation range and added to novios (line
43).

6. Division of Violation Ranges

6.1 Overview

By range extraction shown as Algorithm 2, violation range
core can be extracted. However, it may include satisfying
instances as well as violating instances. In other words, the
violation range may be redundant. If an input filter based
on the violation range is created, it unnecessarily filters sat-
isfying instances. It is thus desirable to prevent as many
satisfying instances as possible from being included in the
violation range. To reduce the redundancy of the viola-
tion range, an additional procedure is required. Procedure
range division aims to narrow down the violation range by
dividing it. It has not been theoretically proved that every
no-violation range to be removed from the violation range
can always be found. Neither is it guaranteed that the vio-
lation range can always be minimized. Even if the violation
range is redundant, it is possible to create the input filter be-
cause the violation range includes all violating instances. At
that time, it can be said that the smaller the violation range,
the fewer satisfying instances are filtered. Hence, it is better
to try to narrow down the violation range than do nothing.
Through the case study described in Sect. 7, it is shown that
range division is useful for narrowing down the violation
range.

As for range division, violation range core extracted
by range extraction is divided into a number of smaller
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Fig. 5 Violation range divided by range division

ranges. The division is based on a no-violation range, which
is an element of novios. Among the divided ranges, the
range including violating instance ce (which is the starting
point of the range extension) is set as a new core, and the
other ranges are called surs. If sur includes a violating
instance, it is added to surrds. Since it is possible to re-
peatedly divide core, the number of ranges in surrds may
be increased with each division. For example, as for the
violation range shown in step (9) in Fig. 4, the method of
range division is outlined in Fig. 5. In Fig. 5, first, the vi-
olation range is divided at the upper-limit value of the no-
violation range on the x[1] axis. Next, the range is divided
at the upper-limit value of the no-violation range on the x[0]
axis. Finally, the range is further divided by using the lower-
limit value of the no-violation range on the x[0] axis. As
a result of this division, the violation range is divided into
three ranges: sur(i), sur(ii), and core.

It is clear that there exists a violating instance in
core because core includes violating instance ce at least.
sur(i) also includes another violating instance since the vi-
olation range was extended in step (8) in Fig. 4. How-
ever, sur(ii) may not include a violating instance. Whether
sur(ii) includes a violating instance can be checked by using
f ormal veri f ication. If sur(ii) does not include a violating
instance, it is removed from the violation range.

The method of range division aims to narrow the vio-
lation range by dividing it and verifying whether each outer
range sur created by the division include violating instances.
This is based on the assumption that the outer ranges of
the no-violation range are not likely to include a violating
instance. In relation to the starting point of the range ex-
tension, the outer ranges are defined as “adjacent to” and
“beyond” the no-violation range. Accordingly, an attribute
vector in the outer ranges is assumed to be “similar to” the
attribute vector in the no-violation range and “more differ-
ent” from the attribute vectors around the starting point than
the attribute vector in the no-violation range. It is therefore
considered that outer ranges created by the division on the
basis of the no-violation range are not likely to include a
violating instance.

When the violation range is divided on the basis of the
no-violation range, the order of the division can be changed.
For example, the division order shown in Fig. 6 can be con-
sidered. In this case, the division is performed in the follow-
ing order: at the upper-limit value of the no-violating range
on the x[0] axis, at the upper-limit value on the x[1] axis,
and at the lower-limit value on the x[0] axis.

It is said that the division order that makes the

Fig. 6 Another order of dividing based on no-violation range

Algorithm 3 Algorithm of range division
Input: core, iv, ρ, rc, M, ϕ
Output: core, surrds

1: planes← calc planes(iv)
2: orders← permutate(plane, rc)
3: results← ∅
4: for each od in orders do
5: core← core
6: while od � ∅ do
7: plane← od.pop()
8: core, sur← slice core(core, plane)
9: ρ′ ← ρ ∧ within(sur)

10: ce′ ← f ormal veri f ication(M, ϕ, ρ′)
11: if ce′ � None then
12: surrds← surrds ∪ sur
13: end if
14: end while
15: volume← calc volume sum(core, surrds)
16: results← results ∪ {((core, surrds), volume)}
17: end for
18: (core, surrds)← min volume(results)
19: return core, surrds

violation range narrower is more effective. However, the
extent to which the violation range can be narrowed by a
certain division order depends on the DTEM and property to
be verified. It is therefore not known which division order
is effective unless the division is actually performed. Ac-
cordingly, as for the proposed method, multiple divisions
are tried at random, and the order that makes the violation
range the narrowest is adopted.

