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PAPER

Posture Recognition Technology Based on Kinect

Yan LI†, Zhijie CHU††, Nonmembers, and Yizhong XIN††a), Member

SUMMARY Aiming at the complexity of posture recognition with
Kinect, a method of posture recognition using distance characteristics is
proposed. Firstly, depth image data was collected by Kinect, and three-
dimensional coordinate information of 20 skeleton joints was obtained.
Secondly, according to the contribution of joints to posture expression, 60
dimensional Kinect skeleton joint data was transformed into a vector of
24-dimensional distance characteristics which were normalized according
to the human body structure. Thirdly, a static posture recognition method
of the shortest distance and a dynamic posture recognition method of the
minimum accumulative distance with dynamic time warping (DTW) were
proposed. The experimental results showed that the recognition rates of
static postures, non-cross-subject dynamic postures and cross-subject dy-
namic postures were 95.9%, 93.6% and 89.8% respectively. Finally, pos-
ture selection, Kinect placement, and comparisons with literatures were
discussed, which provides a reference for Kinect based posture recognition
technology and interaction design.
key words: Kinect, depth image, distance characteristic, posture recogni-
tion

1. Introduction

There are two methods of human posture recognition based
on computer vision: model-free reconstruction and model-
based reconstruction [1]. The model-free reconstruction
method extracts pictures and video streams, and the human
body postures are directly represented with silhouettes or
contours from the perspective of images [2]. It does not need
to solve human body model parameters, which simplifies the
solution of human body posture expression. However, in the
case of complex background, the silhouettes or contours are
susceptible to noise pollution. In order to reduce the in-
fluence of noise, the literatures [3]–[5] used shape context
descriptors to represent contour images, but the model-free
reconstruction method was still easily affected by the fac-
tors such as viewpoint and individual differences of human
body. For one case, in different viewpoints, the contour im-
ages of human body are quite different. For another case,
when different people assume the same postures, the con-
tour images are also quite different, resulting in the unsatis-
factory results of posture recognition. The model-based re-
construction method is to recognize the posture according to
the built human body model in the computer, which reduces

Manuscript received August 12, 2019.
Manuscript revised November 13, 2019.
Manuscript publicized December 12, 2019.
†The author is with Shenyang Sport University, Shenyang,

110102 China.
††The authors are with Shenyang University of Technology,

Shenyang, 110142 China.
a) E-mail: xyz@sut.edu.cn

DOI: 10.1587/transinf.2019EDP7221

the influence of covariates such as viewpoint [6]. However,
two-dimensional model does not contain depth information,
and thus it is difficult to recognize the posture changing per-
pendicularly to the lens [7]. Moreover, visual occlusion also
increases the difficulty of human body model building [8].

The emergence of Kinect has changed this phe-
nomenon. Kinect provides three-dimensional position in-
formation of 20 skeleton joints of human body. Through the
infrared principle, it can identify the skeleton joints with-
out the interference of natural light. However, due to the
large amount of three-dimensional coordinate information
of skeleton joints formed by Kinect, the time-space com-
plexity of posture recognition increased [1], [9], [10]. As a
result, it is necessary to reduce the complexity of posture
expression. In addition, with the changes of the viewpoint
and the distance between the body and the Kinect, the hu-
man skeleton shapes will also affect the posture recognition
results. Therefore, it is necessary to explore a characteris-
tic consistent posture recognition method, which is less af-
fected by the viewpoints, distances between the body and
the Kinect, and the body heights. Since dynamic posture
(motion) can be represented as a series of static postures,
static posture recognition lays a foundation for dynamic pos-
ture recognition. However, the same motion with different
speed might lead to different lengths of the static posture
sequences representing the motions, which would affect the
accuracy of posture recognition.

In order to simplify the complexity of posture recogni-
tion, model-based reconstruction was adopted to recognize
the static and dynamic postures. First, three-dimensional
coordinate information of skeleton joints is captured, and
those joints that contribute less to the postures are discarded.
Second, the preserved skeleton joints data is normalized into
characteristic consistent distance values that are less affected
by the viewpoints, the distances between the body and the
Kinect, and the body heights. Third, a shortest distance tem-
plate matching method is proposed to recognize static pos-
tures. Fourth, the dynamic postures are decomposed into
several static postures, and a minimum accumulative dis-
tance template matching method with dynamic time warp-
ing is proposed to recognize dynamic postures. Fifth, the
proposed static and dynamic posture recognition methods
were empirically evaluated. Last, posture selection, Kinect
placement, and comparisons with other methods are dis-
cussed.
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2. Related Work

