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Towards Interpretable Reinforcement Learning with State
Abstraction Driven by External Knowledge

Nicolas BOUGIE†,††a), Nonmember and Ryutaro ICHISE†,††b), Senior Member

SUMMARY Advances in deep reinforcement learning have demon-
strated its effectiveness in a wide variety of domains. Deep neural networks
are capable of approximating value functions and policies in complex envi-
ronments. However, deep neural networks inherit a number of drawbacks.
Lack of interpretability limits their usability in many safety-critical real-
world scenarios. Moreover, they rely on huge amounts of data to learn
efficiently. This may be suitable in simulated tasks, but restricts their use
to many real-world applications. Finally, their generalization capability is
low, the ability to determine that a situation is similar to one encountered
previously. We present a method to combine external knowledge and inter-
pretable reinforcement learning. We derive a rule-based variant version of
the Sarsa(λ) algorithm, which we call Sarsa-rb(λ), that augments data with
prior knowledge and exploits similarities among states. We demonstrate
that our approach leverages small amounts of prior knowledge to signifi-
cantly accelerate the learning in multiple domains such as trading or visual
navigation. The resulting agent provides substantial gains in training speed
and performance over deep q-learning (DQN), deep deterministic policy
gradients (DDPG), and improves stability over proximal policy optimiza-
tion (PPO).
key words: reinforcement learning, symbolic reinforcement learning, rea-
soning about knowledge, interpretable reinforcement learning

1. Introduction

Reinforcement learning methods have led to remarkable
successes in a wide variety of tasks. Well-known temporal
difference (TD) methods such as Sarsa [1] or Q-learning [2]
learn to predict the best action to take by step-wise inter-
actions with the environment. Nevertheless, in many prac-
tical real-world applications, learning to control agents di-
rectly from high-dimensional observations such as images
is one of the challenges of reinforcement learning. Most re-
cent successes in deep reinforcement learning (DRL) have
made it possible to master high-dimensional tasks such as
autonomous vehicle control [3] or robotic [4]. For instance,
“Deep Q-Learning” [5] was able to achieve human perfor-
mance on many tasks including Atari video games [6]. They
relied on the combination of a deep neural network and re-
inforcement learning.

Unfortunately, DRL methods present a number of chal-
lenges. First, they suffer from lack of interpretability. While
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deep neural networks have been shown to be very effective,
the structure of these models makes them difficult to be in-
terpreted, which restricts their use to non-safety critical do-
mains, excluding for example, medicine or law. Second,
they require large datasets to be efficient. To build their
representation from complex data such as images, neural
networks need a large amount of data which entails that
they learn slowly. They typically require millions of steps
to learn good control policies. As a consequence, DRL
cannot be directly applicable to real-world tasks such as
robots [7] or recommendation systems [8], emphasizing the
need of sample-efficient RL. Third, they suffer from low
generalization capability in the sense that their ability to
determine similarities among previously encountered situ-
ations is limited. In deep reinforcement learning, this ab-
straction is achieved by a neural network. However, DRL
tends to generalize poorly on seemingly minor changes in
the task [9], [10].

Motivated to overcome these shortcomings, we pro-
pose a learning framework that addresses all of these is-
sues at once by combining simple interpretable reinforce-
ment learning and prior knowledge [11]; and with a minimal
human overhead. Our algorithm leverages small amounts
of prior knowledge to significantly accelerate learning with-
out the need for demonstrations [12] or specific human en-
gineering. Namely, we introduce prior knowledge to learn
rule-based representations of the environment. We pro-
pose a new variant of the Sarsa(λ) algorithm [13], that is
based on the idea of learning policies that are humanly-
comprehensible. The basic concept of this method is to rep-
resent the states of our agent as understandable rules, reduc-
ing the state space as well as the amount of data needed to
learn an efficient state representation. Besides, their struc-
ture can be used to maximize the benefit of past experiences
to face new situations. This is the key idea of the sub-states
mechanism which exploits similarities among rules. Sub-
states allow a more frequent update of the Q-values thereby
smoothing and speeding-up the learning. Furthermore, we
adapt eligibility traces and the learning rate, which turned
out to be critical in guiding the algorithm to solve tasks.
Finally, we introduce extra supervision during early train-
ing by using external knowledge to initialize the parameters
of our model. We find that our agent learns effective poli-
cies in a small number of iterations and exhibits higher per-
formance than the best generally-applicable reinforcement
learning methods. We also demonstrate the effectiveness
of this approach across various applications such as visual
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tasks or time series.

2. Related Work

In this section, we outline the state-of-the-art methods in re-
inforcement learning to address each of the shortcomings
presented before, namely, interpretability, data efficiency
and generalization.

A key component of many reinforcement learning al-
gorithms is a neural network. They contain a lot of im-
plicit knowledge about the problems but need to be explain-
able - they should provide easy-to-interpret reasons for the
choice of an action. Kim et al. propose to interpret neu-
ral networks using visual interpretation [14]. Specifically,
a visual attention model is used to train a convolution net-
work. A causal filtering can determine which input regions
influence the output. However, this method cannot be eas-
ily interpreted by an algorithm and is only suitable for vi-
sual domains. Symbolic reinforcement learning [15] aims
to solve the lack of interpretability of neural networks as
well as improving their generalization capabilities. For ex-
ample, Garnelo et al. combine a back-end deep neural net-
work to learn a symbolic representation and a front-end in-
terpretable reinforcement model that learns the interactions
between the objects [9]. Although the agent could learn to
master a navigation task, this has not yet been shown to work
in rich visual environments. Instead of representing policies
by neural networks, Verma et al. represent policies using a
high-level interpretable language [16]. During the first step,
a neural policy network is trained, and then a high-level pol-
icy is “extracted”. This approach seems not to be directly
applicable to environments in which simulations are costly.

