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PAPER

Combining Parallel Adaptive Filtering and Wavelet Threshold
Denoising for Photoplethysmography-Based Pulse Rate Monitoring
during Intensive Physical Exercise

Chunting WAN†, Member, Dongyi CHEN†a), Juan YANG††, and Miao HUANG†, Nonmembers

SUMMARY Real-time pulse rate (PR) monitoring based on photo-
plethysmography (PPG) has been drawn much attention in recent years.
However, PPG signal detected under movement is easily affected by ran-
dom noises, especially motion artifacts (MA), affecting the accuracy of PR
estimation. In this paper, a parallel method structure is proposed, which ef-
fectively combines wavelet threshold denoising with recursive least squares
(RLS) adaptive filtering to remove interference signals, and uses spectral
peak tracking algorithm to estimate real-time PR. Furthermore, we pro-
pose a parallel structure RLS adaptive filtering to increase the amplitude of
spectral peak associated with PR for PR estimation. This method is eval-
uated by using the PPG datasets of the 2015 IEEE Signal Processing Cup.
Experimental results on the 12 training datasets during subjects’ walking
or running show that the average absolute error (AAE) is 1.08 beats per
minute (BPM) and standard deviation (SD) is 1.45 BPM. In addition, the
AAE of PR on the 10 testing datasets during subjects’ fast running accom-
panied with wrist movements can reach 2.90 BPM. Furthermore, the results
indicate that the proposed approach keeps high estimation accuracy of PPG
signal even with strong MA.
key words: photoplethysmography (PPG), pulse rate (PR), motion arti-
facts (MA), recursive least squares (RLS), wavelet threshold denoising

1. Introduction

Pulse Rate (PR) is an important indicator reflecting physio-
logical state. The estimation of real-time PR under different
conditions is conductive to monitor and analyze the health
status of individuals in their daily lives. Besides, PR moni-
toring can also be utilized to arrange the reasonable exercise
intensity [1]. Therefore, real-time, non-invasive and accu-
rate monitoring of PR has attracted much research interest
in recent years.

Nowadays, there are mainly two methods used to mon-
itor PR in wearable devices. One is the traditional method
based on Electroocardiogram (ECG) signal [2], [3], it re-
quires several electrodes to simultaneously collect physio-
logical signal from different parts of human body, and then
PR will be estimated according to the acquired ECG signal.
This method is commonly used in clinical scenarios and can
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provide high measurement accuracy. However, it is incon-
venient to acquire the ECG signal due to the use of several
electrodes cling to human body. The second approach pro-
posed in [4], [5] uses photoelectric technology to detect the
blood volume changes induced by cardiac diastole and con-
traction regularly for estimating PR. This approach has ad-
vantages of convenient signal acquisition, i.e., only needs a
photoelectric PPG sensor cast light on skin [6], and the ac-
tivities of human body can not be influenced by it. This ap-
proach is widely used in wearable monitoring devices, such
as smart watches [7], etc.

PPG signal is susceptible to noise especially during
movement. The noises are mainly from ambient light, ran-
dom noises and motion artifacts (MA) particularly. MA is
mainly caused by ambient light leaking into the gap be-
tween the PPG sensor surface and skin surface [4]. How-
ever, subject movement would then invariably disturb the
contact between the PPG sensor and the skin, corrupting the
PPG signal with MA. PPG signal with noise may degrade
the accuracy and reliability of algorithms for estimating PR.
Therefore, how to reduce the influence of exercise MA and
real-time PR estimation from PPG signal is the difficulty
problem we focused on (see Fig. 1). At present, many tech-
niques were proposed to reduce MA from PPG signal during
movement, including Wavelet Denoising [8], [9], Independ
Component Analysis (ICA) [10], [11], Singular Spectrum
Analysis (SSA) [12], [13], Empirical Mode Decomposition
(EMD) [14], [15], and [16], Kalman Filtering [17], Adaptive
Filtering [18], [19], Particle Filtering [20], [21] and other
mixture of methods [22], [23], etc.

Recently, the author of [12] proposed a method called
TROIKA, in which SSA has been used to decompose the

Fig. 1 The PPG signal in time-domain (from subject 4). (a) is
good-quality PPG signal. (b) is PPG signal corrupted by MA.
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original PPG signal into multiple components, then the tri-
axial synchronous acceleration signals are uesd to identify
the components related to MA. After removing these com-
ponents, sparse signal reconstruction was carried out on
PPG signal with the remaining components to obtain clean
PPG signal. In this method, when the spectral peak posi-
tion corresponding to the MA is very close to the desired
PR peak position, the deviation between the estimated PR
and the ground truth PR trajectory will occur.

