
566
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

PAPER

Identifying Link Layer Home Network Topologies Using HTIP

Yoshiyuki MIHARA†a), Nonmember, Shuichi MIYAZAKI††, Senior Member, Yasuo OKABE††, Fellow,
Tetsuya YAMAGUCHI†††, Member, and Manabu OKAMOTO††††, Senior Member

SUMMARY In this article, we propose a method to identify the link
layer home network topology, motivated by applications to cost reduction
of support centers. If the topology of home networks can be identified
automatically and efficiently, it is easier for operators of support centers
to identify fault points. We use MAC address forwarding tables (AFTs)
which can be collected from network devices. There are a couple of exist-
ing methods for identifying a network topology using AFTs, but they are
insufficient for our purpose; they are not applicable to some specific net-
work topologies that are typical in home networks. The advantage of our
method is that it can handle such topologies. We also implemented these
three methods and compared their running times. The result showed that,
despite its wide applicability, our method is the fastest among the three.
key words: home networks, home automation, network topology, graph
algorithms, MAC address forwarding tables, HTIP

1. Introduction

1.1 Background

Electronic devices that provide various kinds of services
(called end devices in this paper), such as PCs, digital TVs,
gaming devices, hard disc recorders, and printers, are con-
nected to home networks, and the number of such devices is
still increasing. Also, intermediate devices (or network de-
vices), e.g., switches and routers, are connected to home net-
works using various transmission media, not only conven-
tional UTP (Unshielded Twisted Pair) cables but also PLC
(Power Line Communication), wireless, and Coax (Coax-
ial Cable). These trends are making configurations of home
network more and more complex. Figure 1 shows an exam-
ple of a home network, in which short dashed lines denote
communication media other than UTP cables.

The number of IP service troubles are also increasing
under these circumstances. There are a lot of possible fault
points inside home networks, which include internal failures
of either end devices or network devices, and troubles due

Manuscript received June 12, 2019.
Manuscript revised October 4, 2019.
Manuscript publicized December 3, 2019.
†The author is with Strategic Business Development Division,

NTT, Tokyo, 100–8116 Japan.
††The authors are with Academic Center for Computing and

Media Studies, Kyoto University, Kyoto-shi, 606–8501 Japan.
†††The author is with Research and Development Planning De-

partment, NTT, Tokyo, 100–8116 Japan.
††††The author is with Faculty of Computer and Infomation Sci-

ences, Sojo University, Kumamoto-shi, 860–0082 Japan.
a) E-mail: yoshiyuki.mihara.cr@hco.ntt.co.jp

DOI: 10.1587/transinf.2019EDP7161

Fig. 1 An example of a home network.

to incorrect settings by users. A cable may be unplugged
somewhere between the troubled end device and the access
gateway (AGW), which is the gateway located at the bound-
ary between the access line and the home network. It is hard
for a user with no network expertise to detect exactly which
point is faulty. This has driven a lot of inquiry calls to sup-
port centers.

In the current approach to supporting a user over the
phone, the operator first asks the user to report the route
from the AGW to the troubled end device in order to detect
the fault point. However, most users do not know a net-
work configuration. It takes an inordinate amount of time
for the operator to grasp the situation in the home network
only from the user’s verbal descriptions. This increases the
cost of service operating companies. Clearly operators need
to identify the fault point quickly even from the remote sup-
port center in order to reduce the cost.

The link layer network topology is generally used for
isolating fault points in networks. The link layer topology
includes network devices which are completely transparent
from the IP layer. If operators can recognize the link layer
network topology of the user’s home network, they can iden-
tify the network devices on the route between the troubled
end device and the AGW. The operators can then detect fault
points by checking connectivity to each network device on
this route.

In this article, we aim to develop a method to identify
the link layer home network topology automatically. We use
a MAC address forwarding table (AFT), which is commonly
held by network devices. An AFT consists of network de-

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

MIHARA et al.: IDENTIFYING LINK LAYER HOME NETWORK TOPOLOGIES USING HTIP
567

Fig. 2 An example network.

Table 1 AFTs corresponding to the network of Fig. 2.

A
1 2 3

x z y

M(B1)
M(C1)

M(AGW1)

B
1 2

x z
y M(C1)

M(A2) M(AGW1)

C
1 2 3

x z M(AGW1)
y

M(A2)
M(B2)

AGW
1

x
y

z
M(A2)
M(B2)
M(C3)

vice port numbers and MAC addresses visible from each
port. Figure 2 shows an example of a network, where A, B,
and C are network devices and X, Y , and Z are end devices.
Table 1 shows AFTs of network devices in Fig. 2, where
M(Dp) for a network device D denotes the MAC address of
port p of device D. For example, the column corresponding
to port 1 of device B includes the MAC addresses of X, Y ,
and port 2 of A. Note that an AFT of the AGW does not
include the port information of outside the home network.

Our approach in this paper is to collect all the AFTs
to one specific network device, called a manager, and the
manager computes the network topology. In general, any
network device can serve as a manager, but typically the
AGW plays its role, so throughout this paper we assume
that the AGW is the manager. AFTs are usually collected
by the AGW using SNMP [1], which is, however, generally
unsupported on network devices in home networks. To com-
pensate this inconvenience, HTIP (Home network Topol-
ogy Identifying Protocol) [2]–[5] was proposed and stan-
dardized, whose main purpose is to collect AFTs from home
network devices. Note that there is no difference between
the AFTs collected by SNMP and those corrected by HTIP.

1.2 Related Works and Their Problems

When we talk about a network topology, there are mainly
two kinds of topologies: the IP layer topology and the link
layer topology. There are a lot of commercial tools and
related works for identifying IP layer network topologies,

Table 2 AFTs of Fig. 2 including only MAC addresses of end devices.

A
1 2 3

x z y

B
1 2

x z
y

C
1 2 3

x z
y

AGW
1

x
y

z

Table 3 AFTs of Fig. 2 including only MAC addresses of network de-
vices.

A
1 2 3

M(B1)
M(C1)

M(AGW2)

B
1 2

M(A2) M(C1)
M(AGW1)

C
1 2 3

M(A2) M(AGW1)
M(B2)

AGW
1

M(A2)
M(B2)
M(C3)

such as HP’s Operations Manager†, IBM’s Tivoli NetView††
and HelpSystems’s InterMapper†††. Also there have been
proposed methods which use ICMP [7] or Traceroute [8]–
[12]. However, there have been relatively few works on
identifying a link layer topology. We describe here a cou-
ple of major works on identifying a link layer topology and
their problems.