Another active area in reinforcement learning is im-
proving data efficiency. A line of work (Bougie et al.)
involves external knowledge to guide the agent to focus
on important features of the environment during train-
ing [11]. This allows the neural network to learn a more
efficient state representation reducing training time of the
agent. At present only simple knowledge can be introduced
and the lack of interpretability limits the usability of this
method. Another line of work [17] proposes to use deep
auto-encoders as pre-processing stage of visual RL. Deep
auto-encoders were shown capable to learn robust feature
representations. We manage to bypass lack of interpretabil-
ity by learning robust features using an auto-encoder, and
then extract interpretable state representations.

Generalization capability field aims to facilitate trans-
fer learning among observations, central in reinforcement
learning to reduce the amount of training data. Compact
state representation [18] area focuses on creating an abstract
representation of the states [19]. It enables a faster learn-
ing than training the agent on the raw data without fac-
ing the drawbacks of deep learning. For instance, Andre
et al. hierarchically abstract the states by decomposing the
states into subroutines [20] but has been limited to simple
domains. Another method [21] applies a state aggregation
technique to reduce the number of state-action pairs that

relies on estimating the similarity among the pairs of states.
The main drawback is how to compute the similarity be-
tween complex objects such as pixels or time-series. All
the previously cited approaches suffer from lack of inter-
pretability which reduces their usage in critical applications
such as autonomous driving. Bougie et al. use an abstract
representation of the states to improve generalization while
having decisions fully interpretable [22]. This work extends
this idea; we aim to reduce the amount of human work by
proposing a new deep unsupervised method to generate the
rules. In addition, we increase the generalization capabil-
ity of the agent with better use of sub-states. Finally, we
conduct more extensive evaluations of our algorithm on two
different domains.

3. Reinforcement Learning

Below we give a brief summary of the Q-learning and Sarsa
algorithms, two temporal difference methods for reinforce-
ment learning. Then, we present the eligibility trace mecha-
nism that we improved in our algorithm.

Reinforcement learning [23] consists of an agent learn-
ing a policy π by interacting with an environment. At each
time-step the agent receives an observation st and chooses
an action at. The agent gets a feedback from the environ-
ment called a reward rt. Given this reward and the obser-
vation, the agent can update its policy to improve the future
rewards.

Given a discount factor γ, the future discounted re-
wards, called return Rt, is defined as follows:

Rt =

T∑
t′=t

γt′−trt′ (1)

where T is the time-step at which the epoch terminates.
The agent learns to select the action with the maxi-

mum return Rt achievable for a given observation [24]. From
Eq. (1), we can define the action value Qπ(s, a) at a time t as
the expected reward for selecting an action a for a given state
st and following a policy π.

Qπ(s, a) = E [Rt | st = s, a] (2)

The optimal policy π∗ is defined as selecting the action with
the optimal Q-value, the highest expected return, followed
by an optimal sequence of actions. This obeys the Bellman
optimality equation:

Q∗(s, a) = E
[
r + γmax

a′
Q∗(s

′
, a
′
) | s, a

]
(3)

In temporal difference (TD) learning methods such as
Q-learning or Sarsa, the Q-values are updated after each
time-step instead of updating the values after each epoch,
as happens in Monte Carlo learning.

3.1 Temporal-Difference Methods

3.1.1 Q-learning Algorithm

A common technique to approximate π≈π∗ is Q-learning [2].
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The estimation of the action value function is performed it-
eratively by updating Q(s, a). This algorithm is considered
as an off-policy method since the update rule is unrelated to
the policy that is learned, as follows:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ ∗maxa Q(st+1, a) − Q(st, at)

] (4)

The choice of the action follows a policy derived from
Q. For instance, the ε-greedy policy trade-off the explo-
ration/exploitation dilemma. During exploitation, the action
with the highest estimated return is selected whereas a ran-
dom action is sampled during exploration. An obvious ap-
proach to adapt Q-learning to continuous domains is to dis-
cretize the state space, leading to an explosion of the number
of Q-values. Therefore, a good estimation of the Q-values
in this context is often intractable.

3.1.2 Sarsa Algorithm

Sarsa [25] is a variant of the Q-learning algorithm. The
key difference between Q-learning and Sarsa is that Sarsa
is an on-policy method, which implies that the Q-values are
learned based on the action performed by the current policy
instead of a greedy policy. The details are shown in Al-
gorithm 1. Sarsa is more conservative, meaning that Sarsa
tends to avoid dangerous actions that may trigger negative
rewards. This may be critical in real-world tasks where mis-
takes are costly such as trading or autonomous driving. The
update rule becomes:

Q(st, at)← Q(st, at)+α[rt+1+γQ(st+1, at+1)−Q(st, at)]

(5)

Sarsa converges with probability 1 to an optimal policy
as long as all the action-value states are visited an infinite
number of times. Unfortunately, it is not possible to straight-
forwardly apply Sarsa learning to continuous or large state
spaces. Such large spaces are difficult to explore since it
requires a frequent visit of each state to accurately esti-
mate their values, resulting in an inefficient estimation of the
Q-values.