In order to overcome this weakness, Zhang introduced
a method namely JOSS and derived a multiple measure-
ment vector (MMV) model which had been used for joint
spectrum estimation [13]. In comparison with TROIKA, the
JOSS method provided a lower mean error at the expense of
a higher standard deviation. The drawback of JOSS is the
using of the intensive m-focuss algorithm for computing the
spectrum. Furthermore, the JOSS method evaluates the re-
sults by excluding some initial time windows of the dataset.

Sun et al. [14] used the acceleration signals as the spec-
tral subtraction of the reference signal to remove the MA
in the PPG signal, and achieved a good PR estimation ef-
fect. However, their algorithm used the real heart rate
(HR) as reference information. This is unrealistic in real-
time monitoring of actual HR, and the practicality of the
algorithm is greatly reduced. Galli et al. [17] presented
an approach using subspace decomposition denoising algo-
rithm, which decomposed effective component and pseudo-
component based on maximum uncorrelated criteria, and fi-
nally, the Fourier-based HR estimation would be smoothed
and tracked by a Kalman filter. This algorithm can be in-
dependent of the initial evaluation of PR and has a certain
robustness. However, the algorithm is not suitable for real-
time PR evaluation because of the needing to smoothes the
result of PR estimation.

Mashhadi et al. [24] firstly extracted the MA compo-
nent form the tri-axial acceleration signals by SVD transfor-
mation, and then used the MA component of the extracted
acceleration as the reference signal of cascade adaptive fil-
tering LMS to remove the MA of PPG signal. However,
this method may extract multiple MA from tri-axial acceler-
ation signals as reference signal, and thus leading to a large
amount of calculation time. Fallet et al. [19] used the nor-
malized least mean square (NLMS) adaptive filtering algo-
rithm on every possible PPG-ACC combination for suppress
MA and then selected the optimal one. The complexity
grows when the number of combinations increases. In [21],
Nathan estimated PR values with the results of conditional
posterior probability density estimation by using particle
filtering through prediction and updating processes. This
algorithm noticeably improves the estimation accuracy by
correcting outliers. However, serious errors may be caused
when repetitive estimations are performed.

Adaptive filtering is a popular and effective technique
for estimating PR from corrupting PPG signal with MA.
The advantages of using adaptive method are faster response
time and the capability of continuous processing in time-
varying condition. However, the limitation of adaptive filter-

ing is that the choice of the reference signal seriously affects
the performance of reducing MA.

In this paper, we propose a new parallel method struc-
ture combining wavelet threshold denoising with parallel
RLS adaptive filtering. The parallel method structure in-
creases the amplitude of spectral peak associated with PR
for PR estimation. The parallel RLS adaptive filtering not
only solves the problem that only using one of X, Y , Z tri-
axial acceleration signals as the reference signal of RLS
adaptive filtering cannot completely represent the source
of interference signals, but also avoid the induction of ad-
ditional interference frequency components caused by us-
ing synthesizing acceleration signal

√
X2 + Y2 + Z2 as ref-

erence signal. Wavelet threshold denoising is a supplement
of RLS adaptive filtering to reduce non-motion generated
interference. Moreover, a spectral tracking and verifying
method is adopted to estimate current PR values consider-
ing previous evaluation results. Experiments with training
and testing datasets are performed to verify the accuracy of
our method.

The remainder of this paper is organized as follows:
Sect. 2 introduces the details of PPG signal processing and
PR estimation methods. Section 3, the parameter settings of
our algorithm are presented. Then the experimental results
have been given to evaluate the performance of our proposed
method. Conclusion are described in the last section.

