
390
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

PAPER

Knowledge Discovery from Layered Neural Networks Based on
Non-negative Task Matrix Decomposition

Chihiro WATANABE†a), Member, Kaoru HIRAMATSU††b), Nonmember, and Kunio KASHINO†c), Fellow

SUMMARY Interpretability has become an important issue in the ma-
chine learning field, along with the success of layered neural networks in
various practical tasks. Since a trained layered neural network consists of
a complex nonlinear relationship between large number of parameters, we
failed to understand how they could achieve input-output mappings with
a given data set. In this paper, we propose the non-negative task matrix
decomposition method, which applies non-negative matrix factorization to
a trained layered neural network. This enables us to decompose the infer-
ence mechanism of a trained layered neural network into multiple principal
tasks of input-output mapping, and reveal the roles of hidden units in terms
of their contribution to each principal task.
key words: interpretable machine learning, neural networks, non-negative
matrix factorization, clustering

1. Introduction

The interpretability of machine learning models or their
trained result has become an important issue, along with the
recent success of layered neural networks (or LNN). Their
complex hierarchical network structures have made it pos-
sible to represent nonlinear complex relationships between
input and output data, and greatly improve prediction ac-
curacy with various practical data sets [1]–[6]. Despite this
powerful prediction ability, their black-box inference mech-
anism has limited their application area. For instance, in the
area of automatic driving or medical care, a reasonable ex-
planation must be provided as to how a trained LNN derived
a prediction result.

Recently, various approaches have been proposed to
solve such problems of interpretability. The most well-
studied approach is to approximate and visualize the over-
all function of a trained LNN. For instance, methods have
been proposed that approximate the trained LNN with an
interpretable function such as a linear model [7]–[9] and a
decision tree [10]–[13]. For image classification networks,
various visualization methods have been proposed for iden-
tifying the important part of each input image as a heat
map [14]–[20]. These methods mainly focus on the input-
output mapping done by an entire trained LNN. Another ap-

Manuscript received May 21, 2019.
Manuscript publicized October 23, 2019.
†The authors are with NTT Communication Science Laborato-

ries, Atsugi-shi, 243–0198 Japan.
††The author is with NTT Geospace Corporation, NEXTSITE

Asakusa Building, Tokyo, 111–0034 Japan.
a) E-mail: chihiro.watanabe.xz@hco.ntt.co.jp (Corresponding

author)
b) E-mail: kaoru.hiramatsu.ug@ntt-geospace.co.jp
c) E-mail: kunio.kashino.me@hco.ntt.co.jp

DOI: 10.1587/transinf.2019EDP7136

proach is to examine the function of each part (e.g. unit or
layer) of the trained LNN [21]–[24]. For instance, a method
has been proposed that analyzes the similarity of a given pair
of unit sets based on the combination of singular value de-
composition and canonical correlation analysis [23]. There
are also studies that simplify the structure of trained net-
works by automatically decomposing the units into clus-
ters by employing network analysis [25]–[27]. Other stud-
ies have explored LNN training methods for constructing a
trained network that is represented by an interpretable func-
tion [28], [29].

These studies have enabled us to obtain knowledge
about various different aspects of an LNN, however, no
method has been developed for simplifying the LNN struc-
ture by decomposing the hidden units into clusters and si-
multaneously revealing the role of each cluster in inference.
To construct such a method is an important task, since in
most practical cases we do not know either the cluster struc-
ture of an LNN or the main functions of the clusters in ad-
vance.

In this paper, we propose the non-negative task ma-
trix decomposition of LNNs, which enables us to obtain
a simplified global structure of a trained LNN and knowl-
edge about the function of each decomposed part, simulta-
neously∗. Unlike the methods described in previous stud-
ies [25]–[27] for analyzing trained LNNs by detecting their
layer-wise cluster structure via post-processing, our pro-
posed method can reveal both a set of principal input-output
mapping tasks and the cluster structure of hidden units
across layers at the same time. By non-negative matrix fac-
torization or NNMF, the decomposition of an LNN is well
performed.