The violation range is divided by the surface of the no-
violation range (corresponding to the dotted lines in Fig. 5
and Fig. 6). Since the no-violation range is an s-dimensional
hyperrectangle, the number of dividing planes is 2s. There-
fore, the number of ways to divide the violation range is
(2s)! As for the proposed method, divisions to be tried,
whose number equals parameter rc, are randomly selected
and the results of the divisions are compared according to
the sum of the hypervolumes of the ranges in surrds. The
division that minimizes the sum of the hypervolumes is
adopted

6.2 Algorithm

The procedure of range division is shown in details in Al-
gorithm 3. In Algorithm 3, violation range core is divided
on the basis of no-violation range iv. Then, as a result of
the division, the new core and surrds are returned. On line
1, calc planes extracts the (s − 1)-dimensional hyperplanes
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constituting hyperrectangle iv and creates set planes. The
number of elements in planes is 2s. On line 2, permutate
creates as many arbitrary division orders by using elements
of planes as rc, and the set of the created division orders
is assigned to orders. Line 4 picks out arbitrary element
od of orders. od is an array (with length of 2s) having the
hyperplanes constituting iv as elements. On line 7, the top
element of od is assigned to plane. By slice core on line
8, core is divided with plane as the dividing plane. Of the
two ranges created by the division, the range that includes
ce is taken as the new core, and the other is taken as sur.
f ormal veri f ication on line 10 verifies whether the violat-
ing instance is included in the range of that sur. If a vio-
lating instance exists within the range of sur, sur is added
to surrds (line 12). The division with plane is repeated for
each element of od. On line 15, calc volume sum is used to
calculate the sum of the hypervolumes of the violation range
represented by the elements of core and surrds. The proce-
dures from lines 5 to 16 are repeated according to the num-
ber of elements of orders, that is, rc times. In this manner,
for each division order randomly created on line 2, core and
surrds, which are the results of the division, and volume,
which is the sum of the hypervolumes, are obtained. On line
18, the result of the division that gives the smallest volume
is extracted by function min volume and used as the final
return value.

In this way, the violation range is divided by
range division on the basis of the no-violation range created
by range extraction. It should be noted that range division
is not executed if the no-violation range is not created by
range extraction.

7. Case Study

7.1 Setup

As the subject of the case study, DTEM M is created
by using a dataset of house prices† as a training data
set. To implement M, XGBoost [13] was used. M re-
ceives a 7-dimensional attribute vector, x = [x[0], . . . , x[6]],
and returns a house price as prediction value y, where
x[0], . . . , x[6] are, respectively, grade of house, condition
of house, number of bedrooms, size of living room, size of
parking space, size of ground floor, and size of basement.
The number of decision trees constituting M is 100, and the
maximum depth of each decision tree is 3. As properties to
be verified, ϕ1, ϕ2, and ϕ3 are defined as follows:

ϕ1
def
= x[0] ≥ 7000⇒ y ≥ 500000 (5)

ϕ2
def
= y > 50000 (6)

ϕ3
def
= y < 10000000 (7)

Here, x[0] in ϕ1 represents size of living room. The larger
the living room, the higher the price. Therefore, it is defined
as ϕ1 that if the size of the living room is 7000 or more,

†https://www.kaggle.com/harlfoxem/housesalesprediction

the price is 500,000 or more. Moreover, the price output
from M is expected to be realistic in regard to a house price.
Accordingly, ϕ2 is defined as the property that the price is
higher than 50,000. Similarly, ϕ3 is taken as the property
that the price is less than 10,000,000.

