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Daisy-Chained Systolic Array and Reconfigurable Memory Space
for Narrow Memory Bandwidth

Jun IWAMOTO†a), Yuma KIKUTANI†b), Renyuan ZHANG†c), Members, and Yasuhiko NAKASHIMA†d), Fellow

SUMMARY A paradigm shift toward edge computing infrastructures
that prioritize small footprint and scalable/easy-to-estimate performance is
increasing. In this paper, we propose the following to improve the footprint
and the scalability of systolic arrays: (1) column multithreading for reduc-
ing the number of physical units and maintaining the performance even
for back-to-back floating-point accumulations; (2) a cascaded peer-to-peer
AXI bus for a scalable multichip structure and an intra-chip parallel local
memory bus for low latency; (3) multilevel loop control in any unit for
reducing the startup overhead and adaptive operation shifting for efficient
reuse of local memories. We designed a systolic array with a single column
× 64 row configuration with Verilog HDL, evaluated the frequency and the
performance on an FPGA attached to a ZYNQ system as an AXI slave
device, and evaluated the area with a TSMC 28nm library and memory
generator and identified the following: (1) the execution speed of a matrix
multiplication/a convolution operation/a light-field depth extraction, whose
size larger than the capacity of the local memory, is 6.3× / 9.2× / 6.6× com-
pared with a similar systolic array (EMAX); (2) the estimated speed with a
4-chip configuration is 19.6× / 16.0× / 8.5×; (3) the size of a single-chip is
8.4 mm2 (0.31× of EMAX) and the basic performance per area is 2.4×.
key words: systolic array, reconfigurable memory space, memory band-
width

1. Introduction

Computing infrastructures equipped with flexible pro-
grammability and massively parallel processing mecha-
nisms such as GPUs have greatly contributed to the ex-
ploration of algorithms [1], [2] and the accuracy improve-
ment [3], [4] of modern artificial intelligence. In particular,
horizontally parallel processing (SIMT/SIMD architecture)
is widely used for speeding up von Neumann computing [5].
For efficient SIMT/SIMD operation, the input data must be
retrieved for each operation from the main memory (DDR).
Therefore, in addition to guaranteeing sufficient DDR band-
width, a coalescing mechanism must be used for aligning
memory references to consecutive addresses. To hide the
DDR latency over 1000 cycles, a multithreading mechanism
supported by a huge register file should also be incorporated.
A huge GPU power consumption seems inevitable for pre-
serving conventional programmability.

On the other hand, the miniaturization of semicon-
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ductors is slowing down and becoming less beneficial for
low power consumption and cost reduction. Further perfor-
mance improvements of the von Neumann computing in-
frastructure face a huge obstacle. In this scenario, a GPU
is used for developing an algorithm, and Domain Specific
Accelerators (DSAs) are also used for implementing the
algorithms on FPGA or ASIC. In fact, a huge amount of
accelerators specialized for CNN [6]–[8] and systolic ar-
ray architectures have been reported that efficiently exe-
cute CNN [9], [10]. Concerning these features, even if the
CNN inference lowers the operation accuracy, the recogni-
tion error rate only slightly decreases [11], but the amount
of weight information is greatly reduced to improve the
ALU performance and the area efficiency. These are promis-
ing techniques for engineers who agree that small footprint
and easy-to-estimate performances are important for social
implementation regardless of the limited programmability.
However, FPGA has suffered drawbacks in price and oper-
ating frequency, and ASIC has limitations in the flexibility
of the target algorithm and in development cost, including a
custom high speed I/O. We continue to be plagued by uni-
versal platforms that have high operating frequency, more
flexibility, and simple scalability such that the performance
and the cost can be tuned just by changing the number of
chips.

In this paper, we propose the following: a systolic array
with (1) column multithreading for reducing the number of
physical units while maintaining the performance for such
back-to-back floating-point accumulations as C=C+A×B;
(2) a cascaded peer-to-peer AXI bus for scalable multichip
structure and an intra-chip parallel local memory bus for
low latency; (3) multilevel loop control in any unit for re-
ducing the startup overhead and adaptive operation shifting
for efficient reuse of local memories. As real-world exam-
ples, we demonstrated three applications: matrix multipli-
cation, convolution operations, and light-field depth extrac-
tion. From our experiment results, the processing speed
and area-efficiency are both superior to the state-of-art work
EMAX. The speed is further improved by employing our
proposed 4-chip configuration. The rest of this paper is
organized as follows. Section 2 summarizes the problems
in conventional systolic arrays and describes ideas for im-
provements. Section 3 shows detailed implementation by
analyzing the optimal mapping of three different types of
applications. Section 4 compares the performance and area
between the baseline and proposed architecture. A conclu-
sion is described in Sect. 6.
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2. Problems and Proposals