To achieve such task decomposition, we first determine
the role of each hidden unit as a vector that represents the
effect of each input dimension on the hidden unit and the
effect of the hidden unit on each output dimension. Then,
we apply NNMF to a matrix consisting of such vectors for
all the hidden units, and obtain information about both the
principal tasks in a trained LNN and the classification result
of hidden units. A related work has been proposed for rep-
resenting the role of each unit as a vector [23], however, our
proposed method differs from the previous study in that it
can break down both the function and structure of an LNN
into multiple components, providing the inference organiza-
tion of a trained LNN.

∗A preprint of this paper is available on arXiv [30].

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

WATANABE et al.: KNOWLEDGE DISCOVERY FROM LAYERED NEURAL NETWORKS BASED ON NON-NEGATIVE TASK MATRIX DECOMPOSITION
391

We show experimentally that our proposed method can
reveal the inference mechanism of an LNN. First, we apply
our proposed method to an LNN trained with a data set with
a ground truth cluster structure, and show that the hidden
units are appropriately decomposed into clusters across lay-
ers. Then, we analyze LNNs trained with an image data set
by employing our proposed method, and discuss the results.

2. Knowledge Discovery from Neural Networks Based
on Non-Negative Task Matrix Decomposition

We propose a new method for decomposing a trained LNN
into clusters and simultaneously revealing the role of the
clusters in prediction. Our proposed method does not de-
pend on the training method, activation function, and archi-
tecture (e.g. fully-connected or convolutional network) of an
LNN. It is applicable to any neural network, as long as the
outputs of all the hidden units can be computed with a given
input data set. Therefore, in this section, we assume that
the LNN training is completed and explain the subsequent
procedure of our proposed method.

2.1 Extracting Feature Vectors of Hidden Layer Units

To decompose the function of a trained LNN, we first define
a non-negative task matrix V = {vk,l}, whose k-th row con-
sists of a feature vector vk of the k-th unit in a hidden layer.
We define such feature vector vk by combining two kinds of
vectors that represent the effect of each input dimension on
the k-th unit and the effect of the k-th unit on each output
dimension.

The effect of the i-th input dimension on the k-th hid-
den unit is computed as the square root error of the output
in the k-th hidden unit, when the i-th input dimension is re-
placed with the mean value for the training data (in other
words, when the LNN cannot use the value of the i-th input
dimension). This definition is given by the following equa-
tions.

Definition 1 (Effect of input dimension on hidden unit):
We define the effect of the i-th input dimension on the k-th

hidden unit as vinik =

√
1
n1

∑
n

(
o(n)

k − z(n)
k

)2
. Here, o(n)

k is the

output of the k-th hidden unit for the n-th input data sample
X(n), and z(n)

k is the output of the k-th hidden unit for an input
data sample X′(n) that is generated based on the following
definition:

X′(n)
i ≡ 1

n1

∑
n

X(n)
i .

For l � i, X′(n)
l ≡ X(n)

l .

Similarly, the effect of the k-th hidden unit on the j-
th output dimension is computed as the square root error of
the value of the j-th output dimension when the output in
the k-th hidden unit is replaced with the mean value for the
training data (in other words, when the LNN cannot use the
value of the k-th hidden unit). This definition is given by the

following equations.

Definition 2 (Effect of hidden unit on output dimension):
We define the effect of the k-th hidden unit on the j-th out-

put dimension as vout
k j =

√
1
n1

∑
n

(
y(n)

j − z(n)
j

)2
. Here, y(n)

j is

the output of the j-th unit in the output layer for the n-th
input data sample X(n), and z(n)

j is the output of the j-th unit
in the output layer when changing the output values in the
k-th hidden unit, according to the following procedure: We
change the output value of the k-th hidden unit for the n-th
input data sample from o(n)

k to o′(n)
k . Here, o′(n)

k is given by

o′(n)
k ≡ 1

n1

∑
n

o(n)
k .