Bejerano’s method [13] uses AFTs that consist of MAC
addresses of only end devices (Table 2). Briefly speaking,
to determine an edge, this method computes a set inclusion
of two columns of AFTs. Let us denote by D(j) the set of
MAC addresses contained in the jth column of the AFT of
the device D. Consider the example of Fig. 2. We have that
A(1) = {x} and B(1) = {x, y}, so we know that A(1) ⊂ B(1)
and there is no set that lies between them. From this, we
know that device A is connected to device B, and device
B is closer to the AGW than device A. Hence we connect
B’s 1st port and A’s port that is visible from the AGW (i.e.,
A’s 2nd port). A major drawback of this method is that it
cannot identify the topology when a network device exists
that is connected to only two other network devices, such
as device B in Fig. 2. This causes B(1) = C(1) and hence
we cannot distinguish between B’s 1st port and C’s 1st port.
Such a device can be seen in home networks since, when
extending a home network, users sometimes install an inter-
mediate device such as B (instead of buying long cables).
Therefore, this method is applicable for ordinal networks
but is not enough for home networks.

Breitbart et al.’s method [14] uses AFTs consisting of
MAC addresses of only network devices (Table 3). Briefly
speaking, it works as follows. For each pair of AFT columns

†http://www8.hp.com/jp/ja/software-solutions/
operations-manager-infrastructure-monitoring/
††http://www-03.ibm.com/software/products/ja/

tivoli-netview-zos
†††http://www.helpsystems.com/intermapper

568
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

D(i) and D′(j) such that |D(i)|+|D′(j)| is equal to the number
of network devices, if D(i)∪D′(j) contains MAC addresses
of all the network devices, then we know that port i of de-
vice D and port j of device D′ are connected. In the exam-
ple of Fig. 2 and Table 3, we have that |A(2)| + |B(1)| = 4
and A(2) ∪ B(1) contains MAC addresses of all of A, B,
C, and AGW, so we know that A’s 2nd port is connected
to B’s 1st port. On the other hand, A(2) ∪ C(3) does not
contain A’s MAC address even though |A(2)| + |C(3)| = 4,
so we conclude that A’s 2nd port and C’s 3rd port are not
connected. This method can identify network topologies for
which Bejerano’s method [13] fails. However, it assumes
SNMP for collecting AFTs since their target is not home
networks but usual computer networks, and this enables the
AGW to know MAC addresses that are invisible from it.
For example, consider Fig. 2 again. If the AFT of device B
is sent to the AGW using SNMP, then the AGW can know
M(B1), which we cannot expect if HTIP is used. This ability
makes it possible for Breitbart et al.’s method to check if the
union of two sets includes MAC addresses of all the network
devices. If all the MAC addresses of each device are the
same, we can still use Breitbart et al.’s method even if HTIP
is used, because M(B1) = M(B2) and the AGW can know
M(B2). However, this condition is too strong and hence we
need a new method that works without this assumption.

1.3 Our Contributions

We propose a method that resolves both problems men-
tioned in Sect. 1.2, that is, our method can identify networks
for which two existing methods [13], [14] fail. Our method
uses AFTs consisting of MAC addresses of only network
devices, just as Breitbart et al.’s method [14] does, and iden-
tifies a leaf node one by one.

We also conducted experiments to compare computa-
tion times of our method with Bejerano [13] and Breitbart
et al. [14] methods. To this end, we generated networks for
which these two existing methods can handle, and measured
computation times of three methods. The result showed
that, despite its wide applicability, our method is the fastest
among the three.

We have presented a preliminary version of this work
at the conference IEEE CCNC 2016 [15]. In the current pa-
per, we added an example of an execution of our algorithm
(Sect. 5.2), detailed analysis of the running times of algo-
rithms (Sect. 6), and more experiments (Sects. 7.2 and 7.3).

1.4 Structure of This Article

The structure of this article is as follows. In Sect. 2, we show
preliminaries. In Sect. 3, we describe an overview of our
method. In Sect. 4, we formalize the Skeleton Tree Con-
struction problem, which is the main part of network topol-
ogy identification, as a graph problem. In Sect. 5, we pro-
pose an algorithm for solving the Skeleton Tree Construc-
tion Problem. In Sect. 6, we analyze time-complexities of
the two existing methods and our method. In Sect. 7, we

give experimental results. In Sect. 8, we give brief explana-
tions on supplementary processes used in our method. Fi-
nally, we describe a brief summary in Sect. 9, including a
future work.

2. Preliminaries

2.1 Graph Representations of Networks

A network can be represented as a graph where each device
is a vertex (or a node) and transmission media is an edge.
Figure 3 is a graph representation of the network of Fig. 1.
End device nodes are represented by dashed circles, where
a label inside a circle represents a MAC address of the cor-
responding device. For convenience, we assume that these
labels denote the names of nodes as well. For example, the
node f in Fig. 3 corresponds to the TV in Fig. 1, and the
MAC address of the TV is f . Network device nodes are
represented by solid circles. Names of network devices are
abbreviated, such as WR for Wireless Converter, S W2 for
Switch2, and PLC1 for PLC Converter1. Note that in this
graph representation, network devices and end devices cor-
respond to internal nodes and leaf nodes, respectively. Each
label on the port represents a port number and its MAC ad-
dress; for example, “2/003” of S W3 means that this is the
2nd port of S W3 and its MAC address is “003”.

2.2 Networks under Consideration

Home networks considered in this paper are within the link
layer broadcast domain. We assume that there is no loop for
the redundant configuration, and also that there is no virtual
LAN.

We allow networks to have a device which has a point-
to-multipoint interface, such as wireless and PLC. This in-
terface can connect one port of the device to more than one

Fig. 3 A graph corresponding to Fig. 1.

MIHARA et al.: IDENTIFYING LINK LAYER HOME NETWORK TOPOLOGIES USING HTIP
569

Table 4 AFTs corresponding to Fig. 3.