3.2 Eligibility Traces

Since it takes time to back-propagate the rewards to the

Algorithm 1 Sarsa: Learn function Q : S ×A → R
procedure SARSA

Initialize Q : S ×A → R uniformly
while Q is not converged do

Start in state s ∈ S
Choose a from s using policy derived from Q (e.g., ε-greedy)
while s is not terminal do

Take action a, observe r, s
′

Choose a′ from s′ using policy derived from Q (e.g., ε-
greedy)

Q(s, a)← Q(s, a) + α · (r + γ · Q(s′, a′) − Q(s, a))
s← s′
a← a′

return Q

previous Q-values, the above model suffers from slow train-
ing in sparse reward environments. Eligibility traces [26]
is a mechanism to handle the problem of delayed rewards.
Many temporal-difference (TD) methods including Sarsa or
Q-learning can use eligibility traces. In popular Sarsa(λ)
or Q-learning(λ), λ refers to eligibility traces or n-steps re-
turns. In the case of Sarsa(λ), this leads to the following
update rule:

Qt+1(s, a) = Qt(s, a) + α[rt+1 + γ

Qt(st+1, at+1) − Qt(st, at)]Et(s, a) for all s, a (6)

where

Et(s, a) =

⎧⎪⎪⎨⎪⎪⎩
λEt−1(s, a) + 1, if s = st and a = at

λEt−1(s, a) otherwise
(7)

The temporal difference error for a state is estimated in a
bootstrapping process. Instead of looking only at the cur-
rent reward, in Monte Carlo methods the prediction is made
based on the successive states. The TD(λ) method is sim-
ilar, the current temporal difference error is used to update
all the visited states of the corresponding episode. At each
step, the reward is back-propagated to the prior states ac-
cording to their frequency of visit. The parameter λ ∈ [0..1]
controls the trade-off between one-step TD methods (TD(0))
and full-step methods (Monte Carlo).

4. Rule-Based Sarsa(λ)

We propose a method, rule-based Sarsa (Sarsa-rb), to en-
able Sarsa in continuous spaces by injecting external knowl-
edge (Fig. 1). Sarsa-rb is divided into two stages: rule ex-
traction, and, learning (e.g. reinforcement learning agent)
(Sarsa-rb(λ)).

At the top level, the rule extraction module which ex-
tracts symbols from various sources of data and then gen-
erates rules to describe the environment. We formalize this
problem as learning a mapping φ (i.e. a set of rules) from
a state st to its abstract representation s̄t, where s̄t = φ(st);
φ(st) ∈ S̄. Since the rules can be created using our prior
knowledge about the task and external source of data, we
refer to them as external knowledge. Besides the general
idea that the state representation has the role of encoding
and compressing essential information about the task while

Fig. 1 The proposed rule-based Sarsa(λ) architecture. The extracted
rules are fed into the reinforcement learning agent to learn efficient poli-
cies and improve state abstraction.
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discarding irrelevant states, it enables to inject external
knowledge.

The second stage is a reinforcement learning system
trained to maximize the reward signal. Training Sarsa in the
raw state space is undesirable not only because the structure
of the images makes them difficult to interpret, but also be-
cause it is hard to predict pixels directly. The rule-based rep-
resentation constructed in stage one can now be jointly used
to enhance state representation in Sarsa and to efficiently
initialize the Q-values. As in Sarsa, the agent estimates the
Q-values, however, each state is represented by a rule-based
representation. At this point, the advantage of representing
the states by rules becomes clear. Their compositional struc-
ture makes possible to combine and recombine the rules and
interpret them. Furthermore, the present architecture maps
high-dimensional raw input into a lower-dimensional rule
space which reduces the number of Q-values to estimate.
In addition, we propose a new technique to update the Q-
values of Sarsa that relies on sub-states as generalization
mechanism.

To further improve data efficiency and generalization
ability of Sarsa-rb, we propose the idea of sub-states. The
key insight behind our new mechanism is to exploit the simi-
larities among the rules to help the agent to reason in similar
situations. At each iteration, it takes the current observa-
tion and instead of updating only one Q-value, the Q-values
sharing similarities are also updated, leading to a significant
speed-up. Finally, to take advantage of the sub-states, we
adapt the original learning rate update and eligibility trace λ
used in Sarsa, Sarsa-rb(λ).

4.1 Rule Extraction

The purpose of this first stage is to extract the rules that
can be used to represent and compress the observations of
our environment. We present three methods. One con-
sists in manually creating them according to our knowledge
about the task. Supervised and deep unsupervised extraction
methods retrieve patterns from external sources of annotated
data. Specifically, the deep unsupervised rule generation
method was designed to extract rules from visual inputs by
taking advantage of deep learning [27] and follows the idea
depicted by Garnelo et al. [9]. These sources of data can
be various such as annotated datasets similar to the current
environment, or any datasets containing relevant informa-
tion about the task. For instance, for a trading task we can
use as external sources of data several stock market datasets
from other companies. The idea behind is that among other
companies, we can extract patterns that are shared with the
current task.

4.1.1 Manual Rule Extraction

One technique to address the rule generation relies on hu-
man or background knowledge about the domain. For in-
stance, in a car driving task, such knowledge can be re-
trieved from traffic rules. Another possible application of

Fig. 2 Deep unsupervised rule extraction method

our model is automatic trading, for which we can use exper-
tise about time-series and stock markets. Moreover, several
previous works about feature engineering can be integrated
and combined such as candlestick patterns [28]. This stock-
market analysis technique estimates the trend of the share
price by identifying patterns into time series.