In this case study, X is defined on the basis of the max-
imum and minimum values of the training dataset. For each
variable x[k] (0 ≤ k ≤ 6), the maximum value included in
the training dataset is represented as maxk, and the mini-
mum value is similarly represented as mink. These values
are used to define X as follows:

X
def
= {[x[0], . . . , x[k], . . . , x[s − 1]]

| ∀k · mink ≤ x[k] ≤ maxk} (8)

Function mgn (which determines the search range in
range extraction) is implemented with parameter ra as an
argument as follows:

mgn(ra)
def
= [m[0], . . . ,m[k], . . . ,m[s − 1]], such that{ ∀k · m[k] = (maxk − mink)/ra (x[k] ∈ R)

∀k · m[k] = ceil((maxk − mink)/ra) (x[k] ∈ Z)

(9)

Here, mgn(ra)[k] is created on the basis of the width of X
(i.e., the difference between maxk and mink), where func-
tion ceil rounds up a real number to an integer. In this case
study, ra = 100 is supposed. continue division shown in
Algorithm 1 is implemented so as to return “True” if the hy-
pervolume of core is rb percent or more of the hypervolume
of X. In this case study, rb = 10 is also supposed. Further-
more, parameter rc for determining the number of elements
of orders in range division is taken as rc = 10.

The proposed method was implemented in Python††.
The Z3 Theorem Prover [36] was used as a SMT solver for
f ormal veri f ication. Moreover, this case study was per-
formed on a Windows 10 R© PC equipped with two Intel R©
CoreTM i7-8700 3.2-GHz processors with six cores and with
16-GB memory.

7.2 Results and Evaluation

The results of applying the proposed method are listed in Ta-
ble 1. The violation range detected by the proposed method
is shown in column (b) for each property shown in col-
umn (a). Column (b) shows the violation range before di-
vision by range division and the violation range after di-
vision. Column (c) shows the hypervolume of each vio-
lation range. Column (d) shows the value obtained by di-
viding the sum of hypervolumes of the violation range af-
ter division by the sum of hypervolumes of the violation
range before division. Violation ranges include both vio-
lating instances and satisfying instances. Since all the vi-
olating instances are included in any violation range and
their number is fixed, the sum of hypervolumes indicates
††Available at https://github.com/hitachi-rd-yokohama/deep

saucer/tree/master/xgb encoding
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Table 1 Violation ranges extracted by the proposed method

how many satisfying instances are included in the viola-
tion ranges. Hence, the smaller the sum of hypervolumes
is, the fewer satisfying instances are filtered by the input fil-
ter. That is, a smaller hypervolume is more practical. The
value in column (d) is therefore used to evaluate the effect
of narrowing the violation range by range division. Col-
umn (e) shows the time elapsed by executing the proposed
method. Column (f) shows the time taken to execute the
SMT solver. Column (g) shows the number of times of the
SMT solver is executed (i.e., number of calls), and column
(h) shows the result of dividing (f) by (g), that is, the aver-
age execution time per run of the SMT solver. As a result of
executing f ormal veri f ication for ϕ1, a violating instance
was detected. Then, starting from the detected violating
instance, range extraction was executed, and the violation
range shown in #1-1 was extracted. Moreover, by dividing
this violation range by range division, the violation ranges
shown in #1-1-1 to #1-1-5 were obtained. This division re-
duced the hypervolume of the violation range to about 74
percent of the hypervolume before the division.

Similarly, with respect to ϕ2, the violation ranges
shown in #2-1 and #2-2 were extracted by range extraction.
In this case, they were not divided by range division be-
cause the hypervolume of each violation range was less than
rb = 10 % of the hypervolume of X. However, it was con-
firmed that when rb is 0.1, range division reduces the hyper-
volume of the violation range to about 33% of the violation
range before the division. As for ϕ3, no violating instance
was detected. That is, it was confirmed that M meets ϕ3.