WR
(001)

1 2

a 000
002
003
004
105
006
007

b
c
d
e
f
g

h
i

AGW
1 2

001 002
a 003

004
105
006
007

b
c
d
e
f
g

h
i

S W2
(002)

1 2 3

b c 100
d 001

003
004
105
006
007
a
e
f
g

h
i

S W3
(003)

1 2 3

100 105 004
001 006 h
002 007

a e
b f
c g

d
i

S W4
(004)
1 2

100 h
001
002
003
105
006
007

a
b
c
d
e
f
g

i

PLC1
(105)

1 2

006 100
007 001

e 002
f 003
g 004

a
b
c
d
h
i

PLC2
(006)

1 2

e 100
001
002
003
004
005
007

a
b
c
d
f
g

h
i

PLC3
(007)

1 2 3

100 f g

001
002
003
004
005
006
a
b
c
d
e
h
i

devices. Therefore, more than two devices may be con-
nected by a link, which can be seen as a hyperedge in the
graph representation. In Fig. 3, the point-to-multipoint in-
terface connecting PLC1, PLC2 and PLC3 is represented
by a hyperedge (a black small circle).

We also allow networks to include an uncooperative
network device which does not support HTIP. Such a de-
vice cannot be recognized by other devices since it does not
send any packets/frames, and hence corresponds to a hyper-
edge in the graph representation. To see this, consider Fig. 1
again, where Switch1 is an uncooperative network device.
It is connected to four (network and end) devices, and hence
it must correspond to a vertex of degree four. But since it
is not seen from other devices, each of the interfaces of four
devices can see each other, as if they are connected directly.
Thus Switch1 should correspond to a hyperedge consisting
of four nodes. In the same example, Wireless access point is
also an uncooperative device, which corresponds to another
hyperedge in Fig. 3.

Table 5 Information collected by AGW.

Device Name
(Chassis ID)

Port Num-
ber

The Source MAC
Address of LLDP
Frame

Interface Type
(IANAifType
number)

AFT

WR 2 001 wireless(71)
S W2 3 002 UTP(6)
S W3 1 003 UTP(6) see
S W4 1 004 UTP(6) Table 4
PLC1 2 105 UTP(6)
PLC2 2 006 PLC(174)
PLC3 1 007 PLC(174)

2.3 MAC Address Forwarding Tables

Table 4 shows AFTs of the network devices in Fig. 3. One
AFT corresponds to one network device. Each column of an
AFT corresponds to each port of the corresponding device,
and each column includes MAC addresses of visible ports
of other devices from that port in an arbitrary order. For
example, an AFT of PLC1 in Fig. 3 has two columns since
it has two ports. Notice from Fig. 3 that the 2nd port of
PLC2, the 1st port of PLC3, and three end devices e, f ,
and g are visible from the 1st port of PLC1. Therefore, the
1st column of an AFT of PLC1 includes MAC addresses of
these five devices. Similarly, the column corresponding to
the 2nd port of PLC1 includes eleven MAC addresses seen
from it.

There is a designated network device called AGW,
which collects AFTs of all the cooperative network devices.
More concretely, an AFT is encapsulated in an LLDP frame
and transmitted from a network device to the AGW. Here
we remark that information other than AFTs, such as Chas-
sis ID and IANAifType [16] number, are sent to the AGW
using LLDP (See Table 5). “The Source MAC Address of
LLDP Frame” in the third column is the MAC address vis-
ible from the AGW side. This is the representative MAC
address written under the device name using parentheses in
Table 4. Note that the AGW has no representative MAC
address.

3. Overview of the Topology Identification Flow

Recall that our goal is to identify the whole network topol-
ogy as depicted in Fig. 3. However, end devices are rela-
tively easy to deal with because they are located on leaves
of the tree. The difficult part is identification of the backbone
consisting of network devices. Therefore, we treat network
devices and end devices separately. We call a tree obtained
by removing all the nodes corresponding to end devices a
skeleton tree (this term is originally defined in [13]). Fig-
ure 4 shows the skeleton tree of the network in Fig. 3, and
Table 6 is the AFTs corresponding to it. Note that Table 6
can be obtained from Table 4 by removing MAC addresses
of all the end devices.

Our approach is illustrated in Fig. 5. Recall that all the
AFTs (Table 4) are aggregated to the AGW. From this, we

570
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

Fig. 4 A skeleton tree of Fig. 3.

Table 6 AFTs of Fig. 3 including only MAC addresses of network de-
vices.

WR
(001)

2

000
002
003
004
105
006
007

AGW
1 2

001 002
003
004
105
006
007

S W2
(002)

3

100
001
003
004
105
006
007

S W3
(003)

1 2 3

100 105 004
001 006
002 007

S W4
(004)

1

100
001
002
003
105
006
007

PLC1
(105)

1 2

006 100
007 001

002
003
004

PLC2
(006)

2

100
001
002
003
004
005
007

PLC3
(007)

1

100
001
002
003
004
005
006

Fig. 5 A diagram of identifying network topology.

construct the AFTs corresponding to the skeleton tree (Ta-
ble 6) by removing all the MAC addresses of end devices.
We call this process the Table Reduction. Next, we construct

the skeleton tree (Fig. 4) from the reduced AFTs (Table 6).
This process is the main part of this work and is called the
Skeleton Tree Construction. Finally, we construct the whole
home network topology (Fig. 3) by connecting the end de-
vice nodes to the skeleton tree (Fig. 4). We call this process
the End Device Attachment.

In the subsequent two sections, we formalize the Skele-
ton Tree Construction problem and give an algorithm to
solve it. As mentioned above, the Table Reduction and the
End Device Attachment are easy task, so we explain them
briefly in Sect. 8 after the algorithm.

4. Formalization of the Skeleton Tree Construction
Problem

In this section, we formalize the Skeleton Tree Construction
problem. Let G = (V, E) be an undirected graph, where V
and E are the sets of vertices and edges, respectively. As
mentioned previously, an underlying network is connected
and does not have a loop, so in this paper G is always a tree.
Also, recall from Sect. 2.2 that E may contain a hyperedge.
There is a designated node r ∈ V , called the manager node,
which corresponding to the AGW.

Let d(v) denote the degree of a vertex v. For each ver-
tex v, numbers 1 through d(v) are associated with the edges
incident to v without duplication. For an edge e = (u, v), if
e’s number (with respect to v) is i then we say that e is the ith
edge of v. We call the connecting point of v and e the ith port
of v and denote it port(v, i). Associated with each port(v, i)
is a string called the label and denoted label(v, i), which ab-
stracts the MAC address of this port. Since we assume that
one device may have different MAC addresses for different
ports, label(v, i) and label(v, j) may be different. However,
different devices cannot have the same MAC address, so we
have that label(u, i) � label(v, j) if u � v.