2.1 Kinect-Based Interaction

Kinect was used in medical, robot and virtual reality fields
recently. Lange et al. [11] used Kinect somatosensory tech-
nique to provide limb recovery training for sports rehabili-
tation patients by combining the skeleton data with virtual
scenes. Chang et al. [12] designed a fitting mirror system
with Kinect and AR technique to permit users to try clothes
by gestures. Benko et al. [13] built the DepthTouch plat-
form with Kinect, and users could directly interact with the
3D virtual scene projected on the plane. Cardo et al. [14]
designed an application to detect falls with Kinect, which
could reduce the risk of falls when left unattended. Tan et
al. [15] proposed a posture matching algorithm combining
Kinect’s color data stream and depth data stream, which re-
alized the high-resolution denoising. Raheja et al. [16] re-
alized hand detection by segmenting Kinect’s distance and
depth vector. Li et al. [17] recognized sign language with
Kinect, and displayed the corresponding meaning of action
in the interactive interface. Xia et al. [18] used the Kinect
depth image and the Canny operator to extract the data of
the human body edge to detect and track human body. Shot-
ton et al. [19] recognized human body parts by using depth
image synthesized by pixel difference method and random
forest algorithm. Gao et al. [20] captured the hand move-
ment by Kinect, and realized the function of making virtual
pottery by transferring the original data to Unity3D through
Zigful.

2.2 Posture Recognition

Polana et al. [21] used temporal structure to identify differ-
ent motions. Zhang et al. [22] proposed a time sequences
extraction method, which extracted very short action se-
quences from long video sequences. Tian et al. [23] com-
bined the locally consistent group sparse representation
method with the temporal and spatial structure of each video
sequence, and proposed an action recognition framework.
Zhu et al. [24] proposed a spatiotemporal descriptor method
to detect action events in complex scenes. Sun et al. [25]
proposed a real-time sitting posture recognition algorithm
based on Index Graph and BLS model, and proposed a dou-
ble threshold cascade algorithm for the case of too many
frames in the video. Jansen et al. [26] designed a dispos-
able stretch skin sensor, which could be used for body posi-
tion monitoring, rehabilitation feedback and detailed motion
monitoring in the process of exercise and fitness. Wang et
al. [27] realized the human posture automatic recognition in
the process of CT scanning. Tapia et al. [28] placed the wire-
less accelerometer on the limbs and hips and placed the heart
rate monitor on the chest to identify the physical activity and
its intensity with the fast decision tree classifier. Bourke et
al. [29] used the dual axis gyroscope sensor which was in-
stalled on the torso to measure the tilt and rotation speed of

human body, and realized the algorithm to distinguish daily
life and fall.

Zhang et al. [4] used the image representation of mo-
tion context to represent actions as 3D descriptors, which
reduced the influence of noise points on body posture. Yao
et al. [30] designed a robust vision system to detect the ac-
tion of raising hands to ask questions through time and space
segmentation, skin color recognition and other technologies,
and solved the problem of false recognition caused by the
change of light, the number of matching objects and other
factors. Jiang et al. [31] put forward a motion recognition
method based on depth video sequence to generate fuzzy
amount of motion sequence by accumulating equal amount
of motion to get different length subsequences and control-
ling fuzzy amount of motion to capture boundary informa-
tion. Qi et al. [32] made up for the shortcoming that the
static objects were often ignored in tracking-based recogni-
tion method through extracting video report, object infor-
mation and tracking information at the same time.