The above results demonstrate that the DTEM
can be formally verified by the method described as
f ormal veri f ication, that is, encoding the DTEM as a for-
mula and solving it with an SMT solver. Moreover, it
was confirmed that the violation range can be extracted
by range extraction. It was also confirmed that using
range division makes it possible to narrow the violation
range. It can therefore be concluded that the feasibility of

the proposed method was demonstrated.
Scalability of the proposed method is evaluated next. If

total execution time and execution time of the SMT solver
are focused on, it becomes clear that the time taken to ex-
ecute the SMT solver occupies most of the total execution
time. In other words, the execution time of the proposed
method is considered to be largely dependent on the exe-
cution time of the SMT solver. As a factor that affects the
execution time of the SMT solver, for example, the num-
ber and depth of the decision trees constituting M can be
considered. However, various heuristics are implemented
and black-boxed in the SMT solver, so it is difficult to pre-
dict how much these factors affect the execution time of the
SMT solver. Accordingly, in this study, the value of the fac-
tor considered to affect the execution time of the SMT solver
was changed, and the execution time was measured. The
following experiment uses the same settings as described in
Sect. 7.1 unless otherwise stated. Moreover, a practically ac-
ceptable execution time was assumed as 24 hours, and the
execution was aborted if it exceeds 24 hours.

7.2.1 Number of Decision Trees

The number of decision trees constituting M is represented
by n est. In proportion to the increase of n est, the number
of paths of M increases, and the length of formula FM in-
creases in proportion to the number of paths of M. That is,
as n est increases, the length of the formula FM increases by
O(n est). Therefore, it is considered that the execution time
of the SMT solver tends to increase as n est increases. The
execution times of the proposed method when the value of
n est was changed are listed in Table 2. The results in Ta-
ble 2 show that the execution time of the SMT solver tends
to increase as n est increases. As for the verification of ϕ2,
a timeout occurs when n est ≥ 190. If the number of exe-
cutions of the SMT solver is focused on, it turns out that the
SMT solver was executed frequently in the case of ϕ2. In
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Table 2 Execution time when n est is changed

Table 3 Execution times before and after changing parameters

such a case, changing parameters ra, rb, and rc may reduce
the number of executions of the SMT solver and, thereby,
shorten the execution time.

Parameter ra determines the size of the search range in
range extraction. In the implementation shown in Eq. (9),
as the value of ra gets smaller, the search range gets larger.
The number of times f ormal veri f ication is called can
therefore be reduced if the value of ra is decreased. Note
that in that case, it is highly likely that the extracted vio-
lation range is wider than before ra was decreased. That
is, the extracted violation range includes more satisfying in-
stances. rb is referred to as a reference value for determin-
ing whether or not to execute range division. In the imple-
mentation shown in Sect. 7.1, as the value of rb increases,
the possibility of dividing the violation range decreases.
The number of times f ormal veri f ication is called is thus

reduced if the value of rb is increased. In that case, how-
ever, the possibility of narrowing the violation range is re-
duced. rc determines how many division orders are tried
in range division. Therefore, if the value of rc is reduced,
the number of times f ormal veri f ication is called is also
reduced. Accordingly, the values of these parameters were
changed to ra = 20, rb = 30, and rc = 5, and the verification
of ϕ2 was retried. Execution times before and after changing
the parameters are listed in Table 3. As shown in Table 3,
by changing the values of ra, rb, and rc, even in the case of
190 ≤ n est ≤ 220, execution could be completed. This re-
sult demonstrates that when execution cannot be completed
within a practical time, due to the number of executions of
the SMT solver, the execution time can be shortened by ad-
justing the values of these parameters. It should, however,
be noted that when these parameters are adjusted to reduce
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Table 4 Execution times in case of changing max d

Table 5 Execution times in case of changing dimension s

the execution time, the extracted violation range may be-
come wider. In fact, according to Table 3, the total volume
of the violation range is increased by changing the value of
the parameters. On the contrary, it may be possible to nar-
row the violation range more strictly by changing these pa-
rameters if it is acceptable that the execution time becomes
longer. That is, by changing these parameters, it is possible
to adjust the balance between the fineness of the violation
range and the execution time.

