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PAPER

Neural Machine Translation with Target-Attention Model

Mingming YANG†a), Nonmember, Min ZHANG†,††, Member, Kehai CHEN†††, Rui WANG†††,
and Tiejun ZHAO†, Nonmembers

SUMMARY Attention mechanism, which selectively focuses on
source-side information to learn a context vector for generating target
words, has been shown to be an effective method for neural machine trans-
lation (NMT). In fact, generating target words depends on not only the
source-side information but also the target-side information. Although the
vanilla NMT can acquire target-side information implicitly by recurrent
neural networks (RNN), RNN cannot adequately capture the global rela-
tionship between target-side words. To solve this problem, this paper pro-
poses a novel target-attention approach to capture this information, thus
enhancing target word predictions in NMT. Specifically, we propose three
variants of target-attention model to directly obtain the global relationship
among target words: 1) a forward target-attention model that uses a tar-
get attention mechanism to incorporate previous historical target words
into the prediction of the current target word; 2) a reverse target-attention
model that adopts a reverse RNN model to obtain the entire reverse target
words information, and then to combine with source context information
to generate target sequence; 3) a bidirectional target-attention model that
combines the forward target-attention model and reverse target-attention
model together, which can make full use of target words to further im-
prove the performance of NMT. Our methods can be integrated into both
RNN based NMT and self-attention based NMT, and help NMT get global
target-side information to improve translation performance. Experiments
on the NIST Chinese-to-English and the WMT English-to-German transla-
tion tasks show that the proposed models achieve significant improvements
over state-of-the-art baselines.
key words: attention mechanism, neural machine translation, forward
target-attention model, reverse target-attention model, bidirectional target-
attention model

1. Introduction

Recent works of neural machine translation (NMT) have
been proposed to adopt the encoder-decoder framework [1],
which employs a recurrent neural network (RNN) encoder
to represent a source sentence as a sequence of vectors,
which is fed into an RNN decoder to generate target trans-
lation word by word. Especially, the NMT with an attention
mechanism is proposed to acquire a context vector over a
sequence of vectors dynamically at each decoding step, thus
improving the performance of NMT [2]. In NMT attention
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models, RNN-based [2], CNN-based [3], and self-attention-
based [4] are imported. Many studies [2]–[5] have shown
that attention mechanism is able to effectively detect the
dependency relationship between all source inputs and the
next predicted target word at each decoding step. However,
the vanilla attention NMT focuses on source-side informa-
tion to learn a dependent-time context vector for generating
target word by the attention mechanism and ignores target-
side global dependencies between the current predicted tar-
get word and the other target words, including the previous
and the future target-side words.

Table 1 shows a Chinese-to-English translation exam-
ple of NMT. The Chinese word “ ” has two kinds of
meaning. One is “rather”, the other is “how many”. We
observe that the Chinese word “ ” is not translated into
“rather” due to the failure of capturing enough information
from the forward target-side word “way” and the backward
target-side word “pity”. The neglect of these important clues
may be due to the inefficiency of capturing global target-side
relationship using the decoder hidden state learned by RNN
or self-attention∗. However, the target-side information may
be beneficial for improving target word translation in NMT
since they provide global relationship information among
target words. In this paper, we propose a simple yet effec-
tive target-attention approach to take advantage of the entire
target-side context information in the NMT system explic-
itly. To this end, we propose three kinds of NMT models for
the target-attention:

• Forward target-attention model: An additional target-
attention is learned based on all of the historical hidden
states to gain a forward target context vector, and thus
predict translation together with the existing source
context vector.

• Reverse target-attention model: In contrast to the
forward target-attention model, the reverse attention
model is learned over the reversing target-side words

Table 1 An example of Chinese-to-English translation. The translation
of the Chinese words in red needs forward and backward sentence infor-
mation of the English sentence.

∗Self-attention can only acquire the previous target information
and ignore the future target information.
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for capturing reverse relationship among target-side
context.

• Bidirectional target-attention model: To further im-
prove translation performance from target-side in-
formation, both of the forward and reverse target-
attentions are integrated into the vanilla NMT to pre-
dict translations.

2. Attention-Based NMT

In this section, we introduce the background of the RNN
based NMT [2] and the Transformer based NMT [4].