2.1 Problems with Conventional and Modern Systolic Ar-
rays

In this section, we summarize the problems with conven-
tional and modern systolic arrays. In conventional systolic
arrays, ALUs are organized in a two-dimensional structure,
and a set of memory is attached next to the ALU arrays.
Therefore, the ALUs are re-configurable, but the memory
bandwidth is not scalable. Many accelerators have improved
the performance in some specific tasks [12]–[15]. Even
some accelerators, which were implemented by such ALU
grids as MuCCRA [16] and CMA [17], lack local memory
along with each ALU. On the other hand, different real-
world applications usually demand various specifications of
local memory. In addition, the external memory is power-
hungry in contrast to the operation and data movement in
the core circuit [18]. To alleviate the unbalanced scalabil-
ity, modern systolic arrays have been reported with a lo-
cal memory module (LMM) attached to each unit that re-
sembles the L1 cache [19], [20]. In GPUs, for calculating
D = A×B+C, every A, B, and C should be kept in the L1
cache. Multithreading and coalescing mechanisms were in-
troduced to hide the latency and reduce the traffic between
the L1 cache and the external memory. However, unpre-
dictable cache misses are inevitable due to the contentions
of the cache lines. In the modern systolic arrays with LMM,
cache miss is eliminated because each LMM keeps a single
stream of input data (e.g., C) for the operation mapped on
each unit. Although systolic arrays are less programmable
than von Neumann computing platforms, the configurability
is promising for arranging many data streams among ALUs,
LMMs, and external memory in parallel. The utilization ra-
tio of the ALUs and the traffic between external memory and
LMM are comparable with state-of-the-art DSAs [21].

However, the first problem is unavoidable: wide mem-
ory bandwidth. Since the DPU [22] proposed by Wave
Computing has multiple memory interfaces, it is unsuitable
for edge computing. Similar to GPUs, the memory con-
troller in such systolic arrays has to transmit the data be-
tween LMM and external memory, and so a wide mem-
ory bus is required for reducing the latency. The second
problem is LMM’s area redundancy. Modern algorithms
such as deep convolution require many read ports, and the
complicated access patterns in light-field image process-
ing and inverse matrix calculation requires many irregular
read/write and read-modify-write operations on LMM. For
such requirements, multiple copies should be employed to
increase the number of read ports, which sacrifices area ef-
ficiency. The third problem is the bubbles in floating-point
pipelines. Such applications as inverse matrix calculation
with floating-point accumulation degrade the performance
of systolic arrays due to such bubbles in the pipeline. The
fourth problem is the overhead related to the excessive in-
vocation of the burst execution and DMA. Systolic arrays

Fig. 1 Cascaded peer-to-peer AXI bus for scalable multichip systolic ar-
ray

easily accelerate the innermost loops. However, the length
of the burst execution depends on the length of the data. For
full use of the LMM capacity and reducing the startup over-
head, multilevel loops should be executed by a single invo-
cation. Ichikura’s work also employs a multilevel loop con-
troller without combining the improvement on the footprint.
For irregular applications, we must dynamically determine
whether LMM’s contents can be reused.

2.2 Efficient Use of Narrow Memory Bandwidth

The first proposal is a cascaded peer-to-peer AXI bus and a
reconfigurable LMM space for a scalable multichip systolic
array. The integration of the systolic array and the recon-
figurable space is key for reducing the traffic between the
main memory (DDR) and LMMs. In low-cost edge comput-
ing infrastructures, the standard I/O interface is AXI whose
number is significantly limited. However, by configuring
the uplink/downlink as an AXI slave/master and connecting
it in a cascaded manner, all the chips can be transparently
connected to the host as a single slave AXI device. Fig-
ure 1 illustrates a 2-chip configuration where each chip has
64 sets of units, including an ALU and an LMM. The band-
width assumptions in this figure are ideal and too detailed to
illustrate the system’s overview. However, providing a big
picture of performance here is helpful for understanding fur-
ther description of our proposed ideas. In each chip, 64 exe-
cution units (1-64) are connected as a one-dimensional ring
for easy programming, and the interface between the uplink
and the 64 LMMs is connected as a 8×8 two-dimensional ar-
ray for reducing the access latency. The AXI-WRITE-IF in
each chip receives a read/write request from the uplink and
distributes it to the top (bandwidth is 900 MHz × 256 bits)
of eight groups of units and to the next chip (28G bps × 8
sets, which is comparable to the intra-chip bandwidth). In
the same way, the AXI-READ-IF in each chip merges the
read data from the bottom of the eight groups of units and
the next chip. In this structure, the DMA engine attached
to the host controls the data transmission between the DDR
and all the LMMs mapped on a single memory space. By
setting the registers (mapped on the host memory space and
accessed by programmed input/output (PIO)) in each unit
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Fig. 2 Column multithreading for small footprint and bubble-free execution

that keeps a set of top and bottom addresses covered by each
LMM in advance, the host can broadcast/gather data from
the DDR/LMMs to the LMMs/DDR with a single DMA re-
quest.

