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Partial Label Metric Learning Based on Statistical Inference

Tian XIE†a), Hongchang CHEN††, Tuosiyu MING††, Jianpeng ZHANG††b), Chao GAO††,
Shaomei LI††, Nonmembers, and Yuehang DING††, Member

SUMMARY In partial label data, the ground-truth label of a training
example is concealed in a set of candidate labels associated with the in-
stance. As the ground-truth label is inaccessible, it is difficult to train the
classifier via the label information. Consequently, manifold structure in-
formation is adopted, which is under the assumption that neighbor/similar
instances in the feature space have similar labels in the label space. How-
ever, the real-world data may not fully satisfy this assumption. In this pa-
per, a partial label metric learning method based on likelihood-ratio test is
proposed to make partial label data satisfy the manifold assumption. More-
over, the proposed method needs no objective function and treats the data
pairs asymmetrically. The experimental results on several real-world PLL
datasets indicate that the proposed method outperforms the existing par-
tial label metric learning methods in terms of classification accuracy and
disambiguation accuracy while costs less time.
key words: partial label learning, metric learning, statistical inference,
likelihood-ratio test

1. Introduction

Since strong supervision information is difficult to obtain
due to the high cost of data labeling process, the demand of
combining machine learning techniques and weak supervi-
sion arises in many real world scenarios. Partial label data is
a kind of weakly supervised data in which the ground-truth
label of each training example is hidden in a set of candidate
labels [1]. The main purpose of partial label learning (PLL)
is to train a multi-class classifier with partial label data. [2]

Formally speaking, suppose X ∈ Rd is the d-
dimensional feature space andY = {1, 2, · · · ,Q} is the label
space consisting of q class of labels, then the goal of PLL is
to learn a multi-class classifier f :X → Y from partial label
train set D = {(xi, Si) | 1 ≤ i ≤ n}. In the training set, xi ∈ X
is the feature vector of the instance and Si ∈ Y is the can-
didate label of xi. Particularly, the ground-truth label yi of
xi is hidden in Si and the learn algorithm is not capable of
accessing it directly.

Apparently, since the ground-truth label in the training
set is not accessible, it is difficult to learn from partial la-
bel data by using the label information directly. Thus, the
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manifold structure information among the training data is
combined with the label information to train the PLL classi-
fier by the state-of-the-art PLL algorithms like PL-KNN [2],
IPAL [3] and PL-LEAF [4]. The manifold structure infor-
mation used in these algorithms is obtained by the Euclidean
distance under the manifold assumption. In detail, the man-
ifold assumption assumes that the data in a local domain
should have similar properties, which means that nearby in-
stances in feature space should have the same label in the
label space. Thus, these PLL algorithms predict the label
of instance according to the label information of the nearby
instance. However, the manifold assumption may not be sat-
isfied by some real-world data, inevitably reducing the per-
formance of PLL algorithms. For example, in Fig. 1, as the
PLL algorithm predicts the label of instance via k-nearest
neighborhood principle, the label of the instance may be
predicted wrong, if the ground-truth label of an instance is
different with that of its neighbors’.

To solve this problem, a simple idea is to map the fea-
ture vector of the instance to a new feature space in which
the training data will have a new manifold structure and sat-
isfy the manifold assumption as much as possible. In super-
vised learning, there are many methods to map the data to
a new feature space such as isometric mapping [5], locally
linear embedding [6], and metric learning [7]. However, the
isometric mapping and locally linear embedding map the in-
stance to a new feature space according to its neighbors in
the feature space. Therefore, the original manifold structure
of the data is preserved, which cannot solve the problem

Fig. 1 An example of partial label data which do not satisfy the manifold
assumption. (a) When the number of similar samples is more than that of
dissimilar samples, the sample is predicted rightly. (b) When the number
of similar samples is less than that of dissimilar samples, the sample is
predicted wrong.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



1356
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

that the data do not satisfy the manifold assumption. But,
in supervised learning, metric learning is proposed to train
a metric under which the train data will have a new mani-
fold structure and satisfy the manifold assumption better. [8]
Consequently, we consider using metric learning to map the
data to the new feature space.