4.1.2 Supervised Rule Extraction

In real-world environments, the rules can be automatically
captured by supervised machine learning methods. We fol-
low a similar idea of Mashayekhi et al. [29]. This method
extracts the rules from a random forest [30], an ensemble
of decision trees [31]. A decision tree consists of several
nodes that branch to two sub-trees based on a threshold
value on a variable. We call leaf nodes the terminal nodes.
A single decision tree has a very limited generalization ca-
pability and a high variance [32]. Several ensemble models
such as random forest reduce the variance by building many
trees and making prediction based on a consensus to among
the decision trees. A simple tree traversal method can di-
rectly extract patterns from the trees. The recommended ac-
tion associated to each pattern can be retrieved using simple
heuristics such as depicted in Sect. 5.1, manually annotated,
or, let empty without affecting much performance after
convergence.

4.1.3 Deep Unsupervised Rule Extraction

The goal of this method (Fig. 2) is to extract symbols and
then generate rules in an unsupervised manner. This tech-
nique is well-suited for visual environments. The first stage
consists in extracting and recognizing the objects from im-
ages. The next stage generates symbols that represent these
objects. Finally, we construct a set of rules by estimating
the relevance of each symbol: the position, the color, and
the relative position of the objects.

The first stage extracts the objects within an image. We
use a deep unsupervised neural network in order to extract
features from images. Specifically, we train a convolutional
autoencoder [17] and use the compress representation (mid-
dle layer) to identify where are the objects as well as rec-
ognize them. As shown by Garnelo et al. [9] objects are
characterized by high activation values throughout the lay-
ers of the compressed image representation. Note that with
natural images, state-of-the-art methods in unsupervised
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Fig. 3 Overview of the symbol color extraction method.

learning such as PixelVAE [33] can be trained to learn a use-
ful latent representation. In addition, similar objects share
a similar activation spectra independently of their position
in the image. Therefore, we can extract the position of the
objects by extracting the areas with high activation values.
One way to classify an area as containing an object or not
relies on a fixed threshold. However, using a threshold [9]
requires manual tuning to fit the environment. Instead, our
technique relies on salient areas of the original image. For
each pixel, the salient value is scaled between 0 and 1 and
the probability that a pixel is considered as part of an object
is equal to this salient value. The corresponding activation
values in the compressed representation are then extracted
and considered as potentially representing an object.

The second stage characterizes the objects by compar-
ing their activation spectra. This is done by using an unsu-
pervised clustering algorithm. Given the short length of ac-
tivation spectra, we applied a k-means method [34] to group
the objects according to their spectra. The idea behind is that
similar objects have similar activation spectra and therefore
will belong to the same clusters. A k-means method is then
trained using the spectra extracted from the external sources
of data (stage 1). When a new image is observed by the
agent, the image is processed following a similar pipeline,
however, the k-means method is not retrained but only used
to predict the label of each identified objects. Since we build
an end-to-end model without supervision, we label the new
objects with the cluster ID number.

The information extracted at the end of this stage is the
position of the objects within the images, their label rep-
resented by an integer as well as their bounding boxes. In
addition to the type of objects and their positions, we con-
struct two other symbols: the color of the objects and their
relative position.

The first symbol represents the colors of the objects.
The color of an object is typically the average RGB value
of the pixels within the bounding box. This bounding box
was found by using the salient map areas. Given the aver-
age RGB values, we assign the symbol as the closest color
among: red, blue, green, yellow, red, blue, black, gray, pur-
ple. As can be seen in Fig. 3, the number of possible colors
can be augmented to fit the complexity of the task.

The second symbol describes the neighborhood of the
objects. We encode the positions of objects relative to other
objects within a radius r. This approach is justified by the
common sense that the interactions of an object with its clos-
est objects are more likely to have an impact on the reward
than the interactions with farther objects. To do this, we di-
vide the neighborhood of an object into areas of 45 degrees

Fig. 4 Relative position extraction method. The objects within a radius
r are taken into account and ther clostest objects are saved as symbols ac-
cording to their angle with the considered object

and for each one, we store the label of the closest object. In
case there is no object in any direction within the radius r,
we store −1. The final representation is an array, the con-
catenation of all the objects for each angle. Figure 4 depicts
the process of encoding the relative object positions. There
is only one object within the radius r represented by the light
gray circle around the agent (dark gray pixel). Since its rel-
ative angle is around 330◦, the only value different value of
−1 in the array is 2, the label of the object.

Once the symbols are extracted, the last stage is to gen-
erate a set of rules describing the objects within frames.
Note that we only take into account the observed frames
followed by a reward greater than zero or negative. This
method is justified by the idea that other symbols are not
relevant since they don’t have an immediate impact on
the rewards received by the agent. Given the set of sym-
bols, we construct the associated conjunctions of variables
symbol1 ∧ symbol2 ∧ . . . ∧ symboln. We refer to them as
patterns since each one describes an image. The C most fre-
quent patterns are kept and used to describe frames as rules.
These generated rules are then used to train our algorithm,
Sarsa-rb(λ).