2.3 Reducing the Redundancy of LMM and the Bubbles
in Floating-Point Pipeline

The second proposal is the column multithreading of sys-
tolic arrays for alleviating the second and third problems.
Although the frequencies of the pipelined floating-point
units and the LMM with moderate capacity are comparable,
modern systolic arrays basically cannot completely exploit
pipelined floating-point units for back-to-back accumula-
tion. Moreover, non-pipelined floating-point units are too
slow compared to LMM’s moderate capacity. Column mul-
tithreading can make complete use of floating-point units
and the LMM without decreasing the frequency. Figure 2 (a)
shows a row of a modern systolic array with a dual-port
LMM [20]. Each unit has an ALU and two address gen-
erators (AG1 and AG2) in the first half and an LMM in the
second half. The unit operates in a two-stage pipeline iso-
lated by the address latches and the store registers for suc-
ceeding LMMs. The ALU output and the data read from
LMM are stored in Reg#0-15 and sent to the ALU, AG1,
and AG2 in the succeeding units through the 16-to-1 se-
lectors expressed as a horizontal bold line at the top. The
Reg#0-15 are also used for propagating the data to the suc-
ceeding units through pipeline registers. If an application re-
quires eight discrete reads every cycle, four dual-port LMMs
in the same row (unit[*][0-3] in the figure) keep the same
data and simultaneously update the eight registers at the
bottom. For executing back-to-back floating-point accumu-
lations, the floating-point unit cannot be pipelined or have
many bubbles in the floating-point pipeline. Figure 2 (b) il-
lustrates the proposed structure of a unit with four-column
multithreading that provides the same function as Fig. 2 (a)

with four cycles. The first pipeline stage selects the ALU,
AG1, and AG2 input from Reg#0-15, and the remaining
three stages perform the calculation. The total number of
Reg#a-d is the same, but double buffering of Reg#0-15 is re-
quired to keep the results that were produced by the preced-
ing unit every four cycles (grp.A and grp.B). Consequently,
back-to-back floating-point accumulations with no bubbles
become available. The latency of the unit in (b) becomes
eight cycles, and eight ports are provided with 4-cycle oper-
ation of dual-port LMMs. Partitioning should be provided to
manage a maximum of four different spaces, if four logical
units require different address ranges.

2.4 Reducing the Excessive Invocation of Burst Execution
and DMA

In general, before starting a burst execution, we should do
the following: map the operations, initialize the registers
(Fig. 2 (a)), and fill the LMMs. The third proposal is multi-
level loop control and adaptive operation shifting for reduc-
ing such overhead.

The first key idea is how to represent multilevel loops
in C code and mapping on multithreaded units with less
hardware resource. Figure 3 (a) shows the beginning of a
sample C code for our proposed systolic array, and Fig. 3 (b)
shows the mapping of multilevel loop control on four logical
columns where four operations are simultaneously executed
in one cycle. The 1st line indicates the number of chips (N)
to be activated. Each line from the 2nd to the 5th is mapped
on each logical column. Loops 1 and 0 are the outer and in-
nermost loop counters. Loop 0 is initialized to M (e.g., the
number of columns in a matrix) and decremented every cy-
cle. Loop 1 is initialized to GRP (e.g., the number of rows
processed in a burst execution) and is not changed while
loop 0 is not zero. When loop 0 reaches zero, the operand of
“add loop 1” is switched from 0 to −1, and loop 1 is decre-
mented. The magic description “init0?col:col” in the 4th
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Fig. 3 Multilevel loop control

Fig. 4 Read-modify-write operation

line has no effect as a C statement, but it specifies reload-
ing the initial value (−4) to “col” when loop 0 is restarted
with “init0=1”. Otherwise, “col” is incremented by 4. In
the same manner, “row” is initialized to - M×4 and incre-
mented by M*4 (number of bytes) when “init0=1”. When
both loop 0 and 1 become zero, the stop signal is asserted in
the unit and propagates to the successors. Figure 3 (c) illus-
trates the mapping on a multithreaded unit. Four operations
were sequentially executed with four cycles. The self-loop
of the first stage in the pipeline can manage the inter-column
data dependence.

Multilevel loop control works well with LMM’s read-
modify-write where multilevel accumulation is mapped. By
accumulating the results of each innermost loop into LMM
across the outer loop, LMM’s spilling out/in can be elimi-

nated. Figure 4 illustrates the mapping of the read-modify-
write function to a multithreaded unit. With column mul-
tithreading, at most four sets of read-modify-write can be
mapped on a physical unit. The partial sums (sums 0-3)
provided by the preceding stages are first sent to the register
at the bottom of the unit and returned to the ALU input to
adjust the timing with the results (o0-3) of the load opera-
tions. After accumulation in the ALU, the results (s0-3) are
stored in the same LMM.

The second key idea is a software technique. For reg-
ular applications, the fixed pattern of the DMAs generated
by a compiler can reuse the LMMs just-in-time. However,
if the fixed pattern does not follow the actual transition of
the memory access, excessive DMAs are invoked. If the
host checks whether the neighbor LMMs have valid data
and slides the mapped operations among units, such extra
DMAs can be eliminated.