7.2.2 Depth of Decision Trees

The maximum depth of a decision tree is taken as max d.
When the depth increases by 1, the number of paths ex-
tracted from one decision tree is doubled. (Moreover, the
length of each path also increases in proportion to max d.)
Therefore, the length of formula FM increases by O(2max d).
Accordingly, if max d increases, it is considered that the ex-
ecution time of the SMT solver increases. The execution
times of the proposed method when the value of max d was
changed are listed in Table 4. It is clear from the results in
Table 4 that the average execution time of the SMT solver
increases as max d increases. In particular, as for verifica-
tion of ϕ1 and ϕ2, the execution time increases by 10 to 100

times each time max d increases by one. When a timeout is
invalidated and ϕ1 is verified with max d = 5, it takes about
70 hours to complete execution, and the average execution
time of SMT solver is about 46 seconds. From these results,
it can be said that max d significantly influences the execu-
tion time of the proposed method.

7.2.3 Dimension of Attribute Vector

The loop in line 12 of range extraction is executed the same
number of times as the number of dimensions s. In addition,
as s increases, the number of variables appearing in FM also
increases; that is, FM becomes more complicated. For the
reasons above, it is considered that the execution time of
the SMT solver tends to increase with increasing s. In the
house-price dataset used in this study, we can use up to 18
attributes as elements of x. These attributes were therefore
used to change dimension s of x in the range of 2 ≤ s ≤ 18.
The execution times of the proposed method when the value
of s was changed are listed in Table 5. It is clear from the
results in Table 5 that execution time tends to increases as
s increases. However, the execution time sometimes de-
creases even though s increases, for example, in the verifica-
tion of ϕ1, when s = 14. In other cases, for example, when
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s = 13, execution time increases significantly. Therefore,
the correlation of s with the execution time is considered to
be weaker than that of n est and max d with execution time.

According to the results in Tables 3, 4, and 5, it can be
concluded that n est, max d, and s are factors that increase
the execution time of the proposed method. In particular,
n est and max d are important factors that determines the
applicability of the proposed method. Specifically, the pro-
posed method is practical if n est is less than around 200
and max d is less than 5 at least.

8. Discussion

As for the proposed method, the search range is set around
the first violating instance detected, and if a violating in-
stance exists within the search range, the search range is
defined as the violation range. Furthermore, by setting the
search range around the violation range, the violation range
is expanded in the same manner. After the violation range is
extracted, it is confirmed whether another violating instance
exists outside the violation range. If another violating in-
stance exists, the violation range is extracted in the same
way. In this manner, it is assured that all violating instances
fall within any violation range. Therefore, by creating the
input filter shown in Fig. 1 based on the violation ranges ex-
tracted by the proposed method, all violating instances lead-
ing to system failures can be filtered.

Moreover, the violation range can be narrowed by di-
viding the extracted violation range. Through a case study,
the feasibility of the division of the violation range was con-
firmed. The extent to which the violation range can be nar-
rowed depends on the DTEM or the property to be verified;
thus, it is difficult to estimate the effectiveness of the divi-
sion in advance. However, dividing the violation range is
still useful for narrowing the violation range on a trial basis.

In the case study described in Sect. 7.2, it was shown
that the number of decision trees constituting the DTEM,
n est, maximum depth of the decision trees, max d, and di-
mension s are factors that increase the execution time of
the proposed method. Among those factors, max d has
the greatest influence on the execution time. On the other
hand, the correlation of s with execution time is considered
to be relatively weak. Moreover, as mentioned above, FM

becomes longer exponentially with increasing max d. On
the contrary, the length of FM does not change even if s in-
creases. From these findings, it is inferred that the execution
time of the proposed method strongly depends on the length
of FM .