2.1 RNN Based NMT

In the RNN based NMT, the encoder applies bidirectional
recurrent neural networks (Bi-RNN) to encode a source sen-
tence: one reads an input sequence X = (x1, x2, . . . , xJ)
from left to right and outputs a forward sequence of hidden

states sequence (
−→
h 1,
−→
h 2, · · · ,−→h J),

−→
h j =

−−−−→
RNN(x j,

−→
h j−1).

While the other operates from right to left and outputs a

backward hidden states sequence (
←−
h 1,
←−
h 2, · · · ,←−h J),

−→
h j =←−−−−

RNN(x j,
←−
h j+1). Where

−−−−→
RNN or

←−−−−
RNN are a RNN with GRU

or LSTM, our work is based on RNN with GRU which is
smaller and faster than LSTM. The final annotation vector
is the concatenation of forward and backward vectors: h j =

[
−→
h j;
←−
h j]. The encoder represents source input sentence as a

sequence of source annotation vectors H = (h1, h2, · · · , hJ).
The decoder is also a RNN that predicts a target sequence
Y = (y1, y2, . . . , yI). The hidden state si of decoder at time
step i is computed:

si = f (si−1, yi−1, ci), (1)

where f (·) is GRU unit, a highly non-linear function. The
implementation is shown below:

ri = σ(Wryi−1 + Ur si−1 + Vrci + br),

ui = σ(Wuyi−1 + Uusi−1 + Vuci + bu),

ŝi = tanh(Wyi−1 + U[ri � si−1] + Vci + b),

si = 1 − ui � si−1 + ui � ŝi,

(2)

where σ(·) is the sigmoid function, and � denotes the
element-wise multiplication. Wr, Wu, W, Ur, Uu, U, Vr,
Vu, V , br, bu, b are the parameters of the model, ri and ui are
update and reset gates of GRU, respectively.

In the attention model, the current context vector ci is
calculated as a weighted sum over source annotation vectors
(h1, h2, · · · , hJ) with alignment weights αi, j:

ci =

J∑
j=1

αi, jh j, (3)

where αi, j is the scalar weight of each hidden state h j com-
puted by the attention model and a is a feedforward neural
network:

αi, j =
exp(ei, j)∑J

j′=1 exp(ei, j′ )
,

ei, j = a(si−1, h j).

(4)

The translation probabilities of next target word yi

are computed via multi-layer perception neural network g,
which is based on the current decoder hidden state si, the
previous word yi−1 and a current source-side context vector
ci:

P(yi|y<i; X) = g(yi−1, si, ci). (5)

2.2 Transformer Based NMT

Transformer [4] is also an encoder-to-decoder architecture.
Different from the other NMT, it has the self-attention layers
(SAN) that can operate in parallel. Each single self-attention
layer has two sublayers: a multi-head self-attention layer
and a feed forward network. Both sublayers are stacked
using residual connection and layer normalization. Multi-
head attention allows the model to jointly attend to infor-
mation from different representation subspaces at different
positions, which is formulated as follows:

MultiHead(Q,K,V) = Concats
i=1hi(q, k, v),

hi(q, k, v) = Attention(
qWq

i√
ds

, kWk
i , vWv

i ),
(6)

each head uses parameter matrices Wq
i , Wk

i and Wv
i ∈ Rd×ds

to transform the input q, k, v, where ds is a scale factor,
which equals to d/s, d is the hidden size of q, and s is the
number of heads.

The feed forward network consists of two linear trans-
formations with a ReLU activation in between:

FeedForwad(x) = f2(Max(0, f1(x))), (7)

where f1 and f2 are both feedforward networks. For the sake
of brevity, we refer the reader to Vaswani et al. [4] for more
details.