However, the traditional metric learning algorithm can-
not be applied to the PLL problem because the true label
of the example is unknown and the learning algorithm is
unable to learn without ground-truth labels. Therefore, we
consider generalizing traditional metric learning method to
PLL problem, and propose a metric learning algorithm that
is suitable for PLL. In practice, there is few related research
on this field except that Zhou et al. proposed a partial la-
bel metric learning algorithm named PL-GMML [9], which
builds sample pairs and learns the metric by minimizing
the objective function. However, it is time consuming to
calculate the objective function and it treats the similar and
dissimilar pairs symmetrically, which will have an adverse
effect on the result because of the impact of ambiguous label
information.

Inspired by the KISS metric learning algorithm [8], in
this paper, a pairwise statistical inference metric learning al-
gorithm is proposed, which calculates a distance metric ma-
trix during the training process. For reason that Euclidean
distance and some other traditional distance measurements
do not have adjustable parameters, we choose Mahalanobis
distance as the distance metric. Then, we employ the
likelihood-ratio test method to learn the metric for partial la-
bel data and propose a novel metric learning method named
PMSI, i.e., Partial-label Metric-learning based on Statis-
tical Inference. By using the statistical inference method,
PMSI is capable of training the metric matrix M without
objective function. Besides, during the statistical process,
PMSI treats the similar and dissimilar pairs asymmetrically
through regarding them as two independent Gaussian distri-
butions. Finally, by utilizing the mapping matrix L obtained
through Cholesky decomposition M = LLT , the partial label
data will be mapped into a new feature space which should
satisfy the manifold assumption well.

To sum up, our contribution can be summarized as fol-
lows: 1) We propose a metric learning algorithm suitable
for partial label data to make the data satisfy the manifold
assumption well; 2) The proposed algorithm utilizes statis-
tical inference method and needs no objective function so
that it will be more efficient.

Experiment on several real-world PLL datasets showed
that PMSI method is capable of improving the disambigua-
tion accuracy and classification accuracy of PLL algorithms
as a frontend. Moreover, PMSI outperforms the existing par-
tial label metric learning method PL-GMML, and saves at
least 47.3% of the training time.

2. The Proposed Method

2.1 Problem Statement

Let D = {(xi, Si) | 1 ≤ i ≤ n} be the partial label training
set, in which xi = (xi1, xi2, · · · , xid)T , xi ∈ Rd is the d-
dimensional feature vector of the i-th instance and Si ∈ Y
is the candidate label set of xi.

The main purpose of distance metric learning is to learn
a Mahalanobis distance functions:

d2
M(xi, x j) = (xi − x j)

T M(xi − x j) (1)

from the training data pairs (xi, x j), which contains similar
and dissimilar data pairs. Besides, M � 0 is a positive semi-
definite matrix with m2 parameters, which can be adjusted
during training process.

However, in partial label learning, we cannot get the
similar and dissimilar training data pairs directly for reason
that the ground-truth label of instance is inaccessible. As a
result, the traditional metric learning algorithms cannot be
applied to PLL problems. Nonetheless, considering that if
two instances are from the same class, they must have shared
label in their candidate label set. Therefore, to get the data
pairs, we can measure the similarity between partial label
instances by using the Jaccard index yi j of their candidate
label sets:

yi j =
|Si ∩ S j|
|Si ∪ S j| (2)

yi j > 0 denotes xi have shared candidate labels with x j, i.e.,
(xi, x j) is a similar pair and yi j = 0 otherwise.