2. Methods

Figure 2 shows a flowchart of the proposed method. At the
first stage, two channels PPG signals and tri-axial accelera-
tion signals respectively pass through the bandpass filtering
for eliminating interferences beyond the frequency range.
PPG signal collected from two channels are averaged and
normalized to form a composite PPG signal, and tri-axial
acceleration signals are normalized separately. Next, the
effect of motion artifacts (MA) can be reduced from the
composite PPG signal by wavelet threshold denoising and
parallel RLS adaptive filtering. In parallel RLS adaptive
filtering, the tri-axial acceleration signals for reference are
respectively offered into RLS filtering block. At last, the
real-time PR values are obtained by evaluating and verify-
ing from logic combination of wavelet threshold denoising

Fig. 2 Flowchart of the proposed method.
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Fig. 3 An example showing the effect of pre-processing, and the red cir-
cle indicates the spectral peak associated with the ground truth value of PR.
(a) Spectrum of PPG signal 1 after pre-processing. (b) Spectrum of PPG
signal 2 after pre-processing. (c) Spectrum of composite PPG signal after
pre-processing.

and parallel RLS adaptive filtering.

2.1 Pre-Processing

PPG signal obtained from the photoelectric pulse sensor
contain underlying PPG signal, random noises and motion
artifacts (MA). The range of normal PR value of human in
the static or movement state is generally 30–200 BPM/min,
hence the corresponding frequency is 30/60–200/60 hz. A
bandpass filtering of 0.5–3.5 hz is designed to eliminate the
interference signals beyond the frequency range from both
PPG signal and acceleration signals. Since two channels
PPG datas are acquired from the two close photoelectric
pulse sensors, a composite PPG signal is used for estimat-
ing PR instead of using them separately. Due to use com-
posite PPG signal, partial random noises may be reduced.
In Figs. 3 (a) and (b), the spectrum of PPG1 and PPG2 after
pre-processing and being normalized is shown. It is clearly
that multiple interference peaks appear in the spectrum of
PPG1 and PPG2. It can be seen in Fig. 3 (c) that PR value
can be obtained more easily by using composite PPG sig-
nal. Since some of the interfering signals are in the same
frequency band with the pure PPG signal, a simple band-
pass filtering cannot completely eliminate the interference
of motion artifacts. In what follows, a parallel method has
been proposed.

2.2 Wavelet Threshold Denoising

After pre-processing, the PPG signal still contains part of
random noises and strong MA. Wavelet threshold denois-
ing is a common method for removing MA from PPG sig-
nal [8], [9]. It can be seen from Fig. 4 that wavelet thresh-
old denoising includes wavelet decomposition, threshold
processing and wavelet reconstruction. The procedure of
wavelet threshold denoising can be described as follows.

Algorithm 1 Wavelet threshold denoising algorithm
1: Initialize:
2: Wavelet decomposition layer level← 7
3: Wavelet basis function method ← ‘haar’
4: Wavelet coefficients C, the length of wavelet coefficients L
5: Wavelet decomposition [C, L]← wavedec(PPG, level,method)
6: CAi represents the i–th level approximation coefficients, CDi repre-

sents i level detailed coefficients
7: CA7 ← 0, CD7 ← 0.
8: for i=2:level+2 do
9: average value th← mean(abs(CDi))

10: if CDi j > th, ∀ j = 1, 2, 3, . . .
11: CDi j ← th
12: else if CDi j < −th, ∀ j = 1, 2, 3, . . .
13: CDi j ← −th
14: else
15: CDi j ← CDi j

16: end if
17: end for
18: Wavelet reconstruction PPG← waverec(C, L,method)
19: return PPG.

Fig. 4 Block diagram of wavelet threshold denoising.

First, the vector of wavelet coefficients containing impor-
tant information of PR signal is generated by wavelet de-
composition. After wavelet decomposition, the wavelet co-
efficients of the signal is larger than that of the noises.
In the second step, by selecting an appropriate threshold,
the wavelet coefficients associated with the noises are sup-
pressed. At last, the denoised signal is achieved by recon-
structed using inverse wavelet transform. The choices of
appropriate mother wavelet function and a suitable thresh-
old are the key points for achieving the best denoising per-
formance. Haar wavelet function is usually applied in data
processing and it is easy to calculate and understand [8]. In
this paper, the threshold th is selected according to the pro-
cess of wavelet threshold denoising in algorithm 1.

MA contains a strong non-gaussian component, so us-
ing wavelet threshold denoising alone cannot eliminate the
effect of MA well. Therefore, the adaptive-filtering-based
method has been used and the details of the method will be
discussed as follows.