For example, the skeleton tree in Fig. 4 can be repre-
sented as the graph with

V = {AGW,WR, S W2, S W3, S W4, PLC1, PLC2,

PLC3}
and

E = {(WR, AGW), (AGW, S W2, S W3), (S W3, S W4),

(S W3, PLC1), (PLC1, PLC2, PLC3)}.
Edges (AGW, S W2, S W3) and (PLC1, PLC2, PLC3) are
hyperedges consisting of three vertices. PLC1 has two
ports and their associated labels are 005 and 105. Hence
label(PLC1, 1) = 005 and label(PLC1, 2) = 105 in our no-
tation.

Let N(v, i) be the set of vertices that are reachable from
v via port(v, i). For example, N(PLC1, 1) = {PLC2, PLC3}
and N(PLC1, 2) = {WR, AGW, S W2, S W3, S W4}. If u ∈
N(v, i) then we say that the visible port of v from u is
port(v, i). For example, the visible port of PLC1 from AGW
is port(PLC1, 2). We may also say that label(v, i) is visible
from u.

MIHARA et al.: IDENTIFYING LINK LAYER HOME NETWORK TOPOLOGIES USING HTIP
571

For each vertex v, we associate AFTv (which corre-
sponds to an AFT of v). The first row of AFTv consists of
the name of the corresponding vertex v and its representative
label (which is an abstraction of the representative MAC ad-
dress explained in Sect. 2.3). AFTv has d(v) columns, each
of which corresponds to each port of v. For each v, i, and
u ∈ N(v, i), the label of the visible port of u from v is stored
in the ith column (i.e., the column corresponding to v’s ith
port) of AFTv in an arbitrary order. We denote AFTv(i) the
ith column of AFTv. For example, AFTPLC1 in Table 6 has
two columns since the degree of PLC1 is two. The 2nd
column of AFTPLC1, namely AFTPLC1(2), contains labels
100, 001, 002, 003 and 004 because these are the labels of
N(PLC1, 2) = {AGW,WR, S W2, S W3, S W4} visible from
PLC1.

Finally, we let AFTG be the set of AFTv for all the ver-
tices v in G. The Skeleton Tree Construction problem is the
problem of constructing G from given AFTG.

5. Algorithm for the Skeleton Tree Construction Prob-
lem

In this section, we present an algorithm for the Skeleton Tree
Construction problem. It is easy to see that, by examin-
ing AFTG, we can recognize the number of vertices and the
name, the degree, and the representative label of each vertex.
Hence we first prepare isolated vertices and ports. The task
of the algorithm is to verify, using AFTG, how the vertices
are connected by edges.

5.1 Algorithm for the Skeleton Tree Construction Problem

The pseudo-code of our algorithm is shown in Algorithm 1.
Here, ML (standing for Manager Labels) at Line 2 denotes
the set of the labels of all the ports of the manager node.
We assume that the manager node knows its own labels.
Basically, our algorithm determines edges in an order from
leaves to the root (where we consider the manager node as
the root). To do so, Algorithm 1 removes at Lines 1 through
3 all the entries of the jth column of AFTv, if v’s visible port
from the root is port(v, j). This makes it easier to identify
leaves.

The while-loop of Lines 4 through 12 is the main loop
of Algorithm 1. Suppose that the correct solution is G =
(V, E) (which is of course unknown to the algorithm). For
each i ≥ 0, let Gi = (V, Ei) be the graph that Algorithm 1
holds just after the ith loop. As mentioned before, the initial
graph consists of only isolated vertices and hence E0 = ∅.
For a better exposition, we define G̃i = (V, Ẽi) where Ẽi =

E \Ei. This is the graph consisting of only edges that are not
yet found by the algorithm (which is, again, unknown to the
algorithm). Each vertex has one of two states; marked and
unmarked. At the beginning, all the vertices are unmarked.

Before the execution of the ith loop, we have a pro-
visional solution Gi−1 and implicitly G̃i−1. During the ith
loop, Algorithm 1 identifies all the leaf nodes of G̃i−1 and
connect these leaves to their parents. As a result, we obtain

Algorithm 1 for the Skeleton Tree Construction Problem
1: for each v and j (1 ≤ j ≤ d(v)) do
2: Remove all the entries of AFTv(j) if AFTv(j) contains a label in ML.
3: end for
4: while there is an unmarked vertex except for the manager node do
5: Let L := the set of vertices v which are unmarked and every column

of AFTv is empty.
6: for each AFTv(j) containing only the representative labels of ver-

tices in L do
7: Let u1, u2, . . . , u� be vertices whose representative labels are con-

tained in AFTv(j).
8: Add a (hyper)edge (v, u1, u2, . . . , u�).
9: Mark u1, u2, . . . , u�.

10: Remove the representative labels of u1, u2, . . . , u�.
11: end for
12: end while

an updated graph Gi. Finally, Algorithm 1 modifies AFTs
so that the current AFTG corresponds to G̃i, which allows
Algorithm 1 to identify all the leaves of G̃i at the next loop.

We explain the ith loop in more detail. When we sim-
ply say that a port is visible or invisible, it means that it
is visible or invisible from the root. Consider a vertex v
and its invisible port port(v, j). We first show that AFTv(j)
is empty if and only if port(v, j) has no edge in G̃i−1. We
show this by induction on i. First consider the base case of
i = 1. We need to show the following two statements: (1)
If port(v, j) has an edge in G̃0, then AFTv(j) is nonempty.
(2) If port(v, j) has no edge in G̃0, then AFTv(j) is empty.
Note that since G̃0 = G, all the ports have an incident edge
in G̃0. Hence the statement (2) is trivially satisfied and so
we only need to show the statement (1). Each invisible port
contains some labels at the beginning. Since invisible ports
do not contain a label in ML, it is not processed at Lines 1
through 3. Therefore those AFTs are nonempty. Thus our
claim holds at i = 1.