Denote Henc as the representation of source sentences
via the SAN of the encoder, and Fdec is also the represen-
tation of decoder by the SAN, Which can be computed as
follows:

Henc = Attention(Qx,Kx,Vx),

Hdec = Attention(Qy,Ky,Vy),

Fdec = Attention(Hdec,Henc,Henc),

(8)

where Qx = Kx = Vx are a source input sequence X, and
Qy = Ky = Vy are a target predict sequence Y . The pa-
rameters of Transformer are trained to minimize the fol-
lowing objective function on a set of training examples
{(Xn,Yn)}Nn=1:

L(θ) = − 1
N

N∑
n=1

Iy∑
i=1

logP(yn
i |yn
<i,Henc, Fdec; θ), (9)
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Fig. 1 (a) Architecture of RNN with forward target-attention model; (b) architecture of RNN with
reverse target-attention model; (c) architecture of RNN with bidirectional target-attention model.

where θ is a set of model parameters and y<i denotes a partial
translation.

3. NMT with Target-Attention

Different from the conventional attention-based NMT which
generates current target word with the previous decoder hid-
den state, all previous historical hidden states are taken into
account in our target-attention models. To take full advan-
tage of target-side information, we propose three kinds of
target-attention models: 1) Forward target-attention model;
2) Reverse target-attention model; 3) Bidirectional target-
attention model.

3.1 Forward Target-Attention Model

Figure 1 (a) illustrates our forward target-attention model.
In this model, the encoder is the same as that of the tradi-
tional NMT. Compared with traditional NMT, the forward
target-attention model aims to explore all previous histori-
cal decoder hidden states for predicting target word instead
of an only single previous decoder hidden state. We con-
sider that the target-side information can help NMT improve
target word translation since it can capture additional long-
distance relationship among target-side historical words. To
this end, an dynamic list, which stores all previous tar-

get historical hidden states Df
i−1 = (

−→
S 1,
−→
S 2, · · · ,−→S i−1) is

firstly added into the decoder of NMT. When generating the
current target word yi, we then compute a forward target-
attention Fi−1 with the dynamic list Df as:

βi,i′ =
exp(di,i′ )∑i−1

i′=1 exp(di,i′ )
,

di,i′ = b(
−→
S i−1,

−→
S i′ ),

(10)

where b is a single feedforward neural network, and βi,i′ is a

normalized weight of each target historical hidden state
−→
S i′

computed by the forward target attention model.
The current target-side forward context vector Fi−1 is

calculated as a weighted sum over target historical hidden
states in the dynamic list Df with alignment weights βi,i′ :

Fi−1 =

i−1∑
i′=1

βi,i′
−→
S i′ . (11)

Finally, the learned Fi−1 is as an additional input of the

Eq. (1) to compute the current decoder hidden state
−→
S i:

−→
S i = f (

−→
S i−1, yi−1, ci, Fi−1), (12)

where f (·) is GRU unit, similar to Eq. (2). Meanwhile, the
Fi−1 is integrated into the computation of the conditional
probability of the next word yi:

P(yi|y<i; X) = g(yi−1,
−→
S i, ci, Fi−1). (13)

We train the proposed NMT with forward target-
attention a set of train data {(Xn,Yn)}Nn=1. Finally, there is
an available NMT model with forward target-attention pa-
rameterized by θ1, the objective is to minimize the following
conditional probability:

L(θ1) = − 1
N

N∑
n=1

Iy∑
i=1

logP(yn
i |yn
<i, X

n; θ1). (14)

We aim to make full use of the historical target-side in-
formation, so we set the dynamic list to store the forward
target-side context information and a matrix of the attention
mechanism which can learn the combined weights of the
forward information. In the back propagation weight train-
ing, the matrix is only updated not the dynamic list.

3.2 Reverse Target-Attention Model

In the traditional n-gram language model, there is a strong
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connection between the current word and the succeeding
words [6]. In other words, the succeeding words are also
beneficial for machine translation. However, these future re-
lationships that not considered in the target-side of the NMT
model.

In the vanilla NMT, there is a fact that source repre-
sentations H, which encode not only forward source input
sentence but also backward input sequence by BiRNN, is
used to generate forward target language sequence. In other
words, source representations H can also be used to gen-
erate a backward target language sequence. Therefore, to
capture target-side future relationship, we add an additional

RNN to obtain a reverse target-side hidden state
←−
S k at each

time-step k. A dynamic list Dr
k, which is similar to Df

i
in forward target attention model, for these learned reverse

target-side historical hidden states (
←−
S 1,
←−
S 2, · · · ,←−S k). For-

mally, the above procedure is similar to a decoder of the
attention-based NMT:

P(←−y k |←−y <k; X) = g(←−y k−1,
←−
S k−1, ck), (15)

the difference is that the generated translation is a reverse
target language sequence.