4.2 Rule-Based Sarsa (Sarsa-rb)

Once extracted, we use the rules in the reinforcement learn-
ing stage. The Sarsa algorithm maintains a parametrized
Q-function which maps the states to their Q-values:

Q : S × A→ R (8)

Instead of extending Sarsa to continuous state space by dis-
cretizing it, our representation relies on a rule-based repre-
sentation. We propose to learn a Q-function which maps the
state representations S̄ to their Q-values:

Q : S̄ × A→ R (9)

We propose to represent abstract states S̄ by the rules ex-
tracted in stage 1. A rule r associates a pattern p to a recom-
mended action, which we denote as aR

{φ(st) = r|r : p→ aR} (10)

where the pattern p is used as the activation function of the
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state. Specifically, a state is active when the associated pat-
tern p satisfies the current observation. In addition, we im-
prove the Q-value initialization Q(φ(s), a)t=0 by using the
action recommended aR by the pattern. The recommended
action belongs to the recommended action space Ar, where
we set Ar = A to ensure generality. Note that recommended
actions are only used to guide the agent at the start of learn-
ing, and then the Q-values are learned from agent’s interac-
tions with the environment.

As depicted before, a rule associates a pattern p to an
action a, p → aR. A pattern p is an arbitrarily complex
conjunction of variables. The variables represent significant
events in the task. For example, in a task involving driving a
car, a variable could be (speed between 20 and 50 km/h) and
an example of pattern is ((speed between 20 and 50 km/h) ∧
(pedestrian crossing the road)). Finally, the rule which links
this pattern to an action (e.g brake, turn left, etc.) could be:

(speed between 20 and 50 km/h)∧
(pedestrian crossing the road) =⇒ brake (11)

When the agent receives an observation, the active state is
the state for which its associated pattern is satisfied, in other
words, all its variables are active. Since no pattern is always
satisfied, we added an “empty” state. This is the default
state, active regardless of the input. Note that we capture
only important information by filtering out irrelevant rules,
the less frequent ones.

To improve generalization capability of our agent, we
propose a sub-states mechanism. The sub-states are con-
structed by augmenting each Q-value with an ensemble of
sub-states. We define the sub-states as its sub-patterns, the
combinations of the variables. For example, given two pat-
terns p1: A ∧ B ∧ C and p2: B ∧ C ∧ D the sub-patterns are
A ∧ B, B ∧C, A ∧C and B ∧C, C ∧ D, B ∧ D respectively.
These two patterns are similar and share one sub-state B∧C,
which indicates that the associated Q-values may be similar.

The Fig. 5 shows our model structure. To simplify the
representation we show the structure for only one action,
however, the agent maintains a parametrized Q-function for
each possible action. In summary, the states of Sarsa are
replaced by rules. Their associated patterns are used as ac-
tivation functions of the states. In addition, each state is
augmented with one or more sub-states represented by the
squares. The state φ(s2) represented by the pattern p2 : A∧B

Fig. 5 An illustration of the update of the Q-function. The Q-values of
the active state s2 and its sub-states are updated. The sub-states sharing
similar information with s2, in blue, are also updated.

has two possible sub-states corresponding to the two possi-
ble sub-patterns A and B.

In Sarsa, the Q-values are uniformly initialized. We in-
troduce a new method to take advantage of prior knowledge
by initializing the Q-values according to the recommended
actions of the rules:

Q(φ(s), a)t=0 =

⎧⎪⎪⎨⎪⎪⎩
N(μ, σ2), if a = aR

0 otherwise
(12)

where μ is the mean, σ2 the variance, and aR the action rec-
ommended by the rule associated with φ(s) (Eq. (10)). In
order to accelerate learning by appropriately specifying ini-
tial Q-values, for a state φ(s), the initial value of the action
recommended by the rule follows a normal distribution cen-
tered around μ, greater than 0, to follow our prior knowl-
edge. For the other Q-values, the agent starts out knowing
nothing, they are initialized to zero.

This rule-based representation can now be used to learn
an effective policy. Our contribution here is to propose a
technique to jointly use prior knowledge and reinforcement
learning to decrease training time of the agent (rule-based
representation) and to avoid learning from scratch (Q-value
initialization). Since the number of abstract states is |S̄| (i.e.
the number of extracted rules), and the total of Q-values to
estimate |S̄| × |A| << |S | × |A|, our algorithm can be trained
in large state space domains.

4.3 Estimation of the Q-Values

Accurately estimate each Q-value would result in a very
long training time due to the infrequent visit of most of the
states. However, our estimation relies on a sub-states tech-
nique which aims to enable fast generalization across obser-
vations. We also provide modifications of eligibility traces
and learning rate to take advantage of sub-states during the
estimation of the Q-values.

4.3.1 Sub-States as Generalization Mechanism

We introduce a sub-states mechanism to improve data-
efficiency and generalization ability of our reinforcement
learning agent. The main drawback of TD algorithms is that
only one Q-value is updated at each iteration, entailing that
they learn slowly. These algorithms can be augmented us-
ing eligibility traces to propagate the reward to the previous
states. This work introduces a novel approach to jointly up-
date the similar states and back-propagate the reward to the
previous states. The goal is to get most of the benefits of the
shared information among the rules while keeping the rest
of the Sarsa algorithm intact and efficient. In order to im-
plement this mechanism, we augment each Q-value with its
sub-patterns (Fig. 5). Note that to limit the number of sub-
states, we limit the size of the sub-rules to conjunctions of
at least 3 variables.