3. Exploration for Mapping Three Applications

In this section, we choose a matrix multiplication (MM) for
full-connect layers in DNN, a convolution operation (CNN)
for feature extraction, and light-field depth extraction (LF)
for background elimination as representative edge-side ap-
plications with various memory access patterns. The algo-
rithms and mapping schemes on the proposed systolic array
are explored to find the best multichip employment where
the LMMs can share addresses so that the external memory
can both broadcast and reuse as much data as possible.

3.1 MM: Matrix Multiplication

Figure 5 (a) shows the MM data structure and (b) shows a
simple implementation in C language. M, N, H, W, and
GRP are respectively the size of the matrix, the number of
chips to be activated, the height of the systolic array (H≤M),
the logical width of the systolic array (W=4 ≤M), and the
number of rows in a group processed in a single burst ex-
ecution. For efficient use of the H×W fused multiply-and-
add ALUs, operations A[row][*]×B[*][col] corresponding
to output C[row][col] should be divided by H, mapped on
sequential locations in a column [* mod H][col mod W], and
executed in a pipelined manner. Figure 5 (c) respectively
shows a snapshot of the systolic array when A00×B0c,
A01×B18, A02×B24, and A03×B30 are performed simul-
taneously in the left most column for partial C00, C04,
C08, and C0c. With H-stages, partial sums of C00, C04,
.., C0((H-1)×W) are produced every cycle and accumulated
into a final LMM. Consequently, by employing W columns
and repeating the burst execution M/H/GRP times, we ob-
tain complete C00, C01, .., C0(M-1).

In Fig. 5 (d), the corresponding implementation for the
N-chips is shown. A quintuple nested loop in the rectan-
gle corresponds to a burst execution with N-chips. Each
iteration of the chip-loop corresponds to the matrix multi-
plication of the GRP rows of array A and the entire B. Array
A is divided into N-chips, and each LMM keeps M×GRP
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Fig. 5 Matrix multiplication on systolic array

elements of A and a row of B. While the outer blk-loop in-
creases from 0 to M-1, the LMMs in each chip hold the GRP
rows of array A, and the last stages hold the GRP rows of
C×0, C×1, .., C×(M-1). The H rows of array B can be sent
to the N-chips by broadcasting when the blk-loop moves to
the next set of H rows. Theoretically, the above calculations
require M3/(H×W×N) cycles, excluding the delay for the
startup (H+1) cycles and the overhead for the LMM replace-
ment. In addition, the theoretical amount of DDR-LMM
transmission with enough LMM capacity where A, B, and
C are kept is M2×3. The amount of transmission with a
moderate capacity of LMM where the M×GRP of A and C,
and the M×H of B are kept is optimally M2×2 for A and C,
and M2×M/GRP for B (M2 when M=GRP).

3.2 CNN: Dense Stencil Computation

Figure 6 (a) shows the memory access pattern of CNN. M,
K, IC, OC, N, W, and GRP are respectively the size of the
matrix (each input and output channel), the kernel size (e.g.,
3), the number of input channels (e.g., the number of in-
put images), the number of output channels, the number of
chips, the logical width of systolic array (W=4), and the
number of rows in a group processed in single burst execu-
tion. The total number of words in “in”, kernels, and “out”
are M2×IC, K2×IC×OC, and M2×OC. In general, when is
K used for CNN, it is an odd number, but hardware param-
eter W is an even number. For the efficient use of hardware,
K×K-chains of the sum-of-products should be mapped on
unit[*][oc mod W] in a systolic array column. Furthermore,
by employing W columns, K2×W units become active. Fig-
ure 6 (b) illustrates a data flow graph (not a snapshot) of a

systolic array employing (K2+1)×W units (W≤OC). CNN
calculates the sum-of-products between a K×K kernel and a
part of “in”, accumulates all the input channels, and stores
one result in “out”. In this case, the K-LMMs should keep
the same row of “in”. However, the host can broadcast the
data into the K-LMMs by a single DMA. Figure 6 (c) shows
the temporal overview of memory access, where “t” shows
the direction of the time. The arrows from the input layer
to the output layer indicate the direction of the convolution
operation.

3.3 LF: Sparse Stencil Computation

Figure 7 (a) shows the data structure of LF. IM, OM, R,
N, and W are respectively the size of the input image, the
size of the output image, the distance of the micro images,
the number of chips, and the logical width of systolic array
(W=4). The input image has 7500 × 7500 pixels in which
the micro images (75× 75 pixels) are located in a 100× 100
2D-mesh form. The output image has 1600 × 1600 pixels
generated by finding a minimum sum of absolute difference
(SAD) of discrete stencil patterns while changing the dis-
tance (75+depth pixels) among the six 3 × 3 micro images.
The SAD is obtained from the sum of the 36 differences
among the six pixels in the center (p0) and the surround-
ing six discrete locations (p1). Figure 7 (b) illustrates a data
flow graph of the systolic array employing 12×4 units. Each
unit has a SAD function in ALU. The top line of 3 × 3 pix-
els (i#-1) at the y#0 position is mapped on the first stage
(unit[0][*]), and six discrete pixels including p0 and p1 are
loaded from the top LMM that holds a line of the input im-
age (emphasized by dotted rectangles). The second stage
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Fig. 6 CNN on systolic array