The purpose of the proposed method is to create the fil-
tering condition for the input filter. In that case, the proposed
method is required to complete execution within a practical
time. However, even if execution of the proposed method is
not completed within a practical time, the proposed method
can be utilized by returning the violation range extended up
to that point when the execution was interrupted. The viola-
tion range extracted at the time execution is suspended does
not include all violating instances. However, it is useful for

determining where violating instances exist around. For ex-
ample, it is possible to use the attribute vectors included in
the violation range as training data for additionally training
the DTEM. The proposed method is thus useful even in the
case of a large-scale DTEM whose execution is not com-
pleted within the practical time.

As described in Sect. 1, as a method for obtaining the
condition to filter violating instances, a method that finds all
the violating instances can be considered. However, for a
certain violating instance, a large number of similar violat-
ing instances might exist, and the values of some elements
in those instances might be slightly changed. Accordingly,
from the viewpoint of calculation time, it is not practical
to detect all violating instances. Furthermore, as another
approach, extracting the path condition [29] of the decision
trees constituting the DTEM is considered hereafter.

In the same manner as the proposed method, the vio-
lating instance is detected by verification. If the detected vi-
olating instance is input into the DTEM, the execution path
of each decision tree is uniquely determined. Here, the con-
dition of the attribute values to execute these paths is called
“path condition”. The path condition can be extracted by
executing the DTEM with the violating instance or by ana-
lyzing the decision trees. If an attribute vector satisfies the
path condition and is input into the DTEM, the same paths
are executed as they are when the violating instance is in-
put. Moreover, if the same paths are executed, the same
prediction value is returned. For all attribute vectors satisfy-
ing the path condition, the DTEM therefore returns the same
prediction value. Here, a conditional expression for the at-
tribute vector is created by assigning the prediction value to
variable y appearing in the property to be verified and negat-
ing the assigned property. For example, when the predic-
tion value is given as 499,999, the conditional expression of
property ϕ1 is ¬(x[0] ≥ 7000 ⇒ 499999 ≥ 500000). If an
attribute vector satisfies the conjunction of the path condi-
tion and the conditional expression of the property, the cor-
responding prediction value is 499,999, and at that time, the
property is not satisfied. Hereafter, the conjunction is called
the “violation condition.” By repeating the above procedure,
other violation conditions can be extracted. Finally, the set
of extracted violation conditions can be used as the filtering
condition of the input filter.

Since the extracted violation condition filters only at-
tribute vectors that violate the property, this method based
on the path condition creates the filtering condition more
precisely than the proposed method. However, from the
viewpoint of calculation time, this method is considered
to be less practical than the proposed method because it is
likely to extract a large number of violation conditions. For
example, in the case of a DTEM composed of 100 decision
trees with two paths each, there are 2100 combinations of
paths, that is, about 1029 combinations. The violation con-
dition extracted in a single verification is only one of the
1029 combinations, and it is highly likely that there will be
a large number of similar violation conditions in which part
of the path condition differs. In that case, since the number
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Fig. 7 Example of extending violation range by using a mesh strategy

of verifications by the SMT solver is also enormous, this
method is not practical.

In general, fineness of the violation range and execu-
tion time have a trade-off relationship. As for the strategy to
extend the violation range, this trade-off relationship should
be discussed. As for the proposed method, the violation
range is extended in the upward and downward direction
of x[k] (0 ≤ k ≤ s − 1) in order. Hence, violation ranges
are extracted in the form of hyperrectangles. The extension
strategy of the proposed method is therefore called a “hyper-
rectangle strategy.” Here, the mesh strategy described below
can be considered as a strategy for extracting the violation
range more precisely than the hyperrectangle strategy. An
example of extending the violation range according to mesh
strategy is shown in Fig. 7. As for this mesh strategy, first,
the space of attribute vectors is divided into meshes. Then,
the mesh including the violating instance ce is taken as the
initial violation range. Next, whether a violating instance
exists in the mesh adjacent to the violation range is veri-
fied by f ormal veri f ication. If a violating instance exists
in the adjacent mesh, the adjacent mesh is taken into the vi-
olation range. Then, if no violating instance exists in any
mesh adjacent to the violation range, the extension of the
violation range is ended. When this strategy is adopted, the
number of adjacent meshes increases as the violation range
is extended. For example, if it is supposed that the viola-
tion range is an s-dimensional hypercube and the number of
meshes on one side of the violation range is α, the number of
adjacent meshes to the violation range is 2s∗αs−1. To extend
the violation range by one round, f ormal veri f ication is ex-
ecuted the same number of times as the number of adjacent
meshes. The amount of calculation to extend the violation
range by one round therefore increases as the violation range
is extended. On the other hand, in the case of the hyperrect-
angle strategy, to extend the violation range by one round in
the same situation, f ormal veri f ication is executed only 2s
times. That is, it is advantageous that the violation range can
be extended with a fixed number of executions regardless of
the size of the violation range.