At each time-step k, we compute an alignment weight
γk,k′ for each reverse historical target-side hidden state as
follows:

γk,k′ =
exp(mk,k′)∑k−1

k′=1 exp(mk,k′ )
,

mk,k′ = q(
←−
S k−1,

←−
S k′ ),

(16)

where q is also a single feedforward neural network.
According to the Eq. (3), the reverse target context vec-

tor Rk is calculated as a weighted sum over reverse target-
side historical hidden states in the dynamic list Dr

k with
alignment weights γk,k′ :

Rk =

k−1∑
k′=1

γk,k′
←−
Sk′ , (17)

The learned Rk is as an additional input of the Eq. (1)

to compute the current decoder hidden state
←−
S k:

←−
S k = f (

←−
S k−1,

←−y k−1, ck,Rk−1), (18)

where f (·) is GRU unit, similar to Eq. (2). In order to make
full use of all future target-side information and solve the
problem that the length of reverse sequence and forward
sequence may be inconsistent in the inference, we use the

average of all reverse hidden states
←−
S as reverse future rep-

resentations R̃. Some studies showed that the average op-
eration is an effective method to represent sentence [7]–[9],
especially for NMT [10]. Compared to the traditional NMT,
we add the reverse target context vector R̃ into the condi-
tional probability formula as follows:

P(yi|y<i; X) = g(yi−1,
−→
S i, ci, R̃). (19)

Due to the attention is based on reverse target-side his-
torical hidden states, we call it a reverse target-attention
model as shown in Fig. 1 (b).

To ensure the correctness of the target-side historical
hidden states, we train both the source-to-forward target
translation model with reverse translation and the source-
to-reverse target translation model on a set of training ex-
amples {(Xn,Yn)}Nn=1:

L(θ2) = − 1
N

{ N∑
n=1

Iy∑
i=1

logP(yn
i |yn
<i, X

n; θ2)

+

N∑
n=1

Iy∑
i=1

log
←−
P(←−y n

i |←−y n
>i, X

n; θ2)
}
. (20)

Finally, there is an available NMT model with reverse
target attention parameterized by θ2.

3.3 Bidirectional Target-Attention Model

RNN: although the previous two models have clearly em-
ployed the forward and the reverse semantic information be-
tween the target words, the current target-side word depends
on both directional information. Therefore, we further pro-
pose a target-side bidirectional attention model to unite the
forward and the reverse target-attention. Specifically, both
of forward target context vector Fi in Eq. (11) and reverse
target context vector R̃ in (19) are used to compute the cur-
rent decoder hidden state S B

i as follows:

SB
i = f (S B

i−1, yi−1, ci, Fi−1, R̃), (21)

where f (·) is is the same as introduced in Eq. (2). Finally,
our the conditional probability p(yi|y<i; X) is formulated in
Eq. (22):

P(yi|y<i; X) = g(yi−1, S
B
i−1, ci, Fi−1, R̃). (22)

For model training, according to the Eq. (20), the NMT
model with bidirectional target attention is trained on a set
of training examples {(Xn,Yn)}Nn=1:

L(θ3) = − 1
N

{ N∑
n=1

Iy∑
i=1

logP(yn
i |yn
<i, X

n; θ3)

+

N∑
n=1

Iy∑
i=1

log
←−
P(
←−
yn

i |
←−
yn
>i, X

n; θ3)
}
. (23)

Finally, there is an available NMT model with bidi-
rectional target attention parameterized by θ3, as shown in
Fig. 1 (c).
Transformer: the bidirectional model we propose can also
be used in the Transformer to get more future target-side
information. Since the structure of the Transformer only
considers the forward target-side information, the influence
of the future target-side information on the translation is not
considered. Therefore, we add a reverse decoder module to
the original transformer structure, as shown in Fig. 2, which
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Fig. 2 Transformer with bidirectional target-attention model.

simultaneously applies both historical and future informa-
tion when generating translations. In details, Henc, Rdec and
Fdec are the representations of the encoder, the reverse de-
coder and the forward decoder. Rdec can be computed as
follows, similar to Eq. (8):

←−
Hdec = Attention(

←−
Qy,
←−
Ky,
←−
V y),

Rdec = Attention(
←−
Hdec,Henc,Henc),

(24)

where
←−
Qy =

←−
Ky =

←−
V y are a reverse target sequence

←−
Y .