2.3 Parallel RLS Adaptive Filtering

MA has a strong correlation with the human motion, there-
fore, using the acceleration signals as the reference sig-
nal of the adaptive filtering for reducing MA is currently
widespread approach. RLS adaptive filtering algorithm is
a least-square-criterion-based method, which has the fea-
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Fig. 5 The block diagram of RLS adaptive filtering system, which has
two inputs. One is the desired signal d(i), the other is reference signal u(i).
e(i) represents the output signal.

tures of fast convergence and stable filtering. The block di-
agram of RLS adaptive filtering system is shown in Fig. 5.
The RLS algorithm differs from the LMS algorithm in that
E{e2(n)} is used as the cost function, denoted by J(n) is
shown in Eq. (1).

J(n) =
n∑

i=0

λn−i|e(i)|2

=

n∑
i=0

λn−i|d(i) − ω(n)T u(i)|2
(1)

Where e(i) represents the output error signal, λ is the forget-
ting factor, d(i) represents the desired output signal, ω(n) is
the FIR filter weight vector, u(i) is the input reference signal,
i = 0, 1, 2, . . . , n denotes sequence length. Take the deriva-
tive of weight vector ω(n) to obtain minimum of the cost
function J(n).

∂J(n)
∂ω(n)

= 0 (2)

By Eqs. (2) and (1) the optimal weight vector ω(n) can be
written as

ωopt(n) = R−1(n) ∗ r(n) (3)

Where R(n)=
∑n

i=0 λ
n−iu(i)uT (i) and r(n)=

∑n
i=0 λ

n−iu(i)d(i).
The weight vector ω(n) is updated with N iterations. The
process of an iteration has been described as follows.

k(n) =
p(n − 1)u(n)

λ + uT (n)p(n − 1)u(n)
(4)

y(n) = ωT (n − 1)u(n) (5)

e(n) = d(n) − y(n) (6)

ω(n) = ω(n − 1) + k(n)e(n) (7)

p(n) =
1
λ

[p(n − 1) − k(n)uT (n)p(n − 1)] (8)

Where n changes from 1 to N. It is necessary to initialize the
covariance matrix P(n), forgetting factor λ and filter order N
during the iterations [25]. It can be seen from Eq. (7) that the
update of weight vector ω(n) is related to gain vector k(n)
and output error signal e(n), where e(n) has been updated
by Eq. (6) and k(n) depends on the covariance matrix p(n)

Fig. 6 Block diagram of the parallel RLS adaptive filtering.

according to Eq. (8).
The selection of appropriate reference signal in the

adaptive filter determine the effect of filter. It is should be
noted that X, Y , Z tri-axial acceleration signals are taken
as the reference signal of RLS adaptive filtering respec-
tively, which cannot completely represent the source of in-
terference signals. The component of acceleration signals
which are not related to interference signals is introduced
by synthesizing acceleration signal

√
X2 + Y2 + Z2 as refer-

ence signal. In this paper, for the purpose of reducing MA
and estimating PR, a parallel filtering structure is proposed
by using RLS adaptive filtering in Fig. 6. The method can
increase the amplitude of spectral peak associated with PR
for PR estimation. X, Y , Z tri-axial acceleration signals are
denoted by ax, ay, az as reference signal enter the RLS adap-
tive filtering respectively, the output denoised PPG signal is
denoted by PPG can be obtain by Eq. (9).

PPG = PPGx + PPGy + PPGz (9)

Where PPGx, PPGy and PPGz represent the output of each
RLS block respectively.

In most of the cases, the parallel RLS adaptive filter-
ing method proposed in this paper can reduce MA. How-
ever, MA is not completely caused by the acceleration sig-
nals. Therefore the propose method structure that combines
wavelet threshold denoising with parallel RLS adaptive fil-
tering to provide a more appropriate signal for PR estima-
tion. Figure 7 (a) shows the spectrum of PPG signal after
wavelet threshold denoising, and the red circle indicates the
spectral peak associated with the ground truth value of PR.
After wavelet threshold denoising, two strong spectral peaks
appear, and the ground truth value of PR is not at the highest
spectral peak. It can be observed from Fig. 7 (b) that multi-
ple spectral peaks appear in the spectrum after the PPG sig-
nal passing through the parallel RLS adaptive filtering. Fig-
ure 7 (c) is the spectrum of the PPG signal using the method
we proposed. We can see that the spectral peak can be easily
tracked to estimate PR value.
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Fig. 7 An example showing the result after removing MA, and the red
circle indicates the spectral peak associated with the ground truth value
of PR. (a) Spectrum of PPG signal after wavelet threshold denoising.
(b) Spectrum of PPG signal after the parallel RLS adaptive filtering.
(c) Spectrum of parallel PPG signal after wavelet threshold denoising and
RLS adaptive filtering.