Once we have obtained the feature vectors vink and vout
k

for the k-th hidden unit, we define a single feature vector
vk by combining these two kinds of feature vectors. In this
paper, before combining the feature vectors, we normalize
them so that the minimum and maximum values are the
same for vectors vink and vout

k when changing the hidden unit
index k. Specifically, we define the minimum and maximum
values of vink and vout

k for all the hidden units as 0 and 1, re-
spectively. This normalization is undertaken so that the ef-
fect of an input dimension on a hidden unit and the effect of
a hidden unit on an output dimension are treated equally. We
define a feature vector vk = {vk,l} constituting a non-negative
task matrix V by the following equations.

For 1 ≤ l ≤ i0, vk,l ≡ vink,l,
For i0 + 1 ≤ l ≤ i0 + j0, vk,l ≡ vout

k,l−i0
,

where i0 and j0, respectively, represent the dimensions of
the input and output data.

2.2 Non-Negative Task Matrix Decomposition of LNNs

Here, we describe a method for decomposing the func-
tion of whole hidden layers of a trained LNN into multi-
ple main tasks. As shown in Fig. 1, this LNN task decom-
position is achieved by approximating a non-negative task
matrix V consisting of the feature vectors of hidden units
with the product of low-dimensional non-negative matrices
T = {tk,c} ∈ R+k0×c0 and U = {uc,l} ∈ R+c0×(i0+ j0), where k0 is
the number of hidden units and c0 is a hyperparameter.

V ≈ TU.

It is empirically known that non-negative constraint for the
above matrix T and U often results in a sparse and inter-
pretable solution, by avoiding cancellations between posi-
tive and negative elements [31], [32]. By such approxima-
tion, we represent the mapping from input dimension values
to output dimension values by a hidden unit as the weighted
linear sum of c0 representative vectors. The c-th row of
the matrix U corresponds to the c-th representative vector,
which represents a main task or input-output mapping that
is performed by the hidden units in a trained LNN. On the

392
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 1 Non-negative task matrix decomposition of an LNN. Left: Hidden units are decomosed into multiple clusters, according to
the their roles in inference. Our proposed method reveals the main role of each cluster in terms of the strength of the relationship with
each input and output dimension. Right: Non-negative task matrix decomposition is achieved by approximating the non-negative task
matrix V with the product of low-dimensional non-negative matrices T and U. Here, the k-th row of the matrix V represents the role of
the k-th hidden unit in terms of the relationship with each input dimension i and each output dimension j. The k-th row of the matrix
T corresponds to the clustering result of the k-th hidden unit, which is represented as a weight for each cluster c. The c-th row of the
matrix U corresponds to the c-th decomposed task.

other hand, the k-th row of the matrix T corresponds to the
weights of the representative vectors that constitute the task
of the k-th hidden unit. The values of the matrix T provide
us with information regarding the similarity between tasks
performed by different hidden units.

The above non-negative approximation is achieved by
NNMF performed with Algorithm 1 [33]. By iteratively up-
dating the values of matrices T and U, we can obtain a local
optimal solution for the approximation, since the monotonic
decrease of the Frobenius norm of the error V − TU to the
number of iterations is theoretically guaranteed [33].

Algorithm 1 Non-negative Task Matrix Decomposition of
Layered Neural Networks
1: Let a0 be the number of iterations of the algorithm, and let V be a

non-negative task matrix consisting of feature vectors of hidden units.

2: Initialization of matrices T and U: tk,c
i.i.d.∼ N(μ1, σ1), and uc,l

i.i.d.∼
N(μ2, σ2). In this paper, we set the values at μ1 = σ1 = μ2 = σ2 = 0.5.

3: for a = 1 to a0 do
4: tk,c ← tk,c × ((VUT)k,c/(TUUT)k,c).
5: tk,c ← max(tk,c, 0).
6: uc,l ← uc,l × ((T T V)c,l/(T T TU)c,l).
7: uc,l ← max(uc,l, 0).
8: end for

With the above NNMF, we can gain knowledge about
the combination of tasks that mainly constitutes the infer-
ence mechanism of the entire trained LNN.