(unit[1][*]) and the third stage (unit[2][*]) are loaded from
the y#-1 and y#1 positions (p1) and compared with the p0
obtained in the first stage. After passing through nine stages
in the systolic array, four SADs from four columns are ac-
cumulated into a SAD through two additional stages. In an
outermost loop omitted in Fig. 7 (c), “depth” is incremented.
The minimum value of SAD and the corresponding “depth”
for each output pixel are stored and updated with conditional
storing when a smaller SAD is obtained with an updated
“depth”. In this way, 11 stages are used to obtain the SADs
of 36 pixels, and 40 out of 44 units become active. The to-
tal number of stages is 18, including 12 in Fig. 7 (b) and the
preceding six stages for the address calculation of “c”. Fig-
ure 7 (c) shows the temporal overview of memory access,
where “t” shows the direction of the time. The depth in-
creases with time, the SAD of each window is calculated,
and a pair of the smallest SAD and corresponding “depth”
is stored as final result.

In the LF, we observed another opportunity for reduc-
ing the DDR-LMM transmission. The input image stored
in the 1-4-7th, the 2-5-8th, and the 3-6-9th LMMs are ad-
jacent (Fig. 7 (b)). When the base position (p0) moves to
the next line, p0 and p1 can reuse the next lines stored in
the lower LMMs and only new lines can be provided from
DDR to LMM. By shifting the ALU operations downward,
the DDR-LMM transmission can be minimized. However,

unlike MM and CNN, the reuse interval is irregular. The
above adaptive operation shifting is helpful to change the
shift amount based on the address calculation results.

4. Evaluation Setup

4.1 Setup of LMM and Application Characteristics

Table 1 summarizes the MM, CNN, and LF mapping. From
the requirements shown in (a), (b), (c), and (d), we obtained
the minimum LMM configurations. MM requires the input
of (1+W) words from 2-ports, and Fig. 8 (a) has two sets of
single port LMMs and two address generators for reading a
word from A and four contiguous words from B. In the same
way, CNN requires the input of (1+W) words from (1+W)
ports, and Fig. 8 (b) has a single port LMM for reading a
word from “in”, and two dual port LMMs for reading four
discrete kernel values. Furthermore, LF requires 6-words
from 6-ports, and Fig. 8 (c) has three dual port LMMs for
reading six discrete pixels from “in”. Consequently, a sym-
metric configuration with a 1R+1RW dual port LMM that
provides four consecutive reads or two discrete reads shown
in Fig. 8 (d) seems adequate for covering all three applica-
tions.

For further discussion of performance, Table 1 (e)∼(i)
summarizes the number of operations and the amount of
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Fig. 7 Light-field depth extraction on systolic array

data that are transmitted. The parameters of proposed hard-
ware are number of logical columns, number of stages, and
capacity of each LMM. For hiding the latency of floating-
point accumulation, four is optimum as the number of logi-
cal columns. The number of stages are limited by the capac-
ity of FPGA, and the capacity of each LMM is limited by the
operating frequency of ALU. As described later, the actual
capacity of LMM is 32 KB. H and W of each application
are automatically decided by the number of stages and logi-
cal columns, and other parameters are decided based on the
capacity of LMM. Basically, evaluation with small data that
can fit in the LMM is unfair because overestimation is use-
less for the real applications. Therefore, massive data should

be used to evaluate the performance with sufficient traffic
between LMM and DDR. However, extremely massive data
that has no opportunity for systematic reuse of LMM makes
the effect of proposed ideas invisible.

In MM, the specific parameters are M and GRP. If M is
larger than 32 KB/4 bytes (8 K words), multilevel loop con-
trol is useless due to enough length of burst execution, and
lack of LMM for keeping multiple rows of the matrix. For
emphasizing the effect of multilevel loop control (M × GRP
elements are processed at once), the number of elements in a
rows of A and B are set to 480 where 480 elements × 4 bytes
× (GRP=8) of A and B fit to 32 KB.

In CNN, the specific parameters are M, GRP, K, IC,
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Table 1 Summary of mapping of three applications

MM CNN LF

Size of systolic array (H+1)×W K2 ×REP×W (14×REP+3)×W
(a) max read words/cycle from LMM 1 for A 1 for in 6 (discrete) for in

W (consecutive) W (discrete) for k
(b) max read ports/LMM 1+1 (consecutive) 1+W (discrete) 6 (discrete)
(c) max write words/cycle to LMM W (consecutive) W (discrete) for out 1 for sad

1 for out
(d) max write ports/LMM 1 (consecutive) W (discrete) 1+1

(e) total FMA/SAD/etc. ops M3 K2M2 ×IC×OC 40×OM2

(f) algorithmic DDR read words A:M2 in:M2 ×IC in:9×OM2

B:M2 ker:K2 ×IC×OC sad:OM2

(g) ideal DDR read words A:same in,ker:same in:<9×OM2 by reuse
B:M2 ×M/GRP out:M2 ×OC×IC/REP sad,out:OM2 ×2