Mikolov et al. [9] use concatenation as the method to com-
bine the sentence vectors to strengthen the capacity of rep-
resentation. We also use the same method to combine Henc

and Rdec:

Denc = Concat(Henc,Rdec). (25)

Finally, Denc is added into forward context attention layer
to get translation. In this way, Transformer can have the
ability to use future target-side information. Which can be
computed as follow:

Fdec = Attention(Hdec,Denc,Denc). (26)

Based on the Eq. (9), our final loss is also composed of two
parts, the formula is as follows:

L(θ4) = − 1
N

{ N∑
n=1

Iy∑
i=1

logP(yn
i |yn
<i,Denc, Fdec; θ4)

+

N∑
n=1

Iy∑
i=1

log
←−
P(←−y n

i |←−y n
>i,Henc,Rdec; θ4)

}
. (27)

In the all two-pass decoding process, we have three
steps. First, we use the reverse target attention layer with
greedy search to sequentially generate reverse hidden states
until the target-side start symbol <s> occurs with the highest

probability. Then, we use all reverse hidden states to get the
reverse target context R (with average operation in RNN).
Finally, we add R into the forward decoder to find the best
translation with GRU or Attention operation.

4. Experimentation

4.1 Experimental Settings

For Chinese-English translation, our training data for the
translation task consists of 1.25M Chinese-English sentence
pairs extracted from LDC corpora. The NIST02 test set
is chosen as a development set, and the NIST03, NIST04,
NIST05, NIST06 datasets are test sets. We use the case-
insensitive 4-gram NIST BLEU score as our evaluation met-
ric [21]. The training data of English-German translation is
from WMT 2015, which consists of 4.5M sentence pairs.
We use byte-pair encoding [22] to segment words. The
news-test-2016 was used as development set, the news-test-
2014 and the news-test-2015 as test sets that are evaluated
by SacreBLEU [23].

All NMT models are implemented in OpenNMT, in-
cluding the proposed forward target attention based on RNN
(FTAtt-R), reverse target attention based on RNN (RTAtt-
R), bidirectional target attention based on RNN (BiTAtt-
R) and bidirectioanl target attention based on Transformer
(BiTAtt-T). On the Chinese-English and English-German
translation, we limit the source and target vocabularies to
the most frequent 32K words, and the maximum sentence
length on both source and target sides to 50. In our three tar-
get attention models based on RNN, the dimensions of word
embedding are 620, the size of the hidden layer is 1000 and
the minibatch size is set as 80, the number of layers at the
source and target of the RNN is 1, all the other settings are
the same as in Bahdanau et al. [2]. We proposed BiTAtt-T,
which consists of an encoder, a reverse decoder, and a for-
ward decoder. Each of these three modules has 6 stacked
layers of 512 neurons and the filter size of the layer is 2048.
We set 512 neurons for the word embedding and minibatch
size is also 512. About 200K minibathes are trained. All
the other settings are the same as in Vaswani et al. [4]. We
use an adam algorithm to train each model. We also re-
implemented the following systems as our baselines:

PBSMT [19]: this is an open source hierarchical
phrase-based SMT system with default configuration and a
4-gram language model.

ANMT [2]: this is an attention-based NMT with slight
changes from OpenNMT.

ANMT(R2L): this is a variant of ANMT system with
a right-to-left direction in target side.

ABDNMT [20]: this is an open source asynchronous
bidirectional decoding for NMT system with default config-
uration.