3. Experiments

We show the effectiveness of our proposed method experi-
mentally by using both synthetic and practical data sets.

3.1 Preliminary Experiment Using Synthetic Data Set

First, we show that our proposed method can successfully
decompose the tasks of a trained LNN by using a synthetic
data set with a ground truth cluster structure.

We defined the ground truth structure as constituting
three independent LNNs, each of which had three hidden

Fig. 2 (a) Ground truth cluster structure for generating the synthetic data
set. (b) Architecture of a neural network for training with the synthetic
data.

Fig. 3 Quantitative evaluation of neural network clustering.

layers that each include 63, 57, and 51 units (Fig. 2 (a)).
The parameters ŵ = {ω̂d

i j, θ̂
d
i } for the ground truth LNN

were generated by ω̂d
i j

i.i.d.∼ N(0, 1), and θ̂di
i.i.d.∼ N(0, 0.5).

By using this network, we generated the synthetic data set

{(Xn,Yn)} by Xn
i.i.d.∼ N(0, 3), and Yn = f (Xn, ŵ) + ε2, where

ε2
i.i.d.∼ N(0, 0.05).

Then, we trained an fully-connected LNN (Fig. 2 (b))
by using the data set {(Xn,Yn)}, and applied our proposed
non-negative task matrix decomposition to the trained LNN.

Figure 4, 5, and 6, respectively, show the decomposed
tasks of the LNN after 1, 40, and 100 epochs of training.

WATANABE et al.: KNOWLEDGE DISCOVERY FROM LAYERED NEURAL NETWORKS BASED ON NON-NEGATIVE TASK MATRIX DECOMPOSITION
393

Fig. 4 Decomposed tasks of an LNN trained with a synthetic data set
(after 1 epoch of training, NNMF).

Fig. 5 Decomposed tasks of an LNN trained with a synthetic data set
(after 40 epochs of training, NNMF).

These figures show that the decomposed tasks gradually re-
flect the ground truth cluster structure consisting of three in-
dependent LNNs as the LNN training converges. In other
words, our proposed method could appropriately decom-
pose the finally trained LNN into three independent tasks,
from the fact that each extracted cluster mainly performed
mappings from input dimensions to output dimensions in
one of the three independent networks.

For comparison, we also applied principal component
analysis or PCA to the trained LNN. NNMF and PCA are
similar in that both of them can provide information about
the principal tasks of an LNN by low-rank matrix decom-
position. However, non-negative value constraint leads to
more interpretable representation of tasks, since we define
the roles of hidden units as nonnegative feature vectors in
our proposed method. Figure 7 shows the decomposed tasks
of the LNN after 100 epochs of training, which were ob-
tained by PCA. Comparing Figs. 6 and 7, it is shown ex-
perimentally that NNMF reflects more directly the indepen-
dent structure of input-output mapping. We also conducted
a quantitative evaluation of our proposed method and PCA-
based method. With the synthetic data set, we defined the

Fig. 6 Decomposed tasks of an LNN trained with a synthetic data set
(after 100 epochs of training, NNMF).

Fig. 7 Decomposed tasks of an LNN trained with a synthetic data set
(after 100 epochs of training, PCA).

Fig. 8 Accuracy of clustering by NNMF (left) and PCA (right).

accuracy of a clustering method as follows (see also Fig. 3):
(1) We defined a permutation of feature vectors {vπ(k)}k=1,2,3

and the following three vectors:

• v(0)
1 ≡ {v(0)

1,l }, where v(0)
1,l = 1 if 1 ≤ l ≤ 23 or 70 ≤ l ≤ 84

and v(0)
1,l = 0 otherwise.

• v(0)
2 ≡ {v(0)

2,l }, where v(0)
2,l = 1 if 24 ≤ l ≤ 46 or 85 ≤ l ≤

99 and v(0)
2,l = 0 otherwise.

• v(0)
3 ≡ {v(0)

3,l }, where v(0)
3,l = 1 if 47 ≤ l ≤ 69 or 100 ≤ l ≤

114 and v(0)
3,l = 0 otherwise.