2.4 PR Estimation

PPG signal after processing by parallel eliminating MA
method may cause superposition of interfering signals, so it
is difficult to directly estimate the value of PR in the time do-
main. Therefore, we estimate the PR value from PPG spec-
trum, which is acquired by Fast Fourier Transform (FFT).
The estimation of PR consists of initial estimation of PR,
spectral peak selection and spectral peak verification.

For initial estimation of PR, since there were no previ-
ous PR values as references, subjects are required to reduce
their hand movements in the first few seconds in the datasets
for avoiding the influence of MA [12]. After FFT, the loca-
tion corresponding to the highest spectral peak is selected to
estimate PR value in this stage. Due to the PR value of hu-
man body does not change a lot in two successive time win-
dows [12], [13], we can determine the search range of cur-
rent spectral peak location by the location of pervious time
window. According to the location of the spectral peak Np

obtained in the last time window, the current location range
of the spectral peak is considered as R0 = [Np − ε,Np + ε],
where ε is a little positive integer. The process of spectral
peak selection is divided into the following steps.
Step1 : The maximum of amplitude spectral peak is selected
in the spectrogram and its maximum amplitude value Pmax
is recorded. The spectral peaks amplitude value greater than
0.5 ∗ Pmax are selected as the candidate spectral peak.
Step2 : The locations of the spectral peaks without in the
range R0 are removed, the 2nd and 3rd largest spectral peaks
are selected as candidate spectral peaks within the scope
meeting the requirements. The locations of these spectral
peaks are denoted by Ni (i = 1, 2, 3).
Step3 : Denote by Nc the location of PR estimated in the cur-
rent time window. The spectral peak amplitude value with

the location Ni is compared with that of Np successively. Ni

will be selected as the location of current spectral peak Nc

when the condition Ni−Np ≤ δ is satisfied at the first time. If
the spectral peak satisfying the conditions can not be found,
we set Nc = Np.

BPMcur =
Nc ∗ 60 ∗ Fs

Nfft
(10)

After determining Nc, the current estimation of PR value
BPMcur is obtained according to Eq. (10), where Fs is the
sampling rate of the PPG signal and Nfft is the number of
points for FFT. Due to 2s’ overlap between the current time
window and the last time window, there is a certain rela-
tionship between the current and the last PR value, and the
current estimated PR value can be obtained from Eq. (11).

BPMcur = αBPMcur + βBPM−1 + γBPM−2 (11)

Where α + β + γ = 1, BPM−1 and BPM−2 represent the
results of the previous two estimated PR values. In order to
prevent the estimation result of PR value a large change in
two successive time windows, the final estimation result of
PR value is verified by Eq. (12).

BPMest =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

BPMprev + τ, if BPMcur − BPMprev ≥ τ
BPMprev − τ, if BPMcur − BPMprev ≤ −τ
BPMcur, otherwise

(12)

Where τ represents the limit value between the twice esti-
mation, which can be obtained by experience. Denote by
BPMprev the estimation of PR in the previous time window.

3. Results

3.1 Datasets

The proposed method was evaluated on the PPG datasets
used in 2015 IEEE Signal Processing Cup. The datasets
were composed of 12 training and 10 testing recordings and
were made available by the authors of Zhang [12]. Each
dataset contained two-channel PPG signals, tri-axial accel-
eration signals, and one-channel ECG signal, recorded si-
multaneously from a subject. For each subject, the two-
channel PPG signals were recorded from wrist by two pulse
oximeters with green LEDs (wavelength: 515nm). The ac-
celeration signals were also recorded from wrist by a tri-
axial accelerator. The ECG signal was recorded simultane-
ously from the chest using ECG sensors. All signals were
acquired at a sampling frequency 125 Hz.

During 12 training datasets recording, each subject
walked or ran on a treadmill with changing speeds in order:
the speed of 1–2 km/h for 0.5 min, the speed of 6–8 km/h
for 1 min, the speed of 12–15 km/h for 1 min, the speed of
6–8 km/h for 1 min, the speed of 12–15 km/h for 1 min, and
the speed of 1–2 km/h for 0.5 min. The 10 testing datasets
were recorded when subjects were asked to purposely use
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the hand with the wristband to pull clothes, wipe sweat on
forehead, and push buttons on the treadmill, in addition to
freely swing. The large amplitude of these actions leads to
much stronger MA than in the training datasets.