We provide modifications to the estimation and update
of the Q-values inspired by Sarsa to incorporate sub-states.
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Fig. 6 Estimation of a Q-value, Q
′
(φ(s), a), with the sub-states tech-

nique. In addition to the Q-value Q(φ(s), a) itself, the sub-states values
Q(s

′
, a) are taken into account.

Our estimation of a Q-value Q
′
(φ(s), a) takes into account

the Q-value itself Q(φ(s), a) and the value of its sub-states.
Intuitively, this estimation improves generalization among
states by incorporating Q-values of similar states and sub-
states encountered previously:

Q
′
(φ(s), a) = Q(φ(s), a) +

∑
s′ ∈sub(φ(s))

Q(s
′
, a) (13)

with sub(φ(s)) the sub-states of a state φ(s). We modified
the update rule of states to incorporate sub-states:

Q
′
t+1(φ(s), a) = Qt(φ(s), a) + αQ′ (φ(s),a)t[rt+1 + γ

Q
′
t(φ(s)t+1, at+1) − Q

′
t(φ(s)t, at)]Et(φ(s), a) (14)

and for sub-states s
′
, is defined as:

Qt+1(s
′
, a) = Qt(s

′
, a) + α[rt+1 + γ

Qt(s
′
t+1, at+1) − Qt(s

′
t , at)]Et(s

′
, a) (15)

where Et refers to the eligibility trace for a state-action pair,
and αQ′ (φ(s),a)t indicates the learning rate specific to the up-
dated Q-value (Sect. 4.3.3). Our approach to back-propagate
the rewards to all similar Q-values is to increment the el-
igibility traces of the similar sub-states. We illustrate the
Q-value estimation process for a simple example in Fig. 6.
Q(s

′
, a) refers to the estimation of the value of the sub-state

s
′

given the action a. Adding this term grounds the values
of the unvisited states, and makes the value induced by the
values of the similar visited states.

A frequent and early update of the sub-states turned out
to be critical in fast estimation of the Q-values, inducing a
much faster training.

4.3.2 Eligibility Traces

Directly implementing Sarsa-rb is proved to be slow learn-
ing in environments with sparse rewards. Our method,
Sarsa-rb(λ), is derived from Sarsa(λ). Adding n-steps re-
turns helps to propagate the current reward rt to the earlier
states. We allow a propagation of rt to the earlier sub-states

by changing their eligibility traces. The idea behind is that
a sub-state similar to the current state is likely to get a sim-
ilar reward by following the same action. The update of the
current state φ(s) remains unchanged from Sarsa(λ):

⎧⎪⎪⎨⎪⎪⎩
Et(φ(s), a) = λEt−1(φ(s), a) + 1 if the current state is φ(s)

Et(φ(s), a) = λEt−1(φ(s), a) otherwise

(16)

Similarly for sub-states:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Et(s
′
, a)= λEt−1(s

′
, a)+e−sim(s

′
,φ(s)), if s

′
is a sub-states of φ(s)

Et(s
′
, a)= λEt−1(s

′
, a)+ (e−sim(s

′
,φ(s)))2

P , for the sub-states sharing
at least 2 variables

Et(s
′
, a) = λEt−1(s

′
, a) otherwise

(17)

where E(φ(s), a) represents the eligibility trace for state
φ(s), E(s

′
, a) is the eligibility trace of sub-state s

′
for a given

action a, and sim(s
′
, φ(s)) denotes the similarity score be-

tween the sub-state s
′

and the state φ(s). We define the sim-
ilarity function as the number of different variables between
a sub-state s

′
and a state φ(s), sim(s

′
, φ(s)) = |s′ ∪ φ(s)| −

|s′ ∩ φ(s)|. We bounded the score between 0 (identical) and
1. Note that we only take into account the sub-states sharing
at least two variables.

Since sub-states are often updated, we avoid explod-
ing eligibility trace values by adding an exponential decay,
and a constant P which determines the scale of update sig-
nal. Intuitively, a high value decreases the update of the
sub-states sharing only a few similar sub-patterns with the
current state. Note that similarly to the original idea, when
the eligibility trace of a sub-state Et(s

′
, a) ≈ 0, the associ-

ated Q-value is not updated, but is always taken into account
to estimate the Q-values of other states and sub-states. Up-
dates performed in this manner allow estimating Q-values
more accurately. Our experiments also suggest that sub-
states technique decreases the number of necessary visits
to accurately estimate Q-values and yields faster convergent
policies.

4.3.3 Adaptive Learning Rate

The linear learning rate α in regular Sarsa assumes that the
states are equally visited. Obviously, this assumption is no
longer valid. One approach to this problem is to change the
update rate of the states according to the frequency of visit
of the states and their sub-states. We turn to a learning rate
specific to each Q-value Q

′
(st, at):

αQ′ (φ(s),a)t =
1.0

(1.0+visit(φ(s), a)t+
√
visit(sub(φ(s)), a)t)

(18)

We add the term visit(φ(s), a)t which refers to the number
of visits of the Q-value Q(φ(s), a). The term sub(φ(s)) de-
fines the ensemble of the sub-states of the state (φ(s)) and
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visit(sub(φ(s)), a)t is the total number of visits of all its sub-
states. A state with its sub-states sub(φ(s)) often visited will
be estimated more accurately than a state without sub-states
and hence doesn’t need to be updated much.