(2) For each permutation {π(k)}, we computed the mean cor-

394
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 9 Sample input image data for each class.

Fig. 10 Decomposed tasks of an LNN trained with a diagram image data set.

relation between the pairs of a permutated feature vector
vπ(k) and v(0)

k for all k. (3) We defined the accuracy as the
maximum mean correlation for all the permutations {π(k)}.
Figure 8 shows the accuracy of neural network clustering
by NNMF and PCA for 10 trials of NN training with differ-
ent initial parameters. From this figure, we can observe that
our NNMF-based cluster decomposition method is more ac-
curate than PCA-based method in terms of correlation with
independent input-output mapping.

3.2 Experiment Using Diagram Image Data Set

We also applied our proposed method to the convolutional
neural network LeNet-5 [34] trained with an image data set
consisting of 28 × 28 pixel images of 10 types of diagrams

that was also used in [35]. Figure 9 shows sample images
for each class of diagrams. With this data set, we trained the
LNN to recognize the 10 types of diagrams from input im-
ages, and applied our proposed method to the trained LNN.

Figure 10 shows the decomposed tasks of the LNN.
For instance, we can gain knowledge about the role of each
cluster from these figures as follows.

• Cluster 1, 2, 3, 6, 10, 13, 16, 17, 20, and 21 use the pixel
information that are localized in a part of an image, and
these clusters have relatively small effect on prediction
outputs.

• Cluster 4 is mainly used for recognizing “Cross” and
“Ribbon” (both of which have cross-shaped pixels),
and it captures the information given by an area near

WATANABE et al.: KNOWLEDGE DISCOVERY FROM LAYERED NEURAL NETWORKS BASED ON NON-NEGATIVE TASK MATRIX DECOMPOSITION
395

Fig. 11 Decomposed tasks of an LNN trained with a diagram image data set that were obtained by
principal component analysis.

the center of an image and four points located in the
upper left, upper right, lower left, and lower right of
the center point.

• Cluster 5 uses the information provided by pixels lo-
cated in the upper part of an image, and it mainly rec-
ognizes “Two lines.”

• Cluster 7 mainly recognizes the “Diamond” from the
pixel information that are localized in three points near
the mean positions of three (left, top, and right) vertices
of the “Diamond.”

• Cluster 8 is used for recognizing the “Rectangle” from
the pixels shaped in the form of circle near the center
of an image.

• Cluster 9 mainly recognizes the “Heart” from the in-
formation provided by the pixels located in the slightly
upper part of an image. This region is near the mean
position of a vertex of the “Heart.”

• Cluster 11 is used for recognizing the “Triangle,” and
it uses the pixel information over a wide region in the
left, center, and right part of an image.

• Cluster 12 also uses the pixel information over a wide
region, and it recognizes the “Arrow” and “Heart.”

• Cluster 14 is mainly used for recognizing the “Cross”
and “Line,” both of which have pixels in an area ex-
tending from the upper left to the lower right in an im-
age. Besides that area, this cluster uses the information
provided by pixels located in the left part of an image.

• Cluster 15 mainly recognizes the “Face,” however, the
pixel information it uses do not have the similar shape
as the “Face” images. Instead, it uses the pixel infor-
mation located in the upper part of an image (particu-
larly, the pixels near the area between two eyes in the
“Face”).

• Cluster 18 uses the pixel information that are localized
in several points and the lower left part of an image,
and it mainly recognizes “Line” and “Ribbon.”

• Cluster 19 also uses the localized pixel information of
three parts, and it is mainly used for recognizing the
“Arrow” and “Ribbon.”

As the experiment in Sect. 3.1, we also tried applying
PCA to a trained LNN. Figure 11 shows the decomposed
tasks of the LNN that were obtained by PCA. Although
the feature vectors of hidden units have only non-negative
values by nature, the representative vectors have both neg-
ative and non-negative elements. Also, comparing Fig. 10
and Fig. 11, it is shown experimentally that NNMF captures
more local information of the data than principal component
analysis. These characteristics result in the difference in in-
terpretability between the two methods, as regards the roles
of hidden units that is approximated by the weighted sum of
the representative vectors.