3.2 Parameter Settings

The estimation of PR is performed on a time window of
8 s with a step of 2s interval. An RLS adaptive filtering of
order N = 32 is used for MA cancellation with the forgetting
factor λ = 0.999 [26]. In estimation of PR stage, the number
of points for FFT is chosen to Nfft = 4096, ε and δ are set
to 12 and 8. Due to the current estimation of PR overlaps
with the previously estimated PR for 2 s, considering that
the current estimate PR is the main weight, the parameters
α, β and γ are selected as 0.90, 0.05 and 0.05. It can be
seen from the ground truth PR vaules that the changes in
the adjacent time window are less than 4 BPM. With these
considerations in mind, the τ in the Eq. (11) is chosen as 4.

3.3 Performance Evaluation

This paper evaluates the performance of method from the
following four indexes, where the ground truth PR value
BPMtrue(i) in each time window is extracted from the simul-
taneous ECG signal. Denoted by BPMest(i) the estimated
PR value in the i–th time window using our proposed algo-
rithm, where W is the total number of time windows. The
average absolute error is defined as

AAE =
1
W

W∑
i=1

|BPMest(i) − BPMtrue(i)| (13)

The average absolute error percentage is defined as follows:

Table 1 Comparison of AAE in BPM under different reference signal and algorithm structures used
the same pre-processing and PR estimation algorithm.

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean ± SD

ax 1.19 1.55 1.36 1.36 0.82 1.70 3.88 1.08 0.72 3.38 1.00 0.79 1.57 ± 2.44
ay 1.39 2.15 1.50 1.41 0.86 1.40 1.41 1.00 0.76 3.39 1.20 1.04 1.46 ± 1.93
az 1.66 1.89 0.71 1.55 0.74 1.38 0.96 0.77 0.69 4.05 1.17 1.01 1.37 ± 1.72√

a2
x + a2

y + a2
z 1.70 26.50 0.68 1.28 0.74 9.51 0.91 0.82 0.67 4.93 1.33 2.90 4.33 ± 4.78

Cascaded RLS 1.50 1.48 1.32 2.06 1.25 1.84 1.99 1.02 0.63 3.53 1.37 1.22 1.60 ± 2.56
Parallel RLS 1.08 1.47 1.09 1.24 0.72 1.08 0.90 0.77 0.54 3.30 0.97 0.73 1.16 ± 1.63

Table 2 Comparison of AAE in BPM on the 12 training datasets across various algorithms in the
literature.

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean ± SD

TROIKA [12] 2.29 2.19 2.00 2.15 2.01 2.76 1.67 1.93 1.86 4.70 1.72 2.84 2.34 ± 2.47
JOSS [13] 1.33 1.75 1.47 1.48 0.69 1.32 0.71 0.56 0.49 3.81 0.78 1.04 1.28 ± 2.61
SPECTRAP (offline) [16] 1.18 2.42 0.86 1.38 0.92 1.37 1.53 0.64 0.60 3.65 0.92 1.25 1.50 ± 1.95
NOANc [19] 1.75 1.94 1.17 1.67 0.95 1.22 0.91 1.17 0.87 2.95 1.15 1.00 1.40 ± 0.60
SPECMAR [27] 1.22 1.51 0.75 1.26 0.75 1.87 0.80 1.07 0.65 2.24 1.39 1.09 1.21 ± 1.75
Particle Filter [21] 1.91 1.30 1.08 1.63 1.06 1.64 1.09 1.25 1.10 3.41 1.65 1.59 1.56 ± 1.73
SSA+KS [17] 2.72 3.25 1.40 1.21 0.93 2.12 1.40 1.16 1.17 4.14 1.38 1.29 1.85 ± 1.00
Ours 1.11 1.23 0.64 1.26 0.71 1.10 0.85 0.78 0.55 2.85 0.99 0.85 1.08 ± 1.45

AEP =
1
W

W∑
i=1

|BPMest(i) − BPMtrue(i)|
BPMtrue(i)

(14)

The Bland-Altman plot is also another evaluation index
which is used to obtain the difference between the ground
truth of PR and estimation of PR values. We also cal-
culate the limit of agreement (LOA) which is defined as
[μ − 1.96σ, μ + 1.96σ], where μ denotes the average of the
difference and σ represents the standard deviation. Pearson
correlation between ground truth and estimation of PR val-
ues is also adopted to evaluate the performance of method.