Gianaria et al. [33] proposed a method to describe
walking gait by using the three-dimensional skeleton infor-
mation obtained by Kinect sensor, and found that some dy-
namic parameters related to knee, elbow and head motions
are good candidates for robust gait characteristics. Wang et
al. [34] extracted part characteristics from action set and ex-
pressed them with sparse matrix to decrease the noise and
occlusion. Kim et al. [9] proposed the DMA (dynamic mo-
tion appearance) and the DMH (deep motion history) meth-
ods to identify human behavior by simply using depth map
other than joints information. Chen et al. [35] proposed
a GLAC (gradient local autocorrelation) method to extract
characteristics from DMM (depth motion map). Chen et
al. [36] proposed a human motion recognition method that
utilized distance-weighted Tikhonov matrix with L2 regular
cooperative suppression classifier to recognize motion from
DMM. Chen et al. [37] proposed a method to obtain com-
pact characteristics representation from DMM using LBP
(local binary pattern). Yang et al. [38] proposed a charac-
teristics representation method by gathering the local nor-
mal vectors of hypersurface in the depth sequence to form
a Polynormal combining the local shape and motion infor-
mation of human body. Bari et al. [39] designed a neural
network framework for gait recognition and optimized the
traditional machine learning model so that the accuracy rate
of gait recognition reached 93.73%. Ali et al. [10] proposed
an action recognition framework based on Kinect to detect
human skeleton joints. The framework captured human ac-
tions in all directions by utilizing deep motion images so as
to classify human behaviors. Deng et al. [1] developed a gait
recognition system by using the deterministic learning algo-
rithm and Kinect to improve the gait recognition accuracy.
Sun et al. [40] proposed a model to recognize sign language
and find out the difference frame and representative frame in
videos. Ordóñez et al. [41] proposed a general depth frame-
work based on CNN (Convolutional Neural Network) and
LSTM (Long Short-Term Memory) recursive unit for hu-
man activity recognition.
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Although Kinect interaction and posture recognition
were studied in the above literatures, some focused on
the posture recognition of partial human body [23], [33]–
[35], [38], [39], and some did not consider the human body
structures [1], [21], [30], [34]–[36], [40]. Moreover, some
models were complicated or required an amount of compu-
tation [9], [31], [33], [34]. And what’s more, most did not
explore the posture characteristics from static and dynamic
perspectives [1], [9], [10], [21]–[23], [25], [30], [31], [33]–
[36], [39]–[41]. In order to reduce the complexity of posture
recognition, the skeleton model was simplified, and char-
acteristic consistent distance values were generated for the
static and dynamic posture recognitions.

3. Static Posture Recognition

3.1 Depth Image Extraction

Kinect can extract three kinds of original data streams in-
cluding (1) depth data stream that is extracted by depth sen-
sor composed of infrared CMOS camera and infrared trans-
mitters, (2) color video stream that is extracted by color
camera, and (3) audio data stream that is extracted by mi-
crophone. The depth image formed by Kinect depth data
stream reflects the distance between object and camera in
the visible range.

Kinect uses infrared transmitters to project structured
light into the whole space. Due to the different roughness of
object surface in the space, different shapes of highly ran-
dom speckles are formed. The sizes and shapes of the speck-
les at any two positions in the space are different. Accord-
ing to the speckle image collected by the infrared CMOS
camera, the light source is calibrated. The shorter calibra-
tion interval, the higher accuracy achieves (Fig. 1). Through
the correlation operation between the speckle image to be
measured and the pre-stored reference image, the correla-
tion image is obtained. The peak position of the correlation
image is used to measure the position of the object in the
space, and then the three-dimensional shape of the scene to
be measured is obtained by the interpolation operation and
the superposition of the peak value.

3.2 Skeleton Characteristics Extraction

The depth image captured by Kinect is used to track and
locate the human skeleton joints. Kinect can recognize the
whole body skeleton data of two people in the measurement
space, generate about 30 frames of skeleton data per second,
and provide three-dimensional coordinate information of 20

Fig. 1 Comparison diagram of calibration distance.

human skeleton joints. These joints are head (H), shoulder
center (SC), shoulder left (SL) / right (SR), elbow left (EL) /
right (ER), wrist left (WL) / right (WR), hand left (HL) / right
(HR), spine (S), hip center (IC), hip left (IL) / right (IR), knee
left (KL) / right (KR), ankle left (AL) / right (AR), and foot
left (FL) / right (FR) (Fig. 2). The origin of Kinect skeleton
tracking coordinate system is infrared camera. The positive
directions of X, Y and Z are the left direction, the upward
direction and the facing direction of the camera.

Thanh et al. [42] proposed the method of transform-
ing joints information into three-dimensional skeleton his-
togram, and Sempena et al. [43] proposed the method of the
quaternion characteristics extraction, whose purpose was to
transform the three-dimensional coordinate information into
the characteristics quantity for recognition. However, they
did not consider the internal structure of human body. Con-
sidering the human body structure, this paper extracted the
distance characteristics from the three-dimensional skeleton
joints coordinate data and used them to represent the pos-
ture. First, the posture template database was established
according to the collected posture samples. Second, the pos-
ture was defined through characteristic extraction, and the
characteristic template database was formed, which is re-
garded as the modeling process. Third, the characteristics of
postures to be identified were extracted. Last, postures were
identified and classified by the classifier, which is regarded
as the recognition process. The whole process of modeling
and recognition is shown in Fig. 3.

Fig. 2 Diagram of skeleton 3D tracking coordinate system.