396
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

4. Discussions

In this section, we discuss our proposed method in terms
of both methodology and application. First, our proposed
method enabled us to decompose an LNN into a given num-
ber of tasks, however, there is no statistical method for de-
termining the number of tasks or clusters. The construction
of a criterion for optimizing the number of tasks is important
future work.

Next, in our proposed method, decomposed tasks are
represented as non-negative vectors, and we cannot know
what range of input dimension values results in what range
of output dimension values. We need another method to
reveal the role of each task in more detail.

Finally, it would be possible to utilize our non-negative
task matrix decomposition to improve the generalization
performance of an LNN. The experimental results show that
some clusters have a bigger influence on the output dimen-
sions than others. By observing such a disparity in the effect
on prediction results, we can delete hidden units that are
unimportant for inference and optimize the LNN architec-
ture.

5. Conclusion

LNNs have greatly improved predictive performance with
various practical data sets, however, their inference mech-
anism has been black-boxed and we cannot interpret their
complex training results. In this paper, we proposed a
method for decomposing the function of hidden units in
a trained LNN into multiple tasks, based on NNMF. We
showed experimentally that our proposed method can pro-
vide us with knowledge about the role of each part of an
LNN, in terms of which parts of the input and output di-
mensions are mainly related to them in relation to inference.

6. Experimental Settings

The following bullets show the detailed settings for the ex-
periments.

• Parameter settings

– The batch size for LNN training: 50 (Exp. 1) and
100 (Exp. 2).

– The number of epochs for LNN training: 100
(Exp. 1) and 30 (Exp. 2).

– The sample size of the training data set for LNN
training: 10000 (Exp. 1) and 1000 (Exp. 2).

– The sample size of the training data set for com-
puting feature vectors of the hidden layer units:
1000. (This is set at a smaller number than the
training sample size to save memory.)

– For the synthetic data set, we normalized the input
data so that the minimum and maximum values of
an element, respectively, are 0 and 1.

– For the synthetic data set, we normalized the out-
put data so that the minimum and maximum val-
ues of an element, respectively, are 0.01 and 0.99.

– The number of decomposed tasks: 3 (Exp. 1) and
21 (Exp. 2).

– a2 is the number of iterations of the non-negative
task matrix decomposition algorithm. In this pa-
per, we set a2 at 500.

– In all the experiments, we performed the NNMF
algorithm for 1000 times, and used the best result
in terms of the square error ||V − TU ||2.

• As regards the LNN training with the diagram image
data set, we chose training data in the following pro-
cedure to stabilize the training. This process is also
undertaken in [35]. Let X(k)

n and Y (k)
n , respectively, be

the n-th samples of input and output training data in
class k. The training data were chosen in the following
order:

{X(1)
1 ,Y

(1)
1 }, {X(2)

1 ,Y
(2)
1 }, · · · , {X(10)

1 ,Y
(10)
1 },

{X(1)
2 ,Y

(1)
2 }, {X(2)

2 ,Y
(2)
2 }, · · · , {X(10)

2 ,Y
(10)
2 },

...

{X(1)
n1

Y (1)
n1
}, {X(2)

n1
,Y (2)

n1
}, · · · , {X(10)

n1
,Y (10)

n1
},

{X(1)
1 ,Y

(1)
1 }, {X(2)

1 ,Y
(2)
1 }, · · · , {X(10)

1 ,Y
(10)
1 }, · · ·

References

[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “Natural language processing (almost) from scratch,”
Journal of Machine Learning Research, vol.12, pp.2493–2537,
2011.

[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recogni-
tion,” IEEE Signal Process. Mag., vol.29, no.6, pp.82–97, 2012.

[3] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems 25, pp.1097–1105, 2012.

[4] T.N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for LVCSR,” 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing,
pp.8614–8618, 2013.

[5] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning
with neural networks,” Advances in Neural Information Processing
Systems 27, pp.3104–3112, 2014.