3.4 Results Analysis

The average absolute error (AAE) obtained from all 12 sub-
jects using the RLS adaptive filtering method is listed in
Table 1. It can be seen from Table 1 that under the same
pre-processing and PR estimation algorithm, the parallel
RLS adaptive filtering algorithm proposed in this paper has
fewer errors in AAE indexes compared with the cascade
RLS adaptive filtering algorithm and the RLS adaptive filter-
ing algorithm which respectively take ax, ay, az and synthe-

sizing acceleration signals
√

a2
x + a2

y + a2
z as reference sig-

nal [28].
Tables 2 and 3 list the AAE and AEP on the 12 Training

Datasets across various algorithms in the literature and our
proposed algorithm. It is observed that the performance of
our proposed method is better than that of other algorithms
in most of subjects. The AAE of these subjects are slightly
higher but within the acceptable limit. However, the mean
AAE and AEP over all 12 subjects of our proposed method
are 1.08 ± 1.45 BPM (Mean ± SD) and 1.82% in Tables 2
and 3, which is found the lowest AAE and AEP among
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Table 3 Comparison of AEP in BPM on the 12 training datasets across various algorithms in the
literature.

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean

TROIKA [12] 2.18% 2.37% 1.50% 2.10% 1.22% 2.51% 1.27% 1.47% 1.28% 2.49% 1.29% 2.30% 1.82%
JOSS [13] 1.19% 1.66% 1.27% 1.41% 0.51% 1.09% 0.54% 0.47% 0.41% 2.43% 0.51% 0.81% 1.01%
SPECTRAP (offline) [16] 1.04% 2.33% 0.66% 1.31% 0.74% 1.14% 1.36% 0.55% 0.52% 2.27% 0.65% 1.02% 1.12%
NOANc [19] 1.59% 1.99% 1.02% 1.51% 0.75% 1.05% 0.72% 1.04% 0.76% 1.93% 0.79% 0.79% 1.16%
SSA+KS [17] 2.11% 3.02% 1.11% 1.04% 0.70% 1.82% 1.04% 0.97% 0.95% 2.79% 0.91% 0.92% 1.45%
Ours 0.92% 1.20% 0.52% 1.18% 0.55% 0.87% 0.63% 0.68% 0.46% 1.85% 0.65% 0.62% 0.84%

Fig. 8 The Bland-Altman plot of the estimation results on the 12 training
datasets, where X-axial represents the average value of the ground truth PR
values and the estimated PR values of our proposed algorithm, and the Y-
axial represents the error between ground truth PR values and the estimated
PR values. The LOA is [−4.30, 4.18] BPM.

all algorithm. In contrast, the AAE of TROIKA is 2.34 ±
2.47 BPM, the AEP is 1.82%. For the JOSS algorithm, the
AAE is 1.28 ± 2.61 BPM, the AEP is 1.01%. It means that
our proposed method can estimate PR more accurately than
TROIKA by 53.8% and JOSS by 15.6%. It is found that
the overall performance of the proposed algorithm in this
paper is better than TROIKA, JOSS, SPECTRAP and other
excellent algorithms in the recent three years.

The Bland-Altman plot is given to test agreement be-
tween the ground-truth PR values and the estimation PR
values. In Fig. 8, the more PR values within the limit of
agreement (LOA) area defined by two black dotted lines,
the better the consistency between the ground truth and the
estimation PR values [12]. In Table 4, the LOA of our al-
gorithm is [−4.30, 4.18] BPM, and 95% of difference values
are within this confidence interval, which indicates that the
ground truth and estimation of PR values are in good con-
sistency. The Scatter plot objectively measures the fitting
degree between the estimated and the ground truth PR val-
ues [27]. It is observed from the Fig. 9 that an approximated
linear relation exists between ground truth and estimated PR
and the linear curve passes close to the origin. The Pearson
Correlation r is 0.996. As it is almost nearly 1, it indicates a
high correlation between ground truth and estimated PR and
the validation of highly accurate estimation of PR. It can be
seen from Table 4 that compared with the LOA and Pearson

Table 4 Comparison of Pearson correlation (PC), limit of agreement
(LOA), and runtime of each window on the 12 training datasets across var-
ious algorithms in the literature.