Fig. 3 Diagram of modeling and recognition process.
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Through the observation of three-dimensional Kinect
skeleton joints data, it is found that the head joint (H in
Fig. 2) and 7 joints (SR, SC, SL, S, IR, IC, IL in Fig. 2) of
the human torso part are relatively scale consistent. Vari-
ations of postures have little influence on these joints data
which can be discarded in posture expression and only used
as a reference in skeleton coordinate system. Furthermore,
the human body postures are mainly represented by the po-
sitional changes of the limbs especially the WL/WR, EL/ER,
KL/KR, AL/AR joints who contribute more to the posture ex-
pression. Therefore, these eight joints data are selected as
the main parameters of posture recognition.

Considering that the distance between hand and wrist
and the distance between foot and ankle were very short,
it was not essential to choose both hand and wrist or both
foot and ankle in posture recognition so that the computa-
tion amount could be decreased. Thus, left/right hand and
left/right foot joints (HL, HR, FL, FR in Fig. 2) are discarded
too. After selecting the spine joint (S) as the reference and
calculating the distance between the 8 joints (WL, WR, EL,
ER, KL, KR, AL, AR) and the spine joint (S) in three dimen-
sional coordination, a total of 24 distance characteristic val-
ues are achieved. The distance characteristic vector set Fd

of the selected joints of the limbs is represented as Eq. (1).

Fd = {dX
El−S , d

Y
El−S , d

Z
El−S , d

X
ER−S , d

Y
ER−S , d

Z
ER−S ,

dX
WL−S , d

Y
WL−S , d

Z
WL−S , d

X
WR−S , d

Y
WR−S , d

Z
WR−S ,

dX
KL−S , d

Y
KL−S , d

Z
KL−S , d

X
KR−S , d

Y
KR−S , d

Z
KR−S ,

dX
AL−S , d

Y
AL−S , d

Z
AL−S , d

X
AR−S , d

Y
AR−S , d

Z
AR−S } (1)

For example, if the three-dimensional coordinates
(XEL, YEL, ZEL) of the left elbow joint EL are (2.630015,
−0.3500767, 0.3967017) extracted by the Kinect, and the
three-dimensional coordinates (XS ,YS ,ZS ) of the spine joint
S are (2.676984, −0.1217509, 0.4159655), dX

El−S = XEL −
XS = −0.046969, dY

El−S = YEL − YS = −0.2283258, and
dZ

El−S = ZEL − ZS = −0.0192638 represent the distances
from EL to S on X-axis, Y-axis and Z-axis.

Considering that the skeleton model may vary when the
distance between human and Kinect or the shooting angle of
Kinect camera changes, a reference distance between SC to
S on Y-axis was selected to normalize the distance character-
istics to obtain scale consistent model. A new set of distance
characteristics is formed after normalization and expressed
as Eq. (2).

Again, if the three-dimensional coordinates (XS C ,
YS C , ZS C) of the shoulder center joint SC are (2.585047,
−0.1356404, 0.8063439) extracted by the Kinect, and
dY

S C−S = YS C − YS = −0.0138895 is the dis-
tances from SC to S on Y-axis, dX

El−S /d
Y
S C−S =

(−0.046969)/(−0.0138895) = 3.381619209, dY
El−S /d

Y
S C−S =

(−0.2283258)/(−0.0138895) = 16.4387343, and dZ
El−S /

dY
S C−S = (−0.0192638)/(−0.0138895) = 1.386932575 are

normalized distance characteristic values of joint EL on X-
axis, Y-axis and Z-axis. Although the values of dX

El−S and
dY

S C−S will change with the distance between the human
body and Kinect, the value of dX

El−S /d
Y
S C−S will remain un-

changed. Similarly, the other 23 values of FD will all re-
main unchanged, which provides the solution of character-
istic consistence.
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3.3 Static Posture Classification

The three-dimensional coordinates of the skeleton joints
vary little when the subjects remain still. To reduce the
unnecessary calculation, the averages of 30-frame three-
dimensional skeleton data extracted by Kinect per second
were converted to distance characteristic values to represent
the static posture G which can be expressed as Eq. (3).

G = F = (F1, F2, · · · , Fi, · · · , F24) (3)

The F here represents the set of distance characteristics
vector, and the Fi represents one of the distance characteris-
tic values e.g. dX

El−S /d
Y
S C−S in Eq. (2).