5. Experiments

For our experiments, we use two environments that both fol-
low the Open-AI Gym structure [35]. The first environment
is a trading task from real stock market data. This task in-
volves large continuous state spaces. We use this task to
compare the two rule creation methods (manual rule gener-
ation and supervised rule generation). The second task is
more challenging and consists of a visual navigation prob-
lem using images as the input of our model. This task is used
to evaluate our deep unsupervised rule extraction technique.
To ensure a fair evaluation, we pretrained the baseline algo-
rithms on the datasets used to generate the rules.

5.1 Trading Task

We evaluated our agent, Sarsa-rb(λ), on the OpenAI trad-
ing environment, a complex and fluctuating simulation
from real stock market data (Fig. 7 (a)). The observations
(Fig. 7 (b)) are given to the agent in the form of a vector
of 4 continuous variables that were recorded during a one
minute interval: the open price, the close price, and the high-
est/lowest price. The action set consists of 3 actions: Buy,
Hold and Sell. The reward is computed according to the
win/loose after buying or selling. Each training episode is
followed by a testing episode to evaluate the average reward
of the agent on another subset of the same stock price. Each
episode was played until the training data are consumed, ap-
proximatively 105 iterations.

Our system learns to trade on a minutely stock index.
In total, we used 4 datasets with a duration varying between
2 years and 5 years. One stock index was used to train
the agent, and the other three as external sources of knowl-
edge to generate the rules. To fairly evaluate the model, we
trained it on 80% of the training examples and evaluate the
performance on the remaining 20%. We ran a grid search
over the parameters to initialize the Q-values and found that
μ the mean equals to 0.25 and σ equals to 0.2 were the best
parameters. We use P = 100 as decay factor of eligibil-
ity traces. In the case of manually created rules, we first

Fig. 7 Example of a sample of data from the environment. The left plot
shows the time series and the right plot is the structure of one observation.

compute the percentage increase in the share price 14 days
later and then estimate an optimal action associated with
each pattern. In total, we took into account 40 candlestick
patterns.

We follow a simplified technique used by Mashayekhi
et al. to generate the rules from a random forest [29]. Briefly,
we extract the patterns top to bottom and filter the patterns to
avoid redundancy. To construct the trees, we automatically
annotate 6000 samples into 3 classes. Each sample is the ag-
gregation of the last 5 prices. We labeled the dataset accord-
ing to the price pdi f f increase 14 days later (pdi f f >=0.5%,
pdi f f <=−0.5%, 0.5%< pdi f f >−0.5%) to train a random
forest. We compute pdi f f as the average between the open
and close price. In order to limit the number of rules and
since the impact on accuracy was minimal, we build 20 trees
with a maximum height of 4. In total, we retrieved 855 rules.
For each pattern, the predicted class (i.e. the trend of the
stock market) was used to recommended an action.

5.1.1 Rule Creation Performance

First, we evaluate the two rule creation techniques discussed
in Sect. 4.1 and their impact on the average reward. After
creating the rules on 3 stock prices, we obtained between
855 and 3240 rules, resulting in a maximum of 3240 × 3
Q-values to estimate. Figure 8 shows the performance of
Sarsa-rb with the states created using the different meth-
ods. The results are obtained by running Sarsa-rb with-
out sub-states and eligibility traces, and the same hyper-
parameters to allow a controlled experiment focused on rule
effectiveness.

As can be seen in Fig. 8, the agent using background
knowledge based rules achieves the highest score on aver-
age. Performance of the agent was mainly affected by the
quality of the rules, we could not establish a link between
the number of rules and the quality of the model. We con-
clude that manually creating the rules was the most efficient
technique. Furthermore, the rules can be combined to take
advantage of each technique.

Fig. 8 Performance curves of Sarsa-rb using a selection of techniques to
create the rules: background knowledge based (blue) and extracted from a
random forest (green).
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Fig. 9 Performance curves for a selection of algorithms: original Deep
Q-learning algorithm (red), Deep Deterministic Policy Gradients algorithm
(green) and Sarsa-rb(λ) (blue).

5.1.2 Overall Performance

We evaluated the performance of the learned policy us-
ing the proposed sub-states mechanism. We compare
Sarsa-rb(λ) with two baselines, a deep recurrent Q-learning
model [36] and a DDPG model [37]. DDPG method was
shown to perform well in trading tasks [38], [39]. Since the
feasible trading actions is in a discrete set, the output of the
actor is a vector of n real numbers. The action to take corre-
sponds to the index of the maximum value.

For this evaluation, we individually tuned the hyper-
parameters of each model. We decreased the learning rate
from α = 0.3 to α = 0.0001, and increased the eligibility
trace from λ = 0.8 to λ = 0.995, then used λ = 0.9405 and P
= 100. Each parameter value was sampled within the given
interval, and the algorithm evaluated using those values. We
use an ε-greedy policy as the behavior policy π. It chooses
a random action with a probability ε and an optimal action
with a probability 1 − ε. In our experiments, ε is set to 0.01.
The plots are averaged over 5 runs. Finally, we used the
external knowledge based rules as the states of Sarsa-rb(λ).
Note that since Sarsa or Sarsa(λ) cannot learn from contin-
uous state spaces, we don’t report their performance.

We report the learning curve on the testing data in
Fig. 9. Sarsa-rb(λ) always achieve a score higher than DQN
and DDPG. From Fig. 9, it is clear that Sarsa-rb(λ) improves
over DQN - we observe after converging an average reward
around 3.3 times higher. DDPG appears less fluctuating than
Sarsa-rb(λ) but also less effective.