(h) algorithmic DDR write words C:M2 out:M2 ×OC sad,out:OM2 ×2
(i) ideal DDR write words C:same out:M2 ×OC×IC/REP sad,out:same

Fig. 8 LMM setup

OC and REP. M and GRP are set to 242 and 8 for the same
reason as MM. M=242 is similar size used in the first layer
of VGG16, and K=3 is the typical size of kernel in VGG16.
The number of input channel (IC) is set to 18 so that the
amount of input data exceeds the capacity of total LMM of
64 stages (REP=6 sets of input channel fit to 64 stages), and
sufficient traffic between LMM and DDR is observed. The
number of output channel (OC) is set to 16 in the same way
so that the amount of output data exceeds the capacity of
last LMM (4 sets of output channel fit to the last stage). The
execution time is propotional to IC and OC.

Whereas, in LF, the size of input image (IM×IM) and
output image (OM×OM) are large enough to keep burst ex-
ecution. The number of stages for calculating one output
pixel is around 16. Consequently, REP=4 sets of operations
can be mapped on 64 stages so that the output image is di-
vided into four areas and four pixels are produced in every
cycle.

When M=480, GRP=8, H=60, W=4 for MM, M=242,
GRP=8, K=3, IC=18, OC=16, W=4, REP=6 for CNN, and
IM=7500, OM=1600, W=4, and REP=4 for LF, the total
number of operations shown in Table 1 (e) are 111 Mops,
149 Mops, and 102 Mops, and the algorithmic total num-
ber of input words read from DDR in (f) are 461 K words,
1.06 M words, and 25.6 M words. Consequently, the

Fig. 9 Timing diagram of top-level iteration

computation strength based on DDR calculated by (e)/(f)
varies from 241 to 3.98. However, the ideal baseline of
the input words read from DDR due to spilling out/in of
LMM are 14.1 M words, 3.87 M words and around 12.8 M
words, as calculated from (g). The variation of strengths
((e)/(g)=7.87, 38.5 and 7.97) becomes smaller. In the same
way, (h) and (i) are the algorithmic/ideal baselines of the
output words to DDR. The ideal peak is helpful to calculate
the efficiency later.

4.2 Calculating the Ideal Peak Performance

Figure 9 shows the ideal timing charts based on the above
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Table 2 Summary of ideal peak performance

MM CNN LF
Total number of cycles 3.88 M 3.79 M 16.6 M
FMA/SAD hardware peak 64-FMA/SADs /cycle
Total number of ops 111 Mop 149 Mops 102Mops
Utilization ratio of ALUs /64/3.88 M /64/3.79 M /64/16.6 M

=44% =61% =9.6%

DMA hardware peak 8-words /cycle
Ideal DDR read words 14.1 M words 3.87 M words 12.8 M words
Ideal DDR write words 230 K words 2.81 M words 5.12 M words
Utilization ratio of DMA /8/3.88 M /8/3.79 M /8/16.6 M

=46% =22% =13%

discussion (horizontal axis is time, and vertical axis is loca-
tion of units) when single chip is employed. Before start-
ing the burst execution, the mapping of operations, the ini-
tialization of the registers, and filling the LMMs should be
done. However, while the same burst execution is repeated,
the mapped operations are reused and the overhead for map-
ping (denoted as CONF below) is ignored.

In (a) MM, the number of cycles for a burst execution
observed at the first unit is 3840 (960 × 4 based on column
multithreading), and the number of cycles for completion
is 4352 (3840 + 64×8 cycles for passing through 64 units).
The number of cycles for one blk-loop is 7968 (4352 + 3600
for DDR-LMM transmission + 8×2 for passing through a
lane with eight units). The cycles for a top-loop iteration are
64720 (7968×M/H + 480 for loading A + 496 for drain-
ing C) excluding the cycles for the register initialization
(REGV) and the address range initialization (RANGE) per-
formed by PIO. Consequently, the total number of cycles for
the whole MM is 3.88M (64720×M/GRP) when N=1.

In (b) CNN, the number of cycles for a burst execution
at the first unit is 7680 (1920×4 based on column multi-
threading), and the number of cycles for completion is 8192
(7680 + 64×8 cycles for passing through 64 units). Further-
more, the number of cycles for one oc-loop is 10160 (8192 +
“968+16” for loading out + “968+16” for draining out). The
cycles for an iset-loop iteration are 42092 (10160×OC/W +
1452 for loading “in”) excluding REGV and RANGE. Con-
sequently, the total number of cycles for the whole CNN is
3.79 M (42092×(M-2)/GRP×IC/REP) when N = 1.

In (c) LF, the number of cycles for a burst execution
at the first unit is 6400 (1600×4 based on column multi-
threading), and the number of cycles for completion is 6912
(6400 + 64×8 cycles for passing through 64 units). The
number of cycles for a top-loop iteration is 41494 (6912
+ “400+400+16” for loading and draining sad and out +
“33750+16” for loading “in”). Consequently, the total num-
ber of cycles for the whole LF is 16.6 M (41494×OM/REP)
when N=1.