[6] J.J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of
a convolutional network and a graphical model for human pose es-
timation,” Advances in Neural Information Processing Systems 27,
pp.1799–1807, 2014.

[7] S.M. Lundberg and S. Lee, “A unified approach to interpreting
model predictions,” Advances in Neural Information Processing
Systems 30, pp.4765–4774, 2017.

[8] T. Nagamine and N. Mesgarani, “Understanding the representa-
tion and computation of multilayer perceptrons: A case study in
speech recognition,” Proc. 34th International Conference on Ma-
chine Learning, pp.2564–2573, 2017.

[9] M.T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust
you?”: Explaining the predictions of any classifier,” Proc. 22nd
ACM SIGKDD International Conference on Knowledge Discovery

http://dx.doi.org/10.1109/msp.2012.2205597
http://dx.doi.org/10.1109/icassp.2013.6639347
http://dx.doi.org/10.1145/2939672.2939778

WATANABE et al.: KNOWLEDGE DISCOVERY FROM LAYERED NEURAL NETWORKS BASED ON NON-NEGATIVE TASK MATRIX DECOMPOSITION
397

and Data Mining - KDD ’16, pp.1135–1144, 2016.
[10] M. Craven and J.W. Shavlik, “Extracting tree-structured representa-

tions of trained networks,” Advances in Neural Information Process-
ing Systems 8, pp.24–30, 1996.

[11] U. Johansson and L. Niklasson, “Evolving decision trees using ora-
cle guides,” 2009 IEEE Symposium on Computational Intelligence
and Data Mining, pp.238–244, 2009.

[12] R. Krishnan, G. Sivakumar, and P. Bhattacharya, “Extracting deci-
sion trees from trained neural networks,” Pattern. Recogn., vol.32,
no.12, pp.1999–2009, 1999.

[13] J.J. Thiagarajan, B. Kailkhura, P. Sattigeri, and K.N. Ramamurthy,
“Treeview: Peeking into deep neural networks via feature-space par-
titioning,” NIPS 2016 Workshop on Interpretable Machine Learning
in Complex Systems, arXiv:1611.07429, 2016.

[14] M. Ancona, E. Ceolini, A.C. Öztireli, and M. Gross, “Towards better
understanding of gradient-based attribution methods for deep neural
networks,” International Conference on Learning Representations,
2018.

[15] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W.
Samek, and O.D. Suarez, “On pixel-wise explanations for non-
linear classifier decisions by layer-wise relevance propagation,”
PLOS ONE, vol.10, no.7, pp.1–46, 2015.

[16] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” Proc. 34th In-
ternational Conference on Machine Learning, pp.3145–3153, 2017.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside con-
volutional networks: Visualising image classification models and
saliency maps,” ICLR 2014 workshop, arXiv:1312.6034, 2014.

[18] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg,
“Smoothgrad: removing noise by adding noise.” arXiv:1706.03825,
2017.

[19] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” ICLR 2015
workshop, arXiv:1412.6806, 2015.

[20] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for
deep networks,” Proc. 34th International Conference on Machine
Learning, pp.3319–3328, 2017.

[21] G. Alain and Y. Bengio, “Understanding intermediate layers using
linear classifier probes,” ICLR 2017 workshop, arXiv:1610.01644,
2017.

[22] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the ef-
fective receptive field in deep convolutional neural networks,” Ad-
vances in Neural Information Processing Systems 29, pp.4898–
4906, 2016.

[23] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “SVCCA:
Singular vector canonical correlation analysis for deep learning dy-
namics and interpretability,” Advances in Neural Information Pro-
cessing Systems 30, pp.6076–6085, 2017.

[24] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black box:
Understanding DQNs,” Proc. 33rd International Conference on Ma-
chine Learning, pp.1899–1908, 2016.

[25] C. Watanabe, K. Hiramatsu, and K. Kashino, “Modular represen-
tation of autoencoder networks,” 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), pp.1–8, 2017.