As shown in Eq. (1), if two data points are close to each
other, they should have a low values of d2

M(xi, x j). Besides,
the purpose of our work is to get a distance metric matrix un-
der which the similar data will be close to each other. Thus,
if xi and x j are from the same class, they should have a low
value of d2

M(xi, x j). Suppose H0 denotes that xi and x j are
from different classes. Accordingly, H1 denotes xi and x j

are from the same class. Then, the distance between xi and
x j are can be inferenced by the likelihood-ratio test of H0

and H1:

δ(xi, x j) = log

⎛⎜⎜⎜⎜⎜⎝
p(xi, x j |H0)

p(xi, x j |H1)

⎞⎟⎟⎟⎟⎟⎠ (3)

The possibility of H1 decreases with the value of δ(xi, x j).
To rule out the effect of the actual position of the in-

stance in the feature space, we can calculate δ(xi, x j) by the
difference of xi and x j: xi j = xi − x j. Then the likelihood
ratio Eq. (3) can be rewrite as:

δ(xi, x j) = log

⎛⎜⎜⎜⎜⎜⎝
p(xi j |H0)

p(xi j |H1)

⎞⎟⎟⎟⎟⎟⎠ (4)

Suppose that p(xi j |H0) and p(xi j | H1) obey the
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Gaussian distribution N(0,Σyi j=0) and N(0,Σyi j>0) respec-
tively, Σyi j=0 and Σyi j>0 are the corresponding covariance ma-
trixes, which can be obtain according to statistics. Then, we
can re-write Eq. (4) as:

δ(xi j) = log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2π|Σyi j=0 | exp

(
− 1

2 xT
i jΣ
−1
yi j>0xi j

)

1√
2π|Σyi j>0 | exp

(
− 1

2 xT
i jΣ
−1
yi j=0xi j

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

However, as there are many false labels in the candidate
label set, two samples in a similar pair could also belong to
different classes. Therefore, we should give each similar
pair a confidence ratio to identify the possibility of that they
belong to the same class. Considering that in the feature
space, the instances close to each other are more likely to
come from the same class. Accordingly, the confident ratio
of that the samples in a similar pair are from the same class
can be measured through the weight variable wi j:

wi j = 1 − di j∑
a∈Nyi j>0(xi) dia

(6)

where Nyi j>0(xi) denotes the index of the k-nearest neighbors
of xi in the similar data set { j | 1 ≤ j � i ≤ n, yi j > 0}, and
di j is the distance between xi and x j. The value of wi j in
Eq. (6) will increase with the possibility of that they belong
to the same class.

As PLL is a multi-class classification problem, the
quantity of the dissimilar pairs is much larger than that of
similar pairs. Therefore, in order to reduce the computation,
we only consider the dissimilar pairs which are closer than
the k-th nearest neighbor of xi. Accordingly, the remain-
ing dissimilar pairs can be expressed as Nyi j=0(xi) = { j | 1 <
j � i ≤ n, yi j = 0, di j < max

a∈Nyi j>0(xi)
dia}. Considering that

in the feature space, the instances far from each other are
more possible to come from the different classes. Then, the
weight variable wi j for the dissimilar pairs can be calculated:

wi j =
di j∑

a∈Nyi j=0(xi) dia
(7)

The value of wi j in Eq. (7) will increase with the possi-
bility of that they belong to the different classes.

After that, we can obtain the covariance matrix Σyi j>0

and Σyi j=0 by a statistical method with the weight variable
wi j:

Σyi j>0 =
1

1 −∑Nyi j>0(xi) w2
i j

∑
Nyi j>0(xi)

wi jxi jx
T
i j (8)

Σyi j=0 =
1

1 −∑Nyi j=0(xi) w2
i j

∑
Nyi j=0(xi)

wi jxi jx
T
i j (9)

Then, by taking the log, Eq. (5) can be written as:

δ(xi j) =
1
2

(
xT

i jΣ
−1
yi j>0xi j − xT

i jΣ
−1
yi j=0xi j

)

+
1
2

(
log(|Σyi j=0 |) − log(|Σyi j>0 |)

)
(10)

Table 1 The pseudo-code of PMSI

As the second term of Eq. (10) only provides an offset,
so we simplify Eq. (10) to:

δ(xi j) = xT
i j

(
Σ−1

yi j>0 − Σ−1
yi j=0

)
xi j (11)

As the likelihood-ratio test in Eq. (11) and the
Mahalanobis distance functions have the same monotonic-
ity, δ(xi j) can be used to measure the distance between the
instance xi and x j. Finally, by comparing Eq. (11) with
Eq. (1), we can observe that the Mahalanobis distance met-
ric matrix could be described as:

M̂ =
(
Σ−1

yi j>0 − Σ−1
yi j=0

)
(12)

Consequently, we do not need to solve any objective
function to get the metric matrix M as the matrix

(
Σ−1

yi j>0 −
Σ−1

yi j=0

)
is calculate through a statistical method.