A posture template set is constructed by recording the
subject’s posture in advance and calculating all the 24 dis-
tance characteristic values of the posture. Given a posture
sample to be identified, the Euclidean distances between the
sample and all the postures in the template set are calcu-
lated. And the identified sample is classified into the cat-
egory of the sample in the template set that Euclidean dis-
tance is shortest to the identified sample. For a given pos-
ture sample Gq to be identified, and a posture template set
{G1,G2, · · · ,Gi, · · · ,GP}, the Euclidean distance d(Gq,Gi)
between Gq and Gi is calculated as Eq. (4).

d(Gq,Gi) =

√√√ 24∑
ω=1

(Fqω − Fiω)2 (4)

P is the size of the posture template set. The Fq and
the Fi are distance characteristics vectors of the sample and
one posture in the template set. The Fqω and the Fiω are a
certain distance characteristic value of the sample and one
posture in the template set. The larger d(Gq,Gi), the lower
similarity between the two samples is.

The posture classification label of identified posture Gq

is assigned as Eq. (5).

lable(Gq) = lable(Gm),

m = arg min
i=1,···,n

d(Gq,Gi) (5)

m is the number of a sample in the template set who is
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Fig. 4 The static postures to be identified.

Table 1 Static posture recognition results.

the most similar to the identified sample, and the classifica-
tion label of Gq is assigned to that of Gm. arg means to get
the number.

3.4 Subjects, Experimental Conditions and Results

10 subjects (4 females, 6 males) participated in the exper-
iment. Their average age was 24.7 ranging from 18 to 43,
and their average height was 1.69m ranging from 1.59m to
1.78m. At all time, one subject was selected as a identified
sample to recognize his/her posture, and the other subjects’
postures were used as the template set, which is arranged as
leave-one-out cross validation (LOOCV). All the subjects
were selected as identified sample once. 12 postures were
identified in the experiment (Fig. 4).

A Microsoft Kinect for Windows was used in the ex-
periment. The Kinect was placed 1.2m from the ground.
The subjects were asked to stand 2.4m away from Kinect
with deflection angle less than 20◦. The experiment was
carried out in natural light environment. The experimental
program ran on an Acer Aspire v5-473g laptop computer.

The experimental results showed that the average
recognition rate was 95.9%, which indicated that the pro-
posed posture recognition method is feasible and effective.
Detailed results are shown in Table 1.

The postures g7 and g10 were recognized completely,
which was mainly because these two postures are quite dif-
ferent from other postures. Moreover, the bending of legs
resulted in greater differentiation from other postures so that
the classifier could distinguish them accurately. For the
g6 and g9 case, their lower limb postures are same, and
their upper limb postures are less different, so that mis-
recognitions often occur, which resulted in the lowest recog-
nition rate.

4. Dynamic Posture Recognition

A key matter for the dynamic posture recognition is to ex-
press the dynamic posture. Considering that dynamic pos-
ture can be represented with the combination of a series of
skeleton frame data, and each frame is equivalent to a static
posture, the motion (dynamic posture) can be regarded as a
combination of static postures. For example, a lifting mo-
tion may be regarded as a sequence of static posture g7,
g8 and g9 in Fig. 4. Therefore, static posture recognition
lays a foundation of dynamic posture recognition. Dynamic
postures are represented with a continuous static posture se-
quences over a period of time. Based on the characteristic
values, a dynamic posture M is expressed as Eq. (6).

M = (G1,G2, · · · ,Gi, · · · ,Gn) (6)

The Gi is the ith static posture distance characteris-
tic vector which is a 24-dimensional distance characteristic
value set described as Eq. (2). The n is the total number of
static postures contained in a dynamic posture. Thus, the
characteristic vector of a motion is 24 × n-dimensional.

4.1 Dynamic Time Warping

Dynamic posture recognition has to construct the model
both temporally and spatially. When a person makes the
same motion with different speed, a time shifting will be
found in the curve of motion on the time axis. If a motion
is completed quickly, the posture sequence representing the
motion will be correspondingly short, and vice versa.

In order to judge whether the curves of two samples
belong to the same motion, the Euclidean distance is used
to calculate the distance between the characteristic values
of two samples. However, in order to meet the conditions
of Euclidean distance algorithm, the sequence lengths of
the two curves are required to be consistent, and the cor-
responding characteristic values on the curves are aligned
on the time axis. Sakoe et al. [44] proposed an optimiza-
tion algorithm of dynamic time warping to solve the irreg-
ularity on the time axis in speech recognition. Considering
that this algorithm reduced distortion and maximizes over-
lap between two sequences (Fig. 5), the dynamic time warp-
ing (DTW) algorithm is also used to match two character-
istic value curves according to the minimum accumulative
distance.
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Fig. 5 The mapping relationship after dynamic time warping.

Fig. 6 The shortest matching path between dynamic posture T and S.

4.2 Calculation of the Accumulative Distance

The motions were classified through the minimum accumu-
lative distance of the characteristic vectors between a dy-
namic posture to be identified and a certain dynamic posture
in the template set.