[26] C. Watanabe, K. Hiramatsu, and K. Kashino, “Recursive extrac-
tion of modular structure from layered neural networks using vari-
ational Bayes method,” Discovery Science, Lecture Notes in Com-
puter Science, vol.10558, pp.207–222, Springer International Pub-
lishing, Cham, 2017.

[27] C. Watanabe, K. Hiramatsu, and K. Kashino, “Modular repre-
sentation of layered neural networks,” Neural Networks, vol.97,
pp.62–73, 2018.

[28] J.N. Foerster, J. Gilmer, J. Sohl-Dickstein, J. Chorowski, and D.
Sussillo, “Input switched affine networks: An RNN architecture de-
signed for interpretability,” Proc. 34th International Conference on
Machine Learning, pp.1136–1145, 2017.

[29] C. González, E.L. Mencı́a, and J. Fürnkranz, “Re-training deep

neural networks to facilitate Boolean concept extraction,” Dis-
covery Science, Lecture Notes in Computer Science, vol.10558,
pp.127–143, Springer International Publishing, Cham, 2017.

[30] C. Watanabe, K. Hiramatsu, and K. Kashino, “Knowledge discovery
from layered neural networks based on non-negative task decompo-
sition.” arXiv:1805.07137, 2018.

[31] D.D. Lee and H.S. Seung, “Unsupervised learning by convex and
conic coding,” Advances in Neural Information Processing Systems
9, pp.515–521, 1997.

[32] D.D. Lee and H.S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature., vol.401, no.6755, pp.788–
791, 1999.

[33] D.D. Lee and H.S. Seung, “Algorithms for non-negative matrix fac-
torization,” Advances in Neural Information Processing Systems 13,
pp.556–562, 2001.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol.86,
no.11, pp.2278–2324, 1998.

[35] C. Watanabe, K. Hiramatsu, and K. Kashino, “Understanding com-
munity structure in layered neural networks.” Neurocomputing,
vol.367, pp.84–102, 2019.

Chihiro Watanabe was born in Japan,
1990. She received the B.S. degree from De-
partment of Mathematical Engineering and In-
formation Physics, School of Engineering, The
University of Tokyo, Japan, and the M.S. de-
gree from Department of Information Physics
and Computing, Graduate School of Informa-
tion Science Technology, The University of To-
kyo, Japan. She is currently a researcher at
Recognition Research Group, Media Informa-
tion Laboratory, NTT Communication Science

Laboratories. Her research interest includes machine learning and network
analysis.

Kaoru Hiramatsu is currently a se-
nior manager of Product Department at NTT
Geospace Corporation. He received his B.S. in
electrical engineering and his M.S. in computer
science from Keio University in 1994 and 1996,
respectively, and his Ph.D. in informatics from
Kyoto University in 2002. He was Group Leader
of Media Recognition Research Group, Media
Information Laboratory, NTT Communication
Science Laboratories. He has been working on
the Semantic Web, sensor networks, and media

search technology. He is a member of IPSJ and the Japanese Society of
Artificial Intelligence.

Kunio Kashino is Senior Distinguished
Researcher at Nippon Telegraph and Telephone
Corporation (NTT), a visiting professor at the
National Institute of Informatics (NII), and an
adjunct professor at Graduate School of Infor-
mation Science and Technology, the University
of Tokyo. His research interest includes audio
and video analysis, synthesis, search, and recog-
nition algorithms and their implementation. He
received his Ph.D. from the University of Tokyo
in 1995. He is a fellow of IEICE, and a member

of IEEE, ACM, IPSJ, JSAI, and ASJ.

http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1109/cidm.2009.4938655
http://dx.doi.org/10.1016/s0031-3203(98)00181-2
http://dx.doi.org/10.1371/journal.pone.0130140
http://dx.doi.org/10.1109/ssci.2017.8280859
http://dx.doi.org/10.1007/978-3-319-67786-6_15
http://dx.doi.org/10.1016/j.neunet.2017.09.017
http://dx.doi.org/10.1007/978-3-319-67786-6_10
http://dx.doi.org/10.1007/978-3-319-67786-6_10
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.neucom.2019.08.020