Next, we consider induction step. Suppose that our
claim holds up to i = k. For i = k + 1, let G̃k be the
graph updated from G̃k−1 by executing the for-loop from
Lines 6 to 11. For a better exposition, consider an exe-
cution of the loop for a single AFTv(j). Since AFTv(j)
contains the representative labels of u1, u2, . . . , u�, port(v, j)
has an edge by the induction hypothesis. At Line 8,
the hyperedge (v, u1, u2, . . . , u�) is added to Gk−1, meaning
that (v, u1, u2, . . . , u�) is removed from G̃k−1. At Line 10,
the representative labels of u1, u2, . . . , u� are removed from
AFTv(j), so AFTv(j) becomes empty. Hence the claim holds
for v’s jth port. It can happen that the representative labels
of u1, u2, . . . , u� are removed from other columns of AFTs,
but such columns do not become empty in this loop since
they must contain the representative label of v. By doing the
same argument for all the AFTv(j) processed in this ith loop,
we can see that our claim holds for i = k + 1.

The above claim implies that the set L constructed at
Line 5 coincides with the set of leaves of G̃i−1. To see this,
let v ∈ L. Then all the columns of AFTv are empty. By the
claim, all invisible ports of v have no edge in G̃i−1 and hence
v is a leaf of G̃i−1. On the contrary, suppose that v is a leaf

572
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

Fig. 6 A graph G0.

of G̃i−1. This implies that all the invisible ports of v have no
edge in G̃i−1. Then by the claim, all the columns of AFTv
corresponding to invisible ports are empty. The column of
AFTv corresponding to the visible port is empty due to the
operation of Lines 1 through 3. Therefore, all the columns
of AFTv are empty and hence v ∈ L.

In the for-loop from Lines 6 to 11, Algorithm 1 iden-
tifies a vertex v which is a parent of a leaf in L. If AFTv(j)
contains only representative labels of vertices in L, we
know that port(v, j) is connected to only leaves. At Line
7, Algorithm 1 identifies leaves u1, u2, . . . , u� connected to
port(v, j), and at Line 8, it adds an edge connecting v and
these leaves. Note that if � = 1 this is a usual edge and
if � ≥ 2 it is a hyperedge. At Line 9, Algorithm 1 marks
u1, u2, . . . , u�, whose purpose is just to make sure that these
vertices are not selected again in later rounds. The role of
Line 10 is already explained above. We remark that not all
vertices in L are marked at Line 9.

We also note that the manager node does not become a
leaf of G̃i until the end: Note that the AFT of the manager
node does not contain labels in ML and hence it is not pro-
cessed at Line 2. Therefore its AFT contains information of
all the vertices at the beginning, and hence never becomes
empty until all other vertices are marked.

5.2 An Example of the Execution of Algorithm 1

We show an example of the execution of Algorithm 1,
namely, we show how the graph of Fig. 4 is constructed from
AFTs of Table 6. At the beginning, we have a graph G0 con-
sisting of isolated vertices (Fig. 6). For a better exposition,
we place vertices in their right positions (although we do not
know the solution at this moment). For each vertex, we al-
ready know its degree, name, and representative label. Since
the labels of the manager node (AGW) are 000 and 100, we
have that ML = {000, 100}. By executing Lines 1 through
3, Algorithm 1 removes all the columns of AFTs of Table 6
that contain 000 or 001. As a result, we have Table 7.

We now proceed to the main loop (Lines 4 through
12). From Table 7, we can calculate L = {WR, S W2, S W4,
PLC2, PLC3} and also know that their representative labels
are 001, 002, 004, 006, and 007. Since AFTAGW (1) contains

Table 7 AFTs after Line 3.

WR
(001)

2

-
-
-
-
-
-
-

AGW
1 2

001 002
003
004
105
006
007

S W2
(002)

3

-
-
-
-
-
-
-

S W3
(003)

1 2 3

- 105 004
- 006
- 007

S W4
(004)

1

-
-
-
-
-
-
-

PLC1
(105)
1 2

006 -
007 -

-
-
-

PLC2
(006)

2

-
-
-
-
-
-
-

PLC3
(007)

1

-
-
-
-
-
-
-

Fig. 7 A graph G1.

only 001 and it is the representative label of WR, we know
that WR is connected to port(AGW, 1) and hence add an
edge (AGW,WR). (It is obvious from Fig. 6 that this edge is
incident to port(WR, 2).) In a similar manner, we can detect
an edge (S W4, S W3). AFTPLC1(1) contains 006 and 007,
the representative labels of PLC2 and PLC3 respectively, so
we know that PLC2 and PLC3 are connected to PLC1 by
a hyperedge and hence we add (PLC1, PLC2, PLC3). Al-
though S W2 ∈ L, there is no column containing only repre-
sentative labels of L including 002. Hence we do not mark
S W2. This happens because S W2 is connected with S W3
and AGW by a hyperedge, but S W3 is not yet a leaf of G̃0.
As a result of this round, we obtain the graph G1 (Fig. 7).
During this round, the representative labels 001, 004, 006,
and 007 are removed from AFTs. The resulting AFTs are
given in Table 8. (We give asterisk to AFTs of marked ver-
tices.)

In the 2nd round, we have that L = {S W2, PLC1}.
AFTS W3(2) contains only 105, which is the representative
label of PLC1. Hence we add an edge (S W3, PLC1), mark
PLC1, and remove 105 from AFTs. Note that SW2 is still

MIHARA et al.: IDENTIFYING LINK LAYER HOME NETWORK TOPOLOGIES USING HTIP
573

Table 8 AFTs after the 1st round.

WR∗
(001)

2

-
-
-
-
-
-
-

AGW
1 2

- 002
003

-
105

-
-

S W2
(002)

3

-
-
-
-
-
-
-

S W3
(003)

1 2 3

- 105 -
- -
- -

S W4∗
(004)

1

-
-
-
-
-
-
-

PLC1
(105)
1 2

- -
- -

-
-
-

PLC2∗
(006)

2

-
-
-
-
-
-
-

PLC3∗
(007)

1

-
-
-
-
-
-
-

Fig. 8 A graph G2.

Table 9 AFTs after the 2nd round.

WR∗
(001)

2

-
-
-
-
-
-
-

AGW
1 2

- 002
003

-
-
-
-

S W2
(002)

3

-
-
-
-
-
-
-

S W3
(003)

1 2 3

- - -
- -
- -

S W4∗
(004)

1

-
-
-
-
-
-
-

PLC1∗
(105)

1 2

- -
- -

-
-
-

PLC2∗
(006)

2

-
-
-
-
-
-
-

PLC3∗
(007)

1

-
-
-
-
-
-
-

Fig. 9 Output graph.

unmarked after this round. At the end of this round, we
obtain the graph G2 in Fig. 8 and AFTs are modified as in
Table 9.