Given two dynamic postures T and S which
are composed of static postures (T1,T2, · · · ,Tn) and
(S 1, S 2, · · · , S m), if n = m, the accumulative distance is the
value of

∑m
i=1 d(Ti, S j) which is calculated as Eq. (4).

If n � m, the accumulative distance is calculated
through the shortest matching path algorithm with dynamic
time warping which is illustrated as following.

Construct an n ×m Matrix as shown in Fig. 6. Dynamic
posture T which is a static sequence (T1,T2, · · · ,Tn) is rep-
resented on the horizontal axis. Dynamic posture S which is
a static sequence (S 1, S 2, · · · , S m) is represented on the ver-
tical axis. The matrix element (i, j) represents the distance
d(Ti, S j) between the two static postures Ti and S j. d(Ti, S j)
is calculate as Eq. (7) that is consistent with Eq. (4).

d(Ti, S j) =

√√√ 24∑
ω=1

(Tiω − S jω)2 (7)

Tiω is the ωth distance characteristic value of the ith

static posture in dynamic posture T. S jω is the ωth distance
characteristic value of the jth static posture in dynamic pos-
ture S. Ti is the ith static posture in dynamic posture T. S j

the jth static posture in dynamic posture S.
Construct a shortest matching path W from (T1, S 1) to

(Tn, S m) to align the two dynamic postures T and S on the
time axis. The point wh through which the path W passes
indicates that two static postures Ti and S j are the hth aligned
on the time axis, and the align relationship is expressed as
wh(i, j). The shortest matching path is expressed as Eq. (8).

W = (w1,w2, · · · ,wh, · · · ,wK),

max(m, n) ≤ K ≤ m + n − 1 (8)

K here is the total number of points in the path.
The shortest matching path has three constraints:
(1) Continuity: given an align relationship wh(i, j),

when the next align relationship wh+1(i′, j′) is looked for, i′
and j′ have to meet the conditions of i′ − i ≤ 1 and j′ − j ≤ 1.

(2) Monotonicity: given an align relationship wh(i, j),
when the next align relationship wh+1(i′, j′) is looked for, i′
and j′ have to meet the conditions of i′ − i ≥ 0 and j′ − j ≥ 0.

(3) Boundary: w1(1, 1) and wK(n,m) are the two
boundaries.

With these constraints, the next align relationship to
wh(i, j) in the shortest matching path can only be wh+1(i +
1, j), wh+1(i, j + 1), or wh+1(i + 1, j + 1).

The accumulative distance γ(n,m) is calculated as
Eq. (9).

γ(i, j) = d(Ti, S j) +

min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)} (9)

The accumulative distance γ(n,m) indicates the simi-
larity of dynamic postures T and S. The smaller γ(n,m), the
more similar the two dynamic postures T and S are.

4.3 Dynamic Posture Classification

Given a dynamic posture T to be identified and a posture
template set of m dynamic postures {S 1, S 2, · · · , S i, · · · , S m},
calculate the accumulative distances between the sample
and all the postures in the template set in turn, so that the
minimum accumulative distance can be obtained. Then, the
sample is assigned to the category of the posture in the tem-
plate set who has the minimum accumulative distance to the
sample. The classification result of posture T is expressed
as Eq. (10).

lable(T ) = lable(S c), c = arg(minγ(T, S i)),

i = 1, 2, · · · ,m (10)

c here is the number of the posture in the template set
who has the minimum accumulative distance from the iden-
tified posture T.

In order to prevent the postures which were not in the
template set from misidentification, the similarity threshold
τ was set to identify the postures that were quite different
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Fig. 7 The dynamic postures to be identified.

Table 2 Dynamic posture recognition results in non-cross-subject part.

from the postures in the template set as rejected. Threshold
τ is calculated as Eq. (11).

τ = max(γ(S i, S j)), i, j = 1, 2, · · · ,M; i � j (11)

γ(S i, S j) here is the accumulative distance of dynamic
posture S i to S j in the template set. The threshold τ is set to
the maximum accumulative distance among all postures in
the posture set.

4.4 Experimental Results

6 subjects (3 females, 3males) participated in the experi-
ment. Their average age was 25.5 ranging from 18 to 43,
and their average height was 1.71m ranging from 1.59m to
1.78m. 6 kinds of postures as shown in Fig. 7 were iden-
tified in the experiment. The experimental equipment and
conditions were consistent with those in Sect. 3.4.