Considering that M should be a positive semi-definite
matrix, we can use eigen-analysis to project Eq. (12) onto its
PSD (positive semi-definite) cone so that to get the metric
matrix M.

2.2 Algorithm Description

The complete procedure of the proposed PMSI approach is
summarized in Table 1. Given the partial label training set,
the similar and dissimilar pairs are generated by calculat-
ing yi j. After that the weight variable of the similar and
dissimilar pairs are calculated in an asymmetrical method
with different formulas. Accordingly, the data distributions
of the similar and dissimilar pairs are obtained by statistical
process and finally the metric matrix is calculated.

3. Experiment

3.1 Experiment Setup

The main purpose of PMSI is to learn a Mahalanobis dis-
tance metric matrix form partial label training set. Besides,
under the learned metric, the partial label data will satisfy
the manifold assumption well in order to promote the accu-
racy of PLL algorithms. Accordingly, to evaluate the perfor-
mance of our distance metric learning algorithm, we do ex-
periments on five real world datasets collected from differ-
ent application domains. Specifically, Lost [10] and Yahoo!
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Table 2 The detail characteristics of real-world data sets

Table 3 Classification accuracy (mean ± std) of each comparing algorithm on the real-world partial
label data sets

News [11] are from face annotation problems, MSRCv2 [12]
is from object detection problem, BirdSong [13] is from bird
song classification problem and FG-NET [14] is from hu-
man face age estimation problem. The detail characteristics
of the real-world datasets are listed in Table 2.

Moreover, we combine our method with five state-of-
the-art partial label learning algorithms to measure the per-
formance:

• PL-KNN [2]: a k-nearest neighbor based partial label
learning algorithm, constructs a similarity graph by k-
nearest neighbor method and uses weighted voting to
predict the label.
• IPAL [3]: a graph based partial label learning algo-

rithm, regards the candidate labels equally and predicts
the label by using label propagation algorithm.
• PL-LEAF [4]: a graph based partial label learning algo-

rithm, calculates the confidence of each candidate label
during the training phase. The algorithm learns the pre-
dictive model by carrying out regularized multi-output
regression with confident variables.
• PL-ECOC [15]: a disambiguation-free partial label

learning algorithm, represents the labels by binary
codes, and builds a group of binary classifiers, using

the binary output to predict the label of instance.
• PL-AGGD [16]: an adaptive graph guided partial label

learning algorithm, which performs label disambigua-
tion and predictive model training simultaneously by
using adaptive graph.

Besides, the existing distance metric learning method
for partial label data named PL-GMML [9], which uses ge-
ometric mean metric method to train the metric matrix M
for partial label data, is used as comparison.

3.2 Experiment Results

Table 3 reports the mean classification accuracy and the
standard deviation of each state-of-the-art partial label learn-
ing algorithm when it is (or not) combining with partial
label distance metric learning method. For clarity, in Ta-
ble 3, the best one among the three results of each PLL al-
gorithm is marked in boldface. Two-sample t-test at 0.05
significance level is employed based on the ten-fold cross-
validation while •/◦ indicates whether PMSI is statistically
superior/inferior to the comparing algorithm on each data
set.

As listed in Table 3, PMSI is capable of improv-
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Table 4 Disambiguation accuracy (mean±std) of each comparing algorithm on the real-world partial
label data sets

ing the performance of PLKNN, IPAL, PL-ECOC and PL-
LEAF on all data sets. Besides, the improvement of these
partial learning algorithms combining PMSI is superior to
that of the state-of the-art partial label metric PL-GMML
PLKNN, IPAL, PL-ECOC and PL-LEAF on all data sets
for 0.2∼14.59%, except that of PLKNN on BirdSong data
set and PL-AGGD on MSRCv2 data set. Besides, as we
can see in Table 6, PMSI is more efficient than PL-GMML
during the metric training phase and is at least 1.89 times
faster than PL-GMML on all five data sets. In conclusion,
PMSI performs advantageously than PL-GMML and con-
sumes less time.