TFMR: we implement the base Transformer model
with a self-attention NMT [4].
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Table 2 Translation results (BLEU score) for Chinese-English and English-German translation task.
There are six existing experimental results to be shown. ReCons [11] is a encoder-decoder-reconstructor
framework for NMT. MemDec [12] improves translation quality with external memory. NMTIA [13]
adds the last output information in the update of the attention weight. M-NMT [14] presents a memory-
augmented NMT architecture, which stores knowledge about how words should be translated in a mem-
ory. DMAtt [15] incorporates word reordering knowledge into attention-based NMT. SDAtt [16] extend
the local attention with syntax-distance constraint. BPEChar [17] is a character-level decoder with-
out explicit segmentation for NMT. RecAtt [18] explicitly takes the attention history into consideration
when generating the attention map. Avg means the average BLEU score on all test sets. “†”: we pro-
posed three target-attention methods based on RNN significantly better than ABDNMT, and our target-
attention method based on Transformer significantly outperforms TFMR at significance level 0.05.

Type Model
NIST WMT

03 04 05 06 Avg 14 15 Avg

Report

ReCons [11] N/A N/A 34.88 35.19 N/A N/A N/A N/A
MemDec [12] 36.16 39.81 35.91 35.98 36.95 N/A N/A N/A
NMTIA [13] 35.09 37.73 35.53 34.32 35.67 N/A N/A N/A
M-NMT [14] 34.00 N/A N/A N/A N/A N/A N/A N/A
DMAtt [15] 38.33 40.11 36.71 35.29 37.61 N/A N/A N/A
SDAtt [16] 36.67 38.66 35.75 34.03 36.28 20.75 22.05 21.40
BPEChar [17] N/A N/A N/A N/A N/A 21.56 23.91 22.74
RecAtt [18] N/A N/A 29.30 N/A N/A 22.10 25.00 23.55

re-implement

PBSMT [19] 33.32 34.98 31.63 31.56 32.87 19.68 20.42 20.05
ANMT [2] 36.42 39.33 35.37 35.56 36.67 22.42 25.13 23.76
ANMT(R2L) 36.38 39.30 35.43 35.02 36.53 22.68 25.36 24.02
ABDNMT [20] 39.84 42.16 38.67 38.19 39.72 23.46 26.13 24.80
TFMR [4] 45.57 46.40 46.11 44.92 45.75 27.43 29.54 28.49

our RNN
FTAtt-R 40.35 42.58 39.62† 38.83† 40.35 23.62 26.35 24.99
RTAtt-R 40.52† 42.72† 39.83† 38.97‡ 40.51 23.80† 26.64† 25.22
BiTAtt-R 40.82† 43.09† 41.17† 39.35† 41.11 24.12† 26.81† 25.47

our Transformer BiTatt-T 46.31† 47.15† 46.97† 45.71† 46.54 28.15† 30.13† 29.14

4.2 Performance

Table 2 shows the performances measured in terms of BLEU
score. ABDNMT outperforms the existing strong baseline
DMAtt [15] by 2.1 BLEU points. ANMT, ANMT(R2L),
and ABDNMT outperform PBNMT by 3.8, 3.7, and
6.9 BLEU points respectively, indicating that ANMT,
ANMT(R2L) and ABDNMT are stronger baselines.

With respect to BLEU scores, both of RTAtt-R and
FTAtt-R have improved translation accuracy by 0.6 and
0.8 BLEU points on average over ABDNMT. Particularly,
BiTAtt-R gets the most remarkable promotion, which beats
the baseline ABDNMT with averaged 1.4 BLEU score on
all test sets. This means that both forward and reverse
target-attention information can work together well. Be-
sides, our bidirectional target-attention model was success-
fully applied in the Transformer and achieved significant im-
provement of 0.8 BLEU points.

The proposed method gains similar improvements on
English-German translation task. In addition, the perfor-
mances of the proposed methods outperform the results in
the existing works in both tasks.

5. Analysis

As the proposed three models achieve significant improve-
ment over baseline, we further look at our models to explore
how the target-side relationship plays a role in translation.

5.1 Efficiency Analysis

In Table 2, we analyze the efficiency of the proposed
method. In RNN based NMT, compared to the ANMT,
BiTAtt-R increases approximately 49% parameters and
decrease approximately 57% training and 14% decoding
speed. However, compared with ABDNMT, BiTAtt-R uses
fewer parameters and is much faster in training and decod-
ing.