The experiment was divided into non-cross-subject and
cross-subject parts. In non-cross-subject part, each subject
was asked to record 6 kinds of postures of himself in ad-
vance as templates, and then the subject were asked to make
the postures same as the record ones for identification. Ev-
ery posture was performed 20 times. In total, the experiment
consisted of 6 subjects × 6 postures × 20 times = 720 trials.

The experimental results showed that the average
recognition rate of the six postures was 93.6%. The speed of
each posture made by the subjects was not limited, which in-
dicated that the method was robust and effective for motion
recognition. Detailed results are shown in Table 2.

In cross-subject part, one of the six subjects was ran-
domly selected to record his/her postures as template in ad-
vance. Then, the postures made by the other five subjects
were identified according to the template. Each posture was
identified 20 times. In total, the experiment consisted of 5

Table 3 Dynamic posture recognition results in cross-subject part.

subjects × 6 postures × 20 times = 600 trials.
The experimental results showed that the average

recognition rate of the six postures was 89.8%. Compared to
non-cross-subject part, there are two possible reasons for the
decline of recognition rate. For one hand, the postures made
by the subjects didn’t reach the designated position, which
is different from the template. For the other hand, some pos-
tures may be rejected due to the differences of skeleton pro-
files between subjects. Detailed results are shown in Table 3.

The recognition rate of postures g3 and g4 were higher
than others, which was mainly because these two postures
were quite different from other postures, and the single hand
lifting motion was significantly different from other mo-
tions. However, the recognition rate of postures g2 and g6
were lower than the other, which was mainly because these
two postures were quite similar, resulting in a misidentifica-
tion of each other.

In order to add new postures not existing in the posture
template set, the threshold τ was set. However, the accuracy
of posture recognition will be affected by the threshold too.
Without the threshold, all postures will be assigned an ex-
isting category even mistakenly for the reason that the min-
imum accumulative distance will be obtained inevitably in
the recognition process, and the posture label will be as-
signed according to the minimum accumulative distance.
When the threshold τ is set, some postures may not meet the
threshold requirements and be rejected. The rejected pos-
tures constituted a candidate set of new postures that is not
found in the template set.

When the threshold was set to the longest accumulative
distance among postures in the template set, the rejection
rates of the non-cross-subject and the cross-subject gesture
recognitions were 5.0% and 8.5% respectively.

5. Discussion

5.1 Collection of Postures

For the reason that the structure of human body is complex,
various postures can be made through the changes of skele-
ton position. In order to make the subjects understand pos-
tures accurately in experiment, daily and typical postures
were selected and expressed in appropriate ways.

Since a dynamic posture can be regarded as a sequence
of static postures, static posture recognition lays a founda-
tion for dynamic posture recognition. Static postures were
selected carefully and cautiously. In order that the static pos-
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tures used in the experiments can be made accurately by
subjects, they were collected through questionnaire, gym-
nastics, comics and on-site observation for ease of under-
stand. Moreover, priorities were given to those postures
with less occlusion among the 20 joints extracted by Kinect.
As a result, three types of static postures which were stand-
ing, sitting and squatting were collected. Moreover, stand-
ing postures were divided into standing, golden chicken in-
dependence, lunge, straddling, forward leaning, backward
leaning, tiptoeing and other postures. Sitting postures were
divided into cross legged sitting, sitting, kneeling, med-
itation and other postures. Squatting postures were di-
vided into deep-squatting, semi-squatting, horse-squatting,
leg pressing-squatting and other postures. After comprehen-
sive consideration of typicality, differentiation, less occlu-
sion and less difficulty, the static postures in Fig. 4 and the
dynamic postures in Fig. 8 were finally confirmed.

It is essential to make sure that the experimenter and
the subjects reach a consensus on postures understanding.
Different people may understand the postures with same
name quite differently. In order to make sure that the sub-
jects make accurate and appropriate postures, a “graphic +
text + oral interpretation” posture conveying method was
used.

5.2 Kinect Placement

Kenect placement is quite important. According to the
Kinect parameter specification, its viewing angles are 43.5◦
in the vertical direction and 57.5◦ in the horizontal direction,
and its camera can be adjusted within 28◦ upward and down-
ward. The effective viewing distance for skeleton data cap-
ture is from 0.8m to 4m by default. Nathan et al. [45] found
that as the distance between the object and Kinect increased,
the deviation between the distance in the depth image and
the actual distance increased. On the other hand, when the
distance between the subject and Kinect is 1m, Kinect can-
not capture the whole body skeleton data because of too
short distance. Moreover, the height of Kinect placement
might also affect the number of joints identified. In order to
analyze the postures accurately, it is necessary to make clear
and set up the Kinect placement height and the appropriate
distance range between the subjects and the Kinect.