Moreover, a strategy to increase the values of
x[1], . . . , x[s − 1] simultaneously can be considered. This
strategy can extend the violation range in a shorter time than
possible with the hyperrectangle strategy. In this case, the
violation range is extracted in the form of a hypercube, so
this strategy is called a “hypercube strategy.” An example
of extending the violation range on the basis of the hyper-
cube strategy is shown in Fig. 8. When the hypercube strat-
egy is adopted, the number of verifications for extending the

Fig. 8 Example of extending violation range by using a hypercube strat-
egy

Fig. 9 Comparison of fineness of violation range

violation range by one round is one. However, the violation
range extracted by the hypercube strategy is coarser than
that of other strategies. An example of the extracted viola-
tion range for each strategy is shown in Fig. 9. The hyper-
cube strategy is highly likely to include a range in which no
violating instance exists in the violation range. Therefore, if
an input filter is created based on the violation range created
by the hypercube strategy, many attribute vectors satisfying
the property will be filtered.

In terms of execution time, mesh strategies are consid-
ered less practical than hyperrectangle strategies. The hy-
percube strategy is considered to be less practical in terms
of the fineness of the violation ranges. A hyperrectangle
strategy with a good balance between fineness and execu-
tion time was therefore adopted.

As mentioned in Sect. 7.2, changing the values of ra,
rb, and rc makes it possible to adjust the balance between
fineness of the violation range and execution time. These
parameters should be changed by the user according to the
DTEM and property to be verified as well as allowable exe-
cution time. As for finding an appropriate parameter value,
the following procedure can be considered. First, the param-
eter values are set so that execution time is short, and it is
confirmed by actually executing the procedure that the exe-
cution time is shorter than the allowable time. After that, the
parameters are gradually changed to improve the fineness of
the violation range. This procedure improves the fineness of
the violation ranges within the constraints of execution time.

Among the proposed methods, range extraction and
range division are applicable to machine-learning models
other than a DTEM. On the contrary, f ormal veri f ication is
a procedure specialized for a DTEM, so it must be replaced
with a verification method suitable for the target machine-
learning model. For example, in the case of a DNN, meth-
ods for encoding and verifying the DNN in a formula have
been proposed [14]–[19]. By replacing f ormal veri f ication
in the proposed method with such a method, it would be pos-
sible to extract the violation range of the DNN.
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9. Related Work

As described in Sect. 1, Bogdiukiewicz et al. proposed a
method for developing a policing function for autonomous
systems [12]. The policing function checks prediction val-
ues of intelligent function such as a machine-learning model
at runtime. The policing function is useful for preventing
failures in a similar manner to the input filter. However, the
policing function works after the intelligent function is ex-
ecuted. That is, the policing function detects and controls
the possible failure later than the input filter. The proposed
method for creating the input filter is therefore more useful
in development of systems that require quick handling of
failures.

In f ormal veri f ication shown in Sect. 4, a rule-form
formula composed of conditions and conclusions is ex-
tracted from the DTEM. Extracting a specification from a
program in the form of rules has been studied [22]–[28]. In
these studies, the control path of the program is extracted
by static analysis or symbolic execution, and the rule is cre-
ated on the basis of the branch condition that constitutes the
control path. The method proposed in this paper extracts the
decision tree path and creates a rule-form formula based on
the attribute test associated with the decision node that com-
poses the path. It can thus be said that it adopts the same
approach.