The key concepts of our algorithm are sub-states and
their capacity to transfer knowledge. By representing the
observations with rules we can easily understand when a
situation is analogous to a previously encountered set of sit-
uations. Sub-states allow to transfer knowledge from previ-
ous similar situations and even to transfer knowledge from
partially encountered events. It turns out to be critical in
environments with sparse rewards such as the trading envi-
ronment - a reward is given only when the agent buy or sell.
In the current algorithm, this capability is achieved through
a simple similarity measure, but in the future we aim to

Fig. 10 A board of the visual navigation environment. The agent is rep-
resented by a gray square, the food to collect by the blue circles and the
walls by the green squares.

develop a more efficient similarity measure.

5.2 Visual Navigation Task

As a benchmark for our visual rule extraction method, we
developed a simple navigation task. The environment con-
sists of a board with obstacles, and objects of different
shapes and colors (Fig. 10). The agent learns to collect food,
represented as blue circles, and to avoid walls, represented
as green squares. The agent has to learn to navigate using
one of the possible actions (up, right, down, left). Encoun-
tering a food results in a positive reward (+5), a wall, a neg-
ative reward (−5) while moving to an empty cell results in a
negative reward (−0.2).

The goal of the agent is to collect the five “food” ob-
jects randomly positioned across the map. Eating the last
food object results in a positive reward (+20) whereas go-
ing out the map gives a negative reward (−5) and restarts the
game. The agent receives as input a 2D RGB image corre-
sponding to what the agent sees around it. The raw frame
is resized to 84 × 84 pixels. To decrease the storage cost
of the images we convert the image scale from 0 − 255 to
0 − 1. Note that we limit the maximum time to 1 minute for
the agent to find a strategy to get a maximum reward. The
rules were extracted from a dataset of 100 000 images of
the environment following the deep unsupervised rule ex-
traction method. We trained a convolutional autoencoder
on 100 000 random boards in order to extract features from
images. To have an accurate representation of the environ-
ment, the position of the agent varied randomly as well as
the objects whose numbers were randomly selected. For our
experiments, the input of the neural network consists of a
84×84×3 RGB image. The first 3 layers convolve with the
following parameters (filter: 64, 32, 32, kernel size: 3×3,
3×3, 3×3). Each one was followed by a 32×32 pooling
layer. The last 4 layers are the corresponding decoding lay-
ers. We use the compressed representation, the middle layer,
to recognize the objects. Since we do not assume strong
prior knowledge about the task, we set the number of clus-
ters of the k-means model to K = 8. Finally, We kept the
6000 most frequent patterns to build the rules.

5.2.1 Overall Performance

We compared our agent trained on the visual navigation task
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Table 1 The table evaluates performance in terms of average reward.
We compare Sarsa-rb(λ) with Deep Q-learning (DQN) and Proximal Policy
Optimization (PPO) algorithm.

20000 episodes 80000 episodes 160000 episodes

Sarsa-rb(λ) 2.01±0.23 9.4±1.18 16.6±1.4
DQN −3.2±0.85 −3.3±0.83 −3.2±0.83
PPO 1.8±1.0 8.9±3.0 13.2±3.4

DQfD 5.2 ± 0.33 9.2 ± 1.06 12.1 ± 1.01

to several methods from the literature, which are consid-
ered to be effective for visual problems. We compared our
algorithm against tuned versions of proximal policy opti-
mization (PPO) [40], deep q-learning (DQN), and, deep q-
learning from demonstrations (DQfD) [12]. DQfD pretrains
a DQN agent with demonstrations as source of prior knowl-
edge. For our experiments, we had a human player play
the game. In total, 6237 transitions were recorded and used
to pre-train DQN. We trained 5 agents for each algorithm
with the same settings. The average reward is shown in Ta-
ble 1. Note that for these two deep learning algorithms, we
used the same policy network architecture as used by Mnih
et al. [41].

Our approach outperforms standard DQN in term of
convergence speed and quality of policy. Sarsa-rb(λ) is
shown more stable than PPO. Although DQfD achieves a
higher average reward at the start of learning, our model
convergences towards a better policy. Besides, our tech-
nique preserves interpretability while learning a good pol-
icy, making it more suitable for real-world tasks. By rep-
resenting the observations of the environment with under-
standable rules, we produced a humanly-comprehensible
model. Furthermore, we can control the importance of
knowledge transfer by giving more or less importance to
sub-states.

6. Conclusion

By introducing small amounts of prior knowledge into re-
inforcement learning architectures, our agent can learn in-
terpretable and compact representations of the environment.
Morever, our algorithm takes advantage of such knowledge
to significantly accelerate learning. Given that the states are
represented by rules, we can analyze which objects, as well
as symbols, are involved in the choice of an action and their
importance. Specifically, the Q-values can be interpreted to
evaluate the weight of each feature on the choice of the ac-
tion. We have also shown its ability to solve complex tasks
with continuous state spaces, and exceeds baseline agents
in term of overall performance. To support these claims,
we presented an exhaustive evaluation on a time series task
and a visual task. We observed that our system dramati-
cally outperforms neural network based methods in a range
of different domains.

Several research directions are promising to address
more drawbacks inherent to deep reinforcement learning.
First, improving the transfer learning by using a more so-
phisticated similarity algorithm. Second, adapting over

training the rules and symbols to discard the useless rules
to decrease learning time and improve computational effi-
ciency. Finally, we are interested in extending our experi-
ments to new domains such as textual environments.
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