In the 3rd round, we have L = {S W2, S W3}, and
AFTAGW (2) contains the representative labels 002 and
003 of S W2 and S W3. Hence we add a hyperedge
(AGW, S W2, S W3) and mark S W2 and S W3. Finally, we
remove 002 and 003 from AFTs. As a result, all the vertices
except for AGW are marked, and hence Algorithm 1 exits
the while-loop and terminates. The output graph is given in
Fig. 9.

6. Analysis of Time-Complexities

In this section, we analyze time-complexites of two exist-
ing methods [13], [14] and our method. The analysis of this
section is performed for a c-ary tree (where c is a constant
such that c ≥ 2) of n nodes. Then the height of the tree is
approximately h = logc n.

6.1 Time-Complexity of Bejerano’s Method

In Bejerano’s method, two ports are connected if the num-
bers of labels they contain differ by exactly one, and one
set of labels is included in the other. In the current case,
the size of a port (i.e., the number of labels stored in the
port) depends only on the depth of the node, so Bejerano’s
method checks the latter condition (i.e., inclusion) between
the nodes of depth i and the nodes of depth i+1. The number
of nodes of depth i is ci, and each node has c invisible ports,
so there are ci+1 ports. Similarly, in depth i + 1, the number
of ports is ci+2. Hence we need to perform ci+1× ci+2 = c2i+3

check of inclusion. For checking inclusion, we use contain-
sAll method, which takes time proportional to the product of
the numbers of elements in two sets. The number of labels
each invisible port of depth i node contains is

h−i−1∑

j=0

c j = O(ch−i−1),

and that of depth i + 1 node is O(ch−i). Therefore, the time
for checking inclusion for one pair of ports is O(ch−i−1) ×

574
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

O(ch−i) = O(c2h−2i−1). The number of pairs of ports is c2i+3

as calculated above, hence the time-complexity for checking
depth i and depth i + 1 is c2i+3 × O(c2h−2i−1) = O(c2h+2).
Consequently, the whole time-complexity is

h−1∑

i=1

O(c2h+2) = O(hc2h) = O(n2 log n).

6.2 Time-Complexity of Breitbart’s Method

In Breitbart’s method, if AFTv(i) ∪ AFTv′(j) contains
MAC addresses of all the network devices, and AFTv(i) ∩
AFTv′(j) = ∅, then we connect port(v, i) and port(v′, j).
This condition is equivalent to |AFTv(i)| + |AFTv′(j)| = n
and AFTv(i) ∩ AFTv′(j) = ∅. In our implementation, we
first sort the ports according to their sizes, and we check
the latter condition for port pairs that satisfies the former
condition. As in Sect. 6.1, the size of a port depends only
on the depth of the node, so a pair satisfying the condition
|AFTv(i)| + |AFTv′(j)| = n is an invisible port of depth i
node and a visible port of depth i + 1 node. The number of
nodes of depth i is ci, and each node has c invisible ports,
so there are ci+1 such ports. The number of nodes of depth
i + 1 is ci+1, and each node has 1 visible port, so there are
ci+1 such ports. Hence there are ci+1 × ci+1 = c2i+2 com-
binations. We implemented a subroutine for checking for
AFTv(i)∩ AFTv′(j) = ∅, which can be done in O(n) time, so
the whole time-complexity is

h−1∑

i=0

c2i+2 × O(n) = O(c2hn) = O(n3).

6.3 Time-Complexity of Our Method

In our method, the most costly computation is Step 6,
i.e., identifying AFTv(j) containing only the representa-
tive labels of vertices in L. Hence we estimate this time-
complexity.

For i = 1, 2, . . . , h, consider an ith iteration of the algo-
rithm. The size of L is ch−i+1. For each node v of depth j,
the number of labels contained in v’s AFT is

h− j∑

k=1

ck ≤ ch− j+1.

For such node v, we check the inclusion of two sets of sizes
at most ch−i+1 and ch− j+1. Note that for two sets A and B,
checking if A ⊆ B can be done in time O(|A| + |B|) if the
elements in A and B are sorted. In our implementation, we
used this technique. Therefore, checking this inclusion can
be done in O(ch−i+1 + ch− j+1). The number of nodes of depth
j is c j, so the time-complexity for all the nodes of depth j is
O(ch−i+1 + ch− j+1) × c j = O(ch−i+ j+1 + ch+1).

In the ith iteration, the depth of the nodes we consider
is from 0 to h − i, so we take the sum of the above time-
complexity for these depths.

h−i∑

j=0

O(ch−i+ j+1 + ch+1) = O(c2h−2i+2 + (h − i + 1)ch+1)

= O(c2h−2i+2).

Finally, by taking the sum for iterations i from 1 to h, we
have the whole time-complexity of our algorithm as follow:

h∑

i=1

O(c2h−2i+2) = O(c2h+2) = O(n2).

7. Experiments

To evaluate the performance of our method, we imple-
mented it and conducted three experiments. The purpose
of the first experiment is to compare running times of our
method with two existing methods [13], [14]. For this ex-
periment, we generated input trees randomly. However, as
mentioned in Sect. 1.2, the existing methods are not applica-
ble to arbitrary networks, so we posed restrictions on inputs
that allow all three methods run correctly. The purpose of
the second experiment is to see the effect of the restrictions
posed at the first experiment. Therefore, we removed the re-
strictions, ran only our algorithm on them, and compared the
running times with the results of the first experiment. The
purpose of the last experiment is to investigate the influence
of the number of branches on running times. In this exper-
iment, we prepared trees with a fixed number c of branches
for several c, and compared the running times of our algo-
rithm for them.

We implemented our method using Java. We were not
able to obtain source codes of two existing methods, so we
have implemented them by ourselves (also using Java) refer-
ring to their papers. For a routine of checking set inclusion,
we used containsAll method of Java. All the experiments
were conducted on a laptop PC with Windows 7, 2.30GHz
Intel R©CoreTMi5, and 8.0GB memory.