Table 2 summarizes the ideal peak performance cal-
culated by combining the cycles and the discussion in
Sect. 4.1. The actual performances are compared with these
peak performances below.

4.3 Metrics and Comparison

The metrics are the operating frequency, the MM, CNN, and

Fig. 10 Structural difference between EMAX and proposed systolic ar-
ray

LF performances, and the chip’s area. We mainly compared
the baseline (original EMAX) [20] and the proposed systolic
arrays with some combinations of ideas and assumptions.

Figure 10 (a) shows the outline of EMAX that oper-
ates as an AXI master. Each stage has four physical units.
Each unit has a single-precision floating-point ALU and two
address generators for load/store operations on dual port
memory (LMM). Data produced by the previous stage is
stored in registers and provided to the next stage through
a crossbar switch (MUX). The DMA controller in the finite
state machine (FSM) is connected to all stages and manages
the transmission between DDR and LMM. Also, FSM can
broadcast data to LMMs in the same stage while the calcu-
lations are performed. In contrast to EMAX, the proposed
systolic array shown in Fig. 10 (b) is designed as an AXI
slave for making it easy to increase the number of chips
without increasing the number of AXI bus. The FSM is
connected only to the top and the bottom of a ring structure,
and the data is sent by two cycles per stage pipelining. The
combination of AXI slave mode and the address comparator
in each stage enables broadcasting to many LMMs across
multiple stages and chips with less amount of wires than
EMAX. Furthermore, the proposed systolic array improves
area efficiency by column multithreading. Each stage has
single physical unit that manages the same function as pro-
vided by four physical units in a stage of EMAX. The four
LMMs are integrated in a LMM by interleaving four sets
of memory access. The number of stages (64), the width
of registers (64bits), and the supported ALU functions in
EMAX used for further comparison are the same as the pro-
posed systolic array.

The host is implemented on Xilinx Zynq UltraScale+
ZCU102, and the systolic arrays designed by Verilog HDL
are implemented on a S2C Virtex UltraScale Single VU440
Prodigy Logic Module. Single ARMv8 in Cortex-A53/
1.2 GHz with DDR4-136 Gbps (host of systolic arrays)
and NVIDIA Jetson TX2 (256 cores)/1.3 GHz with DDR4-
480 Gbps (tuned with CUDA Version 8.0.84) were also
evaluated as references. The target speed of the proposed
systolic array on FPGA is 150 MHz, and the comparable
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link speed between the host and the systolic arrays is bi-
directional 38.4 Gbps (12.8 Gbps-GTH×3). Both are 1/6 of
the ideal model shown in Fig. 1. However, the link speed
in the actual system is 15 Gbps (5.0 Gbps-GTH×3). The
performance with 38.4 Gbps was estimated based on the ra-
tio between the measured speed and 15G bps. For the area,
we used a Synopsis Design Compiler (M-2016.12-SP2), a
TSMC 28-nm library, and a memory generator. The target
speed was 900 MHz (Fig. 1).

4.4 Environment for Generating Code

The applications for the proposed systolic arrays can be
written by C code (Fig. 3). Such function calls as load(),
exe(), and store() can be compiled by normal C compilers
for CPUs, and general tools can be used for debugging the
algorithms. After the algorithms are fixed, a special trans-
lator gets such information as the ALU operation, the data
dependency, and the range of the addresses covered by each
LMM from the parameters provided in the function calls
and generates another C code including operation mapping
(CONF), register initialization (REGV and RANGE), DMA
invocation (LOAD and DRAIN), and the trigger of the burst
execution (EXEC). Finally, the translated code is compiled
by normal C compilers and linked with a library including
an interface to the systolic array.

5. Results

The operating frequency of EMAX was 50 MHz and the
proposed array with column multithreading and pipelining
worked with 150 MHz on the same FPGA. Table 3 shows
the resource usage in FPGA where the systolic array is im-
plemented. ZCU102 is the common host just for providing
AXI interface. The routing cannot be finished for EMAX
due to many wires. The number of block RAM (BRAM)
is reduced to 1/4 of EMAX. Figure 11 shows the perfor-
mance of three programs normalized by the execution time
on EMAX. Proposed-1 is a simple column multithreading
model, and proposed-2 employs an intra-chip 8×8 paral-
lel local memory bus. Proposed-3 has multilevel loop con-
trol and adaptive operation shifting. Proposed-4 is a 4-chip
configuration with all the ideas. Finally, proposed-5 and
proposed-6 are single-chip and 4-chip configurations with
38.4 Gbps assumption. We estimated the 4-chip perfor-
mance from the time measured by executing the programs
compiled for 4-chip configuration on the single-chip proto-
type. The 4-chip scalability varies from 3.1 × to 1.3 ×. We
conclude that simply changing the performance by adjusting
the number of chips is important.