A pilot experiment of Kinect placement was per-
formed. Kinect was placed at a height of 0.4m, 0.6m,
0.8m, 1.0m, 1.2m, 1.4m and 1.6m from the ground respec-
tively, and then the shortest and longest distances that Kinect
could capture all the 20 skeleton joints of an upright subject
1.78m high were measured. It was found that the proper
distance between human body and Kinect was from 1.8m
to 3.6m, and the deflection angle between human body and
Kinect should not exceed 45◦. The height of Kinect from
the ground had no significant effect on the proper distance
between human body and Kinect.

A further pilot experiment of Kinect placement was
performed. Kinect was placed 1.8m, 2.4m, 3m and 3.6m
away from the subjects and at a height of 0.4m, 0.8m, 1.2m

Table 4 Comparisons with other posture recognition works.

and 1.6m from the ground respectively. The 7200 frames
of skeleton data collected in the experiment were converted
into 24-dimensional distance characteristic values as de-
scribed in Eq. (2). It was found that these distance char-
acteristic values were not affected by the height of Kinect
and the distance between the subject and Kinect, which indi-
cated that the 24-dimensional distance characteristic vector
FD described in Sect. 3.2 could remain consistence. When
the subjects turned left or right more than 45◦ on the basis
of facing Kinect, the distance characteristic values changed
significantly. Thus, the subjects were asked to face Kinect
as they can in the formal experiments.

5.3 Comparisons to Other Literatures and Significance

Through literature review, posture recognition methods
were compared. The comparison results are shown in Ta-
ble 4.

The Stop feature [33] and ROPS [34] modelled in high-
dimensional situation, which increased the computational
complexity. The DMA + DMH + HOG [9] modelled by
means of establishing multi perspective camera, which was
time-consuming. The DMMs-based GLAC [35] and the
Polynormals [38] modelled with partial information, which
had some one-sided posture recognition. The DMM-l2-
regularized method [36] might implement unreliably due to
large intra-class changes. The MLP-RMSProp-tanh [39]
and the Deterministic Learning [1] methods were only ap-
plied in dynamic gait recognition, and static postures and
systemic postures were not examined. When SVM algo-
rithm [40] was used in posture recognition, the meaning-
less transition between two sign language postures often
reduced recognition accuracy. Deep learning [41] method
was difficult to distinguish the overlapping of motions, and
the recognition accuracy was often affected for reciprocat-
ing motions.

The comparison results show that the recognition ac-
curacies of our methods are in the middle level to the ex-
isting posture recognition literature. However, the method
proposed in this paper has the following advantages and sig-
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nificance. (1) The model construction was relatively simple
so that the calculation amount was reduced, resulting in a
method ease of implement. (2) A characteristic consistent
model that was not influenced by the camera distance was
proposed according to the human skeleton structure. The ro-
bustness of the recognition was improved. (3) The same 24-
dimensional distance characteristics were used for static and
dynamic posture expression. The shortest distance and the
minimum accumulative distance with dynamic time warp-
ing were used to match the static and dynamic postures re-
spectively, which assured the consistency of static and dy-
namic posture recognitions. (4) The threshold τ was used to
control the strictness of posture recognition. According to
the actual requirements and the differentiation between pos-
tures, recognition level can be adjusted and the posture tem-
plate set can be expanded. (5) The proposed posture recog-
nition methods provide a methodology for reference.

6. Conclusion

In order to reduce the complexity of posture recognition and
the influence of human internal structure on posture recog-
nition, the posture recognition methods based on Kinect in
static and dynamic conditions were proposed. First, the
depth image data extracted by Kinect was normalized to
characteristic consistent distances which were used to iden-
tify and classify the static postures according to the short-
est distance. Next, the dynamic time warping (DTW) was
used to solve the posture sequence inconsistency on the time
axis. And then, the minimum accumulative distance was
used to identify the dynamic postures. The experimental
results showed that the recognition rates of static postures,
non-cross-subject dynamic postures and cross-subject dy-
namic postures were 95.9%, 93.6% and 89.8% respectively.
The experimental results verified the robustness and effec-
tiveness of the proposed method. The proposed method and
experimental results have reference significance for the pos-
ture recognition.

Limitations and future work: For the reason that the
shortest distance was used to identify the samples, a posture
can be classified to only one posture category, which may
reject some postures or misidentify some postures as oth-
ers. In the future work, k-Nearest Neighbors (KNN) method
might be used to further improve the recognition effect by
constructing algorithms and finding more suitable k values.
In addition, the proposed method can be further applied to
posture authentication and abnormal posture detection in fu-
ture work.
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