In transformer based NMT, compared with
TFMR(base), BiTAtt-T increases approximately 44% pa-
rameters and decreases approximately 36% training and 9%
decoding speed. Compared with TFMR(big), BiTAtt-T just
contains 40% the parameters. However, BiTAtt-T achieves
similar performance with TFMR(big) and is much faster
than TFMR(big).

The above empirical finds indicate that the improve-
ment of the proposed methods does come not from more
parameters. In the all two-pass decoding process, specifi-
cally, the decoding time of our system does not increase sig-
nificantly. This is mainly because we use greedy search to
generate reverse target hidden states in the first pass reverse
decoding process, and employ beam search method (beam-
size=10) the same as standard ANMT and Transformer in
the second forward decoding process. This method is more
time consuming than the greedy method, which is about 10
times.
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Table 3 The efficiency analysis on English-German translation task. TFMR(big) differs TFMR(base)
at the layer size (1024 vs 512) and the attention head number (16 vs 8). We have a single GPU device
P100 to train/decode these models. The beamsize is set to 10 for decoding.

Type Model
BLEU

Params
Speed (tokens/s)

WMT14 Train Decode

RNN
ANMT 22.42 84.4M 8200 214

ABDNMT 23.46 130.0M 2300 97
BiTAtt-R 24.12 125.4M 3500 183

Transformer
TFMR(base) 27.43 78.3M 10200 154
TFMR(big) 28.26 282.8M 4500 99
BiTAtt-T 28.15 113.0M 6500 140

Table 4 Chinese-English translation results of bidirectional target-attention model.

Fig. 3 BLEU score of generated translations with respect to the lengths
of the input sentences on Chinese-English translation task.

5.2 Effects on Long Sentences

Following Bahdanau et al. [2], we group sentences of simi-
lar lengths together and compute BLEU score and averaged
length of translation for each group, as shown in Fig. 3. It
shows that the proposed FTAtt-R, RTAtt-R, BiTAtt-R, and
BiTAtt-T outperform the baseline ABDNMT and TFMR
over sentences with all different lengths respectively. We
think the proposed target-attention can more effectively cap-
ture relationship among target words to improve target word
prediction than the existing single decoder hidden state,
which is in line with the effectiveness of target-side rela-
tionship found by Wu et al. [24].

Cho et al. [25] and Tu et al. [26] show that the perfor-
mance of Groundhog drops rapidly when the length of the
input sentence increases. Our results confirm these findings.
It also shows that the performance drops substantially when

the length of the input sentences increases, and thus faces a
serious under-translation problem. It can be seen from the
right side of Fig. 3, NMT systems tend to perform worse for
long input sentences. We think the problem is that the maxi-
mum length limit of the source sentence is set to 50. For over
50 lengths of source sentences, our proposed NMT systems
also have the lower performance, but still, exceed baselines
in all groups. Our models relieve the under-translation prob-
lem to a certain extent.

5.3 Analysis on Translation Quality

Table 3 shows the translation examples. In the
TFMR(Base), “ ” is incorrectly translated into “of-
fice”, instead of “shelter”. According to the parse tree in the
reference generated by the Stanford parser, the “shelter” has
a forward relationship on the “in a government” and a re-
verse relationship on the “city”. The “in a government” and
“city” are very informative for correctly translate “ ”
to “shelter”, but both of them are far away from “shelter”
such that it is not easy to be captured by the TFMR(Base).
Besides, BiTAtt-T correctly translated “ ( now)”
into “Seoul”, while TFMR(Base) ignores it. This informa-
tion is considered in our bidirectional model which can solve
the problem of error and under translation to a certain extent.

5.4 Analysis on Target-Side Alignment

Figure 4 shows the attention alignments for the translation
example in Table 3. The BiTAtt-T does meet the expecta-
tion: the self-alignment in the target can capture the target-
side relationship among the target words. We can find some
phenomena to prove our method is valid. The words “death”
and the forward word “to”, “shot” have strong relevance. At
the same time, the word “by” and the reverse word “police”
have some correlation. While generating the current word,
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Fig. 4 Target alignment of BiTAtt-T Model.

the forward and the reverse information play a syntactic role.
This example demonstrates that the proposed method can
learn target-side relationship to help translate.