Figure 12 shows the breakdown of the execution time.
EMAX is not included because it is an AXI master de-
vice and no accurate breakdown can be observed from the
host. “ARM,” which is the miscellaneous time in ARMv8
for preparing burst executions, is negligible. “CONF” is the
time for mapping operations by PIO, and it is also negligi-
ble, as mentioned in Sect. 4.2. The other breakdowns were

Table 3 Resource usage in FPGA

Site type ZCU102 EMAX (VU440) Proposed-3 (VU440)
host 64 stages 64 stages

LUT 6134 (2.24%) 2421366 (95.59%) 1575371 (62.19%)
LUTRAM 178 (0.12%) 416 (0.09%) 1110 (0.24%)

FF 9481 (1.73%) 298680 (5.91%) 512549 (10.12%)
BRAM 10 (1.10%) 2084 (82.70%) 539 (21.39%)

DSP 0 (0.0%) 2048 (71.11%) 256 (8.89%)

Fig. 11 Performance comparison normalized by EMAX

Fig. 12 Breakdown of execution time

confirmed with the ideal timing charts shown in Fig. 9. The
result shows that our proposed-2 (intra-chip parallel local
memory bus) for reducing the delay time related to AXI-
READ-IF successfully reduced the “DRAIN” time. The
contributions of proposed-3 and proposed-4 are significant
on all three applications. Additionally, assuming 38.4 Gbps,
proposed-5 and proposed-6 successfully reduced the time
for “LOAD” as expected. Single-chip and 4-chips even-
tually improved the 6.3 ×/9.2 ×/ 6.6 ×, and 19.6 ×/16.0
×/8.5 × performance more than EMAX. As for the relation-
ship between the acutual performance of proposed-5 (single
chip) and the ideal peak (single chip), large diverence is ob-
served. In MM, actual “LOAD” consumes most of the exe-
cution time due to huge overhead of PIO for reading/writing
control registers of DMA. In CNN, actual “REGV” con-
sumes most of the execution time due to huge overhead
of PIO for writing registers in systolic array through AXI
bus. Meanwhile, in LF, proposed-5 is almost the same as the
ideal peak irrespective of huge “LOAD”. This is because the
effect of the adaptive shift is dynamically determined and is
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Table 4 Result of hardware synthesis

EMAX Proposed-3
N=1

Clock constraints 300 MHz 900 MHz

Area[µm2]
Combinational 4,074,460 1,705,263
Combinational (buf/inv) 173,855 278,722
Non-combinational (registers) 773,047 826,694
Memory (8 KB LMM/unit) 7,826,136 1,956,534
Memory (32 KB LMM/unit) 22,374,142 5,593,536
Total cell area (8KB LMM) 12,847,498 4,767,213

(Ratio) (1.00) (0.37)
Total cell area (32KB LMM) 27,395,504 8,404,215

(Ratio) (1.00) (0.31)

not considered in the ideal peak. The overhead for “LOAD”
and the effect of the adaptive shift in proposed-5 are compa-
rable as a result.

Table 4 shows the estimation of the chip area based on
the synthesis result with the TSMC 28-nm library and the
memory generator. The EMAX frequency and area were
300 MHz, 12.8 mm2 with 8KB-LMM, and 27.4 mm2 with
32KB-LMM. 32KB-LMM is the upper limit of the capacity
that does not affect the operating frequency of the systolic
array. 8KB-LMM is also evaluated to explore the sensitively
of the capacity of LMM on entire area. We found if we need
to reduce the size of the chip to half of the 32KB-LMM ver-
sion, the capacity of LMM should be reduced to 8KB. The
area of the proposed array was estimated with a 900 MHz
constraint. The breakdown of the area shows that the com-
binational logic was 0.42 ×, the register was 1.07 ×, the
LMM was 0.25 ×, and the total area with 32KB-LMM was
8.4 mm2 (0.31 × of EMAX). Consequently, the basic per-
formance per area was 2.4 × (900 MHz/300 MHz×4/0.31).
The chip size of the Jetson TX2 (GP10B) is not disclosed
and TX2 include ARM core. Therefore, the performance
per area of TX2 is estimated from the ratio of the number of
cores between GP10B (256 cores) and GP100 (3584 cores,
610 mm2). The ratio of the area between the proposed-5
(28 nm) and TX2 (16 nm) is 1:5.2. Consequently, as com-
pared with TX2, the performances per area of proposed-5
are 5.6 ×, 17 ×, and 11 × for MM, CNN, and LF. Note that
an obvious trade-off exists between the hardware resource
and the speed on the clock frequency constraints. There is
potential to achieve even better performances per area by
increasing the frequency.

6. Conclusion

We proposed the following to improve the footprint and the
scalability of systolic arrays: (1) column multithreading;
(2) cascaded peer-to-peer AXI and intra-chip parallel local
memory buses; (3) multilevel loop control and adaptive op-
eration shifting. We identified the following: (1) the exe-
cution speed of a matrix multiplication/a convolution opera-
tion/a light-field depth extraction is 6.3×/ 9.2×/ 6.6×, com-
pared with a similar systolic array (EMAX); (2) the esti-
mated speed with 4-chip configuration is 19.6×/ 16.0 ×/8.5

×; (3) the single-chip is 8.4 mm2 (0.31 × of EMAX) and the
basic performance per area is 2.4 ×.
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