Method PC (r) LOA Runtime

TROIKA [12] 0.992 [−7.26, 4.79] 941.9ms
JOSS [13] 0.993 [−5.94, 5.41] 600ms
SPECTRAP (offline) [16] 0.995 [−5.59, 6.01] 16.2ms
NOANc [19] − [−4.71, 4.67] −
SPECMAR [27] 0.9952 [−4.78, 4.86] 20ms
Particle Filter [21] − [−4.75, 4.45] −
SSA+KS [17] − − 1600ms
Ours 0.9961 [−4.30, 4.18] 35ms

Fig. 9 Scatter plot between the ground truth PR values and the estimates
of our proposed algorithm over the 12 training datasets. The fitted line is
y = 1.01x−1, where x indicates the ground truth PR value, and y represents
the estimates our proposed algorithm. The Pearson correlation r is 0.9961.

Correlation values of other algorithms, our algorithm has
certain advantages in these two evaluation indicators.

Figure 10 depicts an example of the estimated and the
ground truth PR values on recording of subject 6 (randomly
chosen). The PR values estimated by the algorithm in this
paper almost coincides with the ground truth value of PR,
which further illustrates the good performance of the pro-
posed algorithm. The processing time of our algorithm is
about 35ms for each window which is computed by us-
ing Matlab2017a on four intel cores 3.6GHz processor with
16GB RAM. From Table 4 we can see that our method costs
less time compared with the algorithms respectively pro-
posed in Refs. [12], [13], and [17]. It also costs approximate
time to the spectral subtraction [16] and [27], which have
been recognized as the fastest method. The less computa-
tion time costs, the easier it is to integrate the algorithm into
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Table 5 Comparison of AAE in BPM on the 10 testing datasets across various algorithms in the
literature.

Subject # 1 2 3 4 5 6 7 8 9 10 Mean ± SD

TROIKA [12] 6.63 1.94 1.35 7.82 2.46 1.73 3.33 3.41 2.68 0.51 3.19 ± 2.32
JOSS [13] 8.07 1.61 3.10 7.00 2.99 1.67 2.80 1.88 0.92 0.49 3.05 ± 3.35
SPECTRAP (offline) [16] 4.89 1.58 0.86 1.83 3.05 1.62 1.24 2.04 2.49 1.16 2.13 ± 1.21
NOANc [19] 12.12 4.02 2.52 5.64 3.31 3.39 3.45 5.86 1.56 0.95 4.28 ± 3.16
SPECMAR [27] 6.57 1.76 2.28 2.77 2.94 4.80 2.72 3.28 1.55 0.82 2.95 ± 4.48
SSA+KS [17] 7.91 3.65 3.90 2.44 2.14 2.60 1.86 0.85 3.06 3.38 3.18 ± 1.89
Ours 9.87 1.64 1.76 2.74 2.54 3.42 1.96 3.34 1.02 0.71 2.90 ± 2.28

Fig. 10 The ground truth and estimation results of PR on recordings of
subject 6 of the 12 training PPG datasets.

the wearable devices. To further verify the performance of
the proposed algorithm, the algorithm is applied to 10 test-
ing datasets, which contain more actions of people in daily
life. It is found from the results in Table 5 that the proposed
method also shows good performance on AAE compared
with the commonly used online algorithm.

4. Conclusion

In this paper, an efficient method combining wavelet thresh-
old denoising with parallel RLS adaptive filtering is pro-
posed to estimate PR values under different motions. It is
found that instead of using cascaded RLS adaptive filtering
or a single RLS adaptive filtering, a parallel RLS adaptive
filtering can provide better performance for the estimation
of PR. The performance of the proposed method has been
proved by the experiments and the results. Our method can
also be used to reduce MA from other physiological signals,
such as extracting heart rate from ECG signals during in-
tensive physical exercise. The lower estimation error and
less computation time makes our method an ideal choice
to be implemented in the wearable devices. Of course, our
method also needs to be improved. In Tables 2 and 5, PPG
signal is affected by strong MA on some subjects, then the
AAE of these subjects is relatively a little higher. This may
be since that the MA is not completely related to accelera-
tion signal, but also affected by the pressure, skin color and
blood flow [4]. In the future work, the proposed method can

be further optimized. We will investigate that different pa-
rameters are used as the reference signals of our algorithm
to reduce MA. Considering that this algorithm can be used
in wearable devices, the computational complexity of the al-
gorithm can be reduced by using fast RLS adaptive filtering
algorithm.
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