As for the verification of the rule-form formula, meth-
ods for verifying properties such as consistency, redun-
dancy, and completeness [30] have been established. Fur-
thermore, a method for extracting “minimal unsatisfiable
subsets,” which are useful for causal analysis when the
rule set does not satisfy consistency, has also been pro-
posed [31]–[33]. Validation of rule programs used in
a business-rule management system has also been stud-
ied [35]. As in the case of the method proposed in this pa-
per, the verification of the rule-form formula is translated to
checking the satisfiability problem.

As described in Sect. 1, an approach of encoding a
DNN model as a formula and verifying it by determining
the satisfiability of the formula has been proposed in recent
years [14]–[19]. It can be said that the method for verifying
the DTEM proposed in this paper also takes this approach.
However, a study describing a specific method for verifying
a DTEM has not been reported. One of the contributions
of this paper is formally specifying a verification method
for a DTEM and demonstrating its feasibility through a case
study.

To the authors’ knowledge, no similar studies on ex-
tracting violation ranges as described in Sect. 5 and dividing
violation ranges as described in Sect. 6 have been reported.
One of the reasons for that situation is that the problems
solved by these methods are unique to software developed
by machine learning. In regard to conventional software,
namely, algorithmic programs, when a counterexample is
detected by verification, the fault that caused the counterex-
ample is analyzed, and the fault is removed by correcting

the algorithm. Verification and correction are then repeated
until no counterexample is detected. On the other hand, in
the case of a machine learning model, a possible method for
handling such faults is retraining or additional training us-
ing the detected counterexample (and data similar to it). Al-
though this approach may eliminate the fault, retraining and
additional training may affect the entire model, and another
new fault may be inserted. That is, “regression” occurs. Al-
though this regression also occurs in the case of algorithmic
programs, in that case, regression occurs due to a devel-
oper’s mistake; therefore, such mistakes must be carefully
corrected to avoid regression. On the contrary, in the case of
a machine-learning model, it is difficult for the developer to
control retraining and additional training so that regression
does not occur. In other words, it can be said that it is inher-
ently difficult to create a complete machine-learning model
that always returns the expected prediction value. Accord-
ingly, when a machine-learning model is implemented in a
system, the proposed method is used to implement the input
filter. That is, the proposed method solves a specific prob-
lem that occurs when machine-learning models are used.

10. Conclusion

When a DTEM is implemented in a system, the input fil-
ter can be effectively used to prevent system failures. As a
means of creating the filtering condition for the input filter,
a method for extracting the violation range of the DTEM,
which takes multi-dimensional vectors whose elements are
continuous numerical variables, was proposed. The pro-
posed method consists of procedures for formally verifying
the DTEM, extracting the violation range, and narrowing the
extracted violation range. The violation range extracted by
the proposed method includes all violating instances. The
proposed method is therefore useful for creating the filter-
ing condition. On the basis of the results of the case study
using a dataset on the house prices, the feasibility of the pro-
posed method was demonstrated. Through the case study,
the scalability of the proposed method was also evaluated.
The number of decision trees constituting the DTEM, the
maximum depth of the decision trees, and the dimension of
the attribute vector were shown to be factors that increase
the execution time of the proposed method. Specifically,
it is concluded that the proposed method is practical if the
number of decision trees is less than around 200 and the
maximum depth of the decision trees is less than 5 at least.

Future issues include improving the scalability of the
proposed method. Since the form of formula FM created by
the proposed method is constant, the scalability of the pro-
posed method may be improved by implementing heuristics
specialized for that form in the SMT solver. Moreover, the
procedure for finding appropriate values of parameters ra,
rb, and rc shown in Sect. 8 can be incorporated into the pro-
posed method. Furthermore, the limitation of the proposed
method can be evaluated in more detail by adding case stud-
ies using other datasets.
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