7.1 Running Times of Three Methods

For the first experiment, we generated inputs in the follow-
ing way: To construct a skeleton tree, we first determine the
number n of nodes and construct the root node r. We then
generate an integer c ∈ {2, 3, 4, 5} uniformly at random, and
add c children to r. We then repeat the following procedure
until the number of nodes reaches n. We choose a leaf node
v uniformly at random from the current tree, generate an in-
teger c ∈ {2, 3, 4, 5} uniformly at random, and add c children
to v. (In case adding c children makes the number of nodes
exceed n, we cut off unnecessary nodes.) We then add end
devices (recall that Bejerano’s method [13] needs MAC ad-
dresses of end devices). To do so, for each leaf node v of
the skeleton tree, we generate an integer c ∈ {2, 3, 4, 5} uni-
formly at random and add c end devices to v. Note that the
constructed tree does not have a degree-two internal node,
which makes Bejerano’s method [13] applicable. Next, we
give labels to ports in such a way that each node has the same

MIHARA et al.: IDENTIFYING LINK LAYER HOME NETWORK TOPOLOGIES USING HTIP
575

Fig. 10 Running times of three methods.

label for its all ports, by which Breitbart et al.’s method [14]
is also made applicable. Finally, we construct the set of
AFTs corresponding to the constructed tree, which is given
to the algorithms as an input.

Figure 10 shows running times of three methods for
each n varying from 2 to 512. For each n, we constructed
500 inputs and took the average of running times. It shows
that our method is the fastest, followed by Bejerano’s and
Breitbart et al.’s methods. This order of Fig. 10 matches the
analysis of time-complexities in Sect. 6.

7.2 Effect of the Degree-Two Internal Nodes

In this experiment, we removed the restrictions posed on in-
puts at the first experiment. The restriction to avoid degree-
two internal nodes is removed by letting c be chosen from
{1, 2, 3, 4, 5} instead of {2, 3, 4, 5}. Note that the second re-
striction, that is, all the labels of each internal node are the
same, does not affect our algorithm because our algorithm
uses only one label from each node. Therefore, we did not
change the input generation program for this part.

Figure 11 compares running times of our method for
two different types of inputs. Results for restricted inputs,
plotted in Fig. 11 by the black “+” symbols, are simply taken
from the first experiment. The red “-” symbols are results
for unrestricted inputs, newly taken this second experiment,
which are also average on 500 executions. Running times
for restricted inputs are slightly shorter than general ones,
but there seems to be no big difference.

7.3 Running Times for Trees with a Fixed Number of
Branches

In this last experiment, we fixed the number of branches of c
to a constant, taken from {1, 2, 3, 4, 5}. The number of nodes
n is varied from 2 to 512, as the previous experiments. The
construction algorithm is also the same as before.

Figure 12 plots the running times of our algorithm,

Fig. 11 Running times of our method for general and restricted inputs.

Fig. 12 Running times of our method for each tree with a fixed number
of branches.

where each plot is an average of 500 trials. As shown in
Fig. 12, running times are fairly large when c = 1, compared
to the cases of c = 2, 3, 4, 5 where almost no differences are
observed. This phenomenon can be interpreted as follows.
When c ≥ 2, the time-complexity of the algorithm is O(n2)
as analyzed in Sect. 6. When c = 1, however, the previ-
ous analysis does not hold since the height of the tree is n.
In the for-loop in Algorithm 1, the nodes, whose represen-
tative labels are u1, u2, . . . , u�, are connected with the par-
ent node. Moreover, u1, u2, . . . , u� are removed from each
AFTs. When c ≥ 2, the number of executions of the for-
loop is approximately logc n, while when c = 1, the number
of the execution is n. Consequently, the running time be-
came longer when c = 1.

8. Table Reduction and End Device Attachment

In this section, we give brief explanations on how the Table
Reduction and the End Device Attachment are performed.

576
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

8.1 Table Reduction

Recall that the Table Reduction is a procedure to remove
the MAC addresses of all the end devices. We use the
ARP scanning to collect them. In the ARP scanning, the
AGW sends ARP request packets to all the IP addresses
within the same network, except for itself, that can be cal-
culated easily from the network mask of the IP address of
the AGW. For example, if the IP address of the AGW is
192.168.11.3/24, the AGW sends ARP request packets to
253 IP addresses from 192.168.11.1 to 192.168.11.254. By
receiving responses to these requests, the AGW can collect
MAC addresses of all the end devices.

8.2 End Device Attachment

The End Device Attachment is a process to attach end de-
vices to the skeleton tree obtained in the Skeleton Tree Con-
struction. We use a previously used example to show how
this process can be performed. Our task is to construct the
network of Fig. 3 from Fig. 4 and Table 4. Note that dur-
ing the Table Reduction we have already collected MAC
addresses of all the end devices, so we already know that
a, b, c, d, e, f , g, h, i are those MAC addresses.

We consider a column of Table 4 that consists of only
MAC addresses of the end devices. We know that only end
devices are connected to that port. For example, the 1st col-
umn of WR’s AFT contains only a, so we know that the
device a is connected to the 1st port of WR (recall that we
are using the same symbol for both the device name and
its MAC address). In the same manner, we can detect the
ports which b, h, e, f , and g are connected to. Column 2 of
AFTS W2 contains two MAC addresses c and d, so we know
that there is a hyperedge containing c, d, and S W2.

The problematic case is the device i. Note that there
is no column that contains only end devices including i.
We know that in this case i is connected to one of the hy-
peredges. To identify this hyperedge, we observe that if
i is connected to a hyperedge e, then all the ports faced
with e must contain i in its corresponding columns of
the AFT. In our current example, consider the hyperedge
(AGW, S W2, S W3). This hyperedge is faced with the 2nd,
3rd, and 1st ports of AGW, S W2, and S W3, respectively. In
Table 4, all columns corresponding to these ports contain i,
so we know that i is connected to this hyperedge.

9. Conclusion and Future Work

In this paper, we have presented an algorithm to construct
a network topology from AFTs, motivated by the impor-
tance of detecting user’s link layer home network topology
in customer services. Our future work is to integrate this
algorithm into the existing management system, which is
provided by the company three of the authors belong to.

References

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, Simple network
management protocol (SNMP), RFC 1157, 1990.