6. Related Work

In this section, we briefly review previous studies that are re-
lated to our work. Here we divide previous work into three
categories: language model, attention mechanism, and tar-
get direction.

6.1 Language Model

In conventional SMT, the language model plays an impor-
tant role. The application of neural networks to machine
translation was restricted to extending standard machine
translation tools for rescoring translation hypotheses or re-
ranking n-best lists [27]–[31]. However, in the NMT system,
the language model is usually replaced implicitly with an
RNN model. Gülçehre et al. [32] proposed a method which
integrates a language model into an attention-based NMT
system. They can make full use of semantic information
on the target-side. Similar to the language model, our meth-
ods force on the relationship between target words including
forward and reverse. By using it effectively, we can improve
the quality of the translation.

6.2 Attention Mechanism

Recent advance towards of NMT has achieved great suc-
cess [2], [33]. In the NMT system, attention mechanism is
a very effective and important method which learns to align
and translate at the same time. It has greatly improved the
performance of translation. On this basis, there are many
interesting and effective methods [5], [16], [26], [34], [35]
which have been proposed in improving attention mecha-
nism of the NMT system. Luong et al. [5] proposed global
attention model and local attention model, further compare
several different scoring functions of the attention weight.
Tu et al. [26] presented a coverage vector to keep track

of the attention history and promote the attention mecha-
nism to focus on more untranslated source words. Chen
et al. [16], [34] proposed a double context method by two
attention mechanism to capture more source context infor-
mation for translation prediction. Our work has the same
source attention mechanism, compared with the above mod-
els, the forward and the reverse target attention are also im-
ported, which can help to produce a more smooth trans-
lation. Recently, the stacked self-attention layers were in-
troduced in the Transformer model [4] and has significantly
improved state-of-the-art in NMT. The difference was that
we proposed reverse decoding and bidirectional decoding
focus on the sentence-level instead of the monodirectional
decoding in the Transformer. Specifically, our method sim-
ply adds reverse target-attention into the forward decoder to
improve translation prediction which can be transferred to
the other machine translation systems easily.

6.3 Target Direction

Target-directional neural network models have also been
successfully employed in Devlin et al. [28]. However,
their approach was concerned with feedforward networks.
Sennrich et al. [36] attempted to re-rank the “left-to-right”
decoding results by “right-to-left” decoding, resulting in
diversified translation results. Similar in spirit to this, Li
et al. [37] introduced a beam search algorithm which can be
diversified by integrating bidirectional scores in re-ranking,
or by adjusting the beam diversity with reinforcement learn-
ing [38]. Cheng et al. [39] proposed a bidirectional atten-
tion model for joint training, so as to keep consistent in
two directions. Liu et al. [40] tried to jointly train by us-
ing two directional models and then search for target se-
quences which have support from both of the models in test-
ing. Zhou et al. [41] also proposed a synchronous bidirec-
tional decoding to produce better translation. It is notable
that Xia et al. [42] and Zhang et al. [20] presented target at-
tention models which are similar to us. However, the former
does not consider reverse target semantic information, and
the latter differs from ours in three aspects: (1) our models
consider the forward target attention information and (2) our
models generate the final translation with applying the for-
ward and the reverse target attention information simultane-
ously. (3) Our models also give the Transformer the ability
to get the future target attention information. Different from
the previous studies, our proposed model takes full account
of the forward and reverse target information, and combines
them efficiently to help to generate the target sequence.

7. Conclusion

In this paper, we have presented three novel approaches that
incorporate the whole relationship among target words into
traditional NMT and Transformer with target-side attention
models. The difference between the three models is the
direction of the target-side relationship. Our bidirectional
target-attention model can effectively learn both forward and
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reverse target semantic information to help translation. Ex-
periment results on Chinese-English and English-German
translation have demonstrated the efficacy of the proposed
models. We have also analyzed the translation behavior of
our improved system against the state-of-the-art NMT base-
line system from several perspectives, indicating that there
is much room for NMT translation to be enhanced by more
semantic information. Since the proposed models are a sim-
ple universal sequence-to-sequence framework, we can eas-
ily apply them to other sequence-to-sequence models and
tasks in the future.
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