In addition to the classification performance listed in
Table 3, the disambiguation performance, which reflects the
capability to predict the ground-truth label of each instance
form candidate label set, is also investigated in Table 4.

As listed in Table 4, it is clearly to observe that:
1) PMSI is capable of improving the disambiguation ac-
curacy of all five partial label learning algorithms on Lost,
FG-NET, BirdSong and Yahoo! News data sets and is capa-
ble of improving the performance of most of the PLL algo-
rithms on MSRCv2 datasets. Especially, on BirdSong data
set, PMSI is capable of improving the disambiguation ac-
curacy of PL-LEAF algorithm by 18.85%, which is 16.33%
higher than PL-GMML. 2). Out of the 23 comparative ex-
periments, PMSI has a better disambiguation performance
than PL-GMML on 18 comparative experiments.

Table 5 listed the win/tie/loss counts on the classifica-
tion performance and disambiguation performance of PMSI
against the comparing algorithms PL-GMML and the ori-
gin PLL algorithms which use Euclidean distance. It is
clearly that in most of the cases, PMSI can improve classifi-
cation performance and disambiguation performance of the
PLL algorithm. Besides, PMSI has a higher improvement
to the PLL algorithms than the existing partial label metric
learning algorithm PL-GMML in most of experiments. Be-

Table 5 The win/tie/loss counts on the classification performance and
disambiguation performance of PMSI against the comparing algorithms

Table 6 The average training time of our method PMSI and PL-GMML
on the real-world partial label data sets

sides, in Table 6, The average training time costed by our
method PMSI on the real-world partial label data sets is
much less than that of PL-GMML.

3.3 Parameter Sensitivity Analysis

According to the flowchart, PMSI learns from partial label
examples by employing the parameter k, which denotes the
number of k-nearest neighbors in Nyi j>0(xi). To investigate
the sensitivity of PMSI under parameter k, Fig. 2 illustrates
the disambiguation accuracy and classification accuracy of
PMSI using different parameter configurations. For the con-
venience of analysis, 3 data sets are chosen for sensitivity
analysis and two PLL algorithms are chosen as backend of
PMSI. It is obvious that the disambiguation accuracy and
classification accuracy of PL-KNN and IPAL algorithms
changes slightly while parameter k varies. Therefore, we
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Fig. 2 Parameter sensitivity analysis for PMSI algorithm on the Lost, MSRCv2 and FG-NET data
sets. (a) Disambiguation accuracy of PMSI changes as the ratio k/k0 increases from 0.5 to 2.5 with step-
size 0.2, k is the number of neighbors used in PMSI, k0 is the number of neighbors used by PLKNN,
IPAL. (b) Classification accuracy of PMSI changes as the ratio k/k0 increases from 0.5 to 2.5 with step-
size 0.2, k is the number of neighbors used in PMSI, k0 is the number of neighbors used by PLKNN,
IPAL.

can set k = k0 for convenience.

4. Conclusion

In this paper, a statistical inference based partial label met-
ric learning algorithm PMSI was proposed, which utilizes
likelihood-ratio test to obtain the metric matrix M for par-
tial label data. The PMSI method calculates the metric
matrix by the statistics distribution of similar and dissimi-
lar sample pairs so that it needs no objective function and is
time-saving. Moreover, as the metric matrix M is a semi-
definite matrix, it can be decomposed to a mapping matrix
L by Cholesky decomposition M = LLT and maps the data
to a new feature space x′ = Lx in which the data will satisfy
the manifold assumption better. Thus, the PMSI method can
be used as a frontend of the state-of–the-art PLL algorithms
to improve the performance on disambiguation and classifi-
cation. Furthermore, the PMSI method compares favorably
against the existing partial label metric learning algorithm
PL-GMML on disambiguation accuracy and classification
accuracy in most cases of the experiments and meanwhile
demands at most 53% of the process time. In future work,
we will research on add multi modal function to the partial
label metric learning algorithms.
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