[2] Y. Mihara, T. Yamazaki, M. Okamoto, and A. Sato, “Designing
HTIP which identifies home network topology and applying HTIP
to a troubleshooting application,” Information Processing Society of
Japan Trans. Consumer device and system, vol.2, no.3, pp.34–45,
2012.

[3] Y. Mihara, T. Yamazaki, and A. Takehiro, “Designing HTIP: home
network topology identifying protocol,” Proc. IEEE International
Conference on Communications, pp.1–6, 2011.

[4] ITU-T G.9973, Protocol for identifying home network topology,
2011.

[5] TTC JJ-300.00, HTIP: Home network topology identifying protocol,
2011.

[6] IEEE Computer Society, 802.1AB-2009: Local and metropolitan
area networks - station and media access control connectivity dis-
covery (LLDP), 2009.

[7] J. Postel, Internet control message protocol, RFC 792, 1981.
[8] G. Malkin, Traceroute using an IP option, RFC 1393, 1993.
[9] H. Burch and B. Cheswick, “Mapping the Internet,” IEEE Computer,

vol.32, no.4, pp.97–98, 1999.
[10] R. Govindan, and H. Tangunarunkit, “Heuristics for Internet map

discovery,” Proc. IEEE INFOCOM, pp.1371–1380, 2000.
[11] R. Siamwalla, R. Sharma, and S. Keshav, Discovering Internet topol-

ogy [Online] Available: http://www.cs.cornell.edu/skeshav/
papers.html

[12] N. Spring, R. Mahajan, and D. Wetherall, “Mesuring ISP topologies
with Rocketfuel,” Proc. ACM SIGCOMM, pp.133–146, 2002.

[13] Y. Bejerano, “Taking the skeletons out of the closets: a sim-
ple and efficient topology discovery scheme for large Ethernet
LANs,” IEEE/ACM Transactions on Networking, vol.17, no.5,
pp.1385–1398, 2009.

[14] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, and A.
Silberschatz, “Topology discovery in heterogeneous IP networks:
the NetInventory system,” IEEE/ACM Transactions on Networking,
vol.12, no.3, pp.401–414, 2004.

[15] Y. Mihara, S. Miyazaki, Y. Okabe, T. Yamaguchi, and M. Okamoto,
“Identifying link layer home network topologies using HTIP,” Proc.
IEEE CCNC, pp.891–898, 2017.

[16] Internet Assigned Numbers Authority (IANA), IANAifType-MIB
definitions, ver. 201409240000Z 2014.

[17] ISO/IEC 29341-1, Information technology - UPnP Device Architec-
ture - Part 1: UPnP Device Architecture Version 1.0, Edition 1.0,
2008.

[18] UPnP Forum, Internet Gateway Device (IGD) V 1.0, 2001.
[19] UPnP Forum, MediaServer:1 and MediaRenderer:1, 2002.
[20] UPnP Forum, Device Management:1, 2010.
[21] IEEE Computer Society, 802.3-2008, Part 3: Carrier sense multiple

access with Collision Detection (CSMA/ CD) Access Method and
Physical Layer Specifications, 2008.

http://dx.doi.org/10.17487/rfc1157
http://dx.doi.org/10.1109/icc.2011.5962662
http://dx.doi.org/10.17487/rfc0777
http://dx.doi.org/10.17487/rfc1393
http://dx.doi.org/10.1109/2.755008
http://dx.doi.org/10.1109/infcom.2000.832534
http://dx.doi.org/10.1109/tnet.2009.2022264
http://dx.doi.org/10.1109/tnet.2004.828963
http://dx.doi.org/10.1109/ccnc.2017.7983251
http://dx.doi.org/10.3403/30327531u
http://dx.doi.org/10.3403/30326584
http://dx.doi.org/10.3403/30326749
http://dx.doi.org/10.1109/ieeestd.2000.91946

MIHARA et al.: IDENTIFYING LINK LAYER HOME NETWORK TOPOLOGIES USING HTIP
577

Yoshiyuki Mihara is a Manager, NTT
Strategic Business Development Division. He
received the B.Sc. and M.Sc. degrees from To-
kyo Institute of Technology in 2004 and 2006,
respectively. He also received the Ph.D. from
Kyoto university in 2017. Since joining NTT in
2006, he has been engaged in R&D of a home
network management service. He has achieved
standardization of the home network manage-
ment protocols that he designed in UPnP, ITU-T,
and Japan’s TTC. He is currently promoting the

key protocols with a view to launching a home network management ser-
vice.

Shuichi Miyazaki is an associate profes-
sor at Academic Center for Computing and Me-
dia Studies, Kyoto University. He received B.E.,
M.E., and Ph.D. degrees from Kyushu Univer-
sity in 1993, 1995 and 1998, respectively. His
research interests include discrete algorithms
and computational complexity theory.

Yasuo Okabe received M.E. from Depart-
ment of Information Science, Kyoto University
in 1988. From 1988 he was an Instructor of
Faculty of Engineering, from 1994 he was an
Associate Professor of Data Processing Center,
and from 1998 he was an Associate Professor of
Graduate School of Informatics, Kyoto Univer-
sity. He is now a Professor of Academic Cen-
ter for Computing and Media Studies, Kyoto
University. Ph.D. in Engineering. His current
research interest includes Internet architecture,

network security and distributed algorithms. He is a member of IPSJ,
ISCIE, JSSST, IEEE, and ACM.

Tetsuya Yamaguchi is a Senior Manager,
R&D Produce Group, NTT Research and De-
velopment Planning Department. He received
his B.E., M.E., and Ph.D. degrees in informa-
tion engineering from Osaka University, Osaka,
in 1997, 1999, and 2008, respectively. He joined
NTT in 1999 and engaged in R&D of content
distribution, navigation for IPTV services, home
network services and ultra-realistic communica-
tions. Since moving to NTT Research and De-
velopment Planning Department in 2018, he has

been engaged in promoting advanced media services.

Manabu Okamoto received the M. Design
degree from Kyushu Institute of Design, Japan,
in 1991 and Doctor of Design from Kyushu Uni-
versity, Japan, in 2007. In 1991 he joined NTT
Electrical Communication Laboratories and re-
searched the acoustic design of various kinds of
teleconferencing systems and the system design
of ICT services. He moved to Sojo University
as a Professor in 2019. He is a senior mem-
ber of the Institute of Electronics, Information
and Communication Engineers of Japan, and a

member of the Acoustical Society of Japan and IEEE.

