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Sparsity Reduction Technique Using Grouping Method for Matrix
Factorization in Differentially Private Recommendation Systems

Taewhan KIM†, Kangsoo JUNG†, Nonmembers, and Seog PARK†a), Member

SUMMARY Web service users are overwhelmed by the amount of in-
formation presented to them and have difficulties in finding the information
that they need. Therefore, a recommendation system that predicts users’
taste is an essential factor for the success of businesses. However, recom-
mendation systems require users’ personal information and can thus lead to
serious privacy violations. To solve this problem, many research has been
conducted about protecting personal information in recommendation sys-
tems and implementing differential privacy, a privacy protection technique
that inserts noise into the original data. However, previous studies did not
examine the following factors in applying differential privacy to recom-
mendation systems. First, they did not consider the sparsity of user rating
information. The total number of items is much more than the number of
user-rated items. Therefore, a rating matrix created for users and items will
be very sparse. This characteristic renders the identification of user patterns
in rating matrixes difficult. Therefore, the sparsity issue should be consid-
ered in the application of differential privacy to recommendation systems.
Second, previous studies focused on protecting user rating information but
did not aim to protect the lists of user-rated items. Recommendation sys-
tems should protect these item lists because they also disclose user pref-
erences. In this study, we propose a differentially private recommendation
scheme that bases on a grouping method to solve the sparsity issue and
to protect user-rated item lists and user rating information. The proposed
technique shows better performance and privacy protection on actual movie
rating data in comparison with an existing technique.
key words: privacy, recommendation system, differential privacy, sparse
matrix, grouping

1. Introduction

With the rise of the Internet, the amount of information
found in web services has been increasing day by day.
Consequently, web service users are overwhelmed by the
amount of information they receive and have trouble finding
the information they need. Thus, a recommendation sys-
tem that suggests appropriate options to users is important
for the success of businesses. However, recommendation
systems need users’ personal information, which may have
sensitive details. Careless use of this information by recom-
mendation systems may lead to serious privacy violations.
To solve this problem, existing research has explored ways
to protect personal information in recommendation systems.
In addition, differential privacy, which inserts noise into the
original data, has been used as a de facto standard for pri-
vacy protection.

However, existing studies that applied differential
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privacy to the recommendation system did not consider the
following two factors. First, they did not inspect the sparsity
of user rating information. Matrix sparsity is a natural phe-
nomenon caused by an increase in service scale; it renders
the identification of user patterns in recommendation sys-
tems difficult. Therefore, several studies have attempted to
solve this problem [1], [2]. However, the sparsity problem
in differential privacy should be considered with additional
noise insertion caused by matrix sparsity. The existing tech-
nique does not consider this additional noise and thus can-
not be applied to a differentially private recommendation. In
this study, we examine this sparsity issue as we apply differ-
ential privacy to recommendation systems. Second, existing
studies treated only user rating information as a personal in-
formation because it reveals users’ taste for certain items.
However, the lists of items rated by users are also sensitive
information. For example, [3] demonstrated that a user can
be identified through a list of movies they have rated. There-
fore, user rating and user-rated item list information should
both be protected.

In this research, we propose a differentially private rec-
ommendation scheme that bases on the grouping method to
solve the sparsity issue in recommendation systems. We
generate a submatrix by user grouping and perform matrix
factorization using this submatrix. Although the informa-
tion is lost in the grouping process, this loss can be offset
by the reduction of noise. We validate the proposed tech-
nique to improve utility performance through experiments.
In addition, we propose the differentially private recommen-
dation method to protect user ratings and rated item list in-
formation in the matrix factorization system.

The composition of this paper is as follows. In Sect. 2,
we introduce existing studies and analyze the features and
limitations of each work. In Sect. 3, we explain the proposed
grouping method-based differentially private recommenda-
tion scheme. In Sect. 4, we analyze the experimental re-
sults of our proposed method and validate that the proposed
method gives meaningful results in terms of recommenda-
tion performance. Finally, we discuss the conclusion of this
study and recommendations for future research in Sect. 5.

2. Related Works

In this section, we introduce basic concepts for an under-
standing of the proposed method and summarize the re-
lated studies. We briefly describe the basic concepts of rec-
ommendation systems and differential privacy. Then, we
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analyze the related studies and describe current research
gaps.

2.1 Recommendation System

A recommendation system is a system that suggests a prod-
uct or information by predicting user preference. Rec-
ommendation systems are used in various fields, such as
movies, music, news, and books. Two typical algorithms
can implement recommendation systems: content-based
recommendation and collaborative filtering. Content-based
recommendation returns similar items by analyzing user in-
formation. For example, a movie classified under the ac-
tion genre is suggested to a user who has watched an action
movie. Collaborative filtering uses a similar evaluation of
a user’s history. For example, collaborative filtering rec-
ommends a movie viewed by other users who have simi-
lar movie preferences. Collaborative filtering is classified
into two categories: neighborhood methods and latent fac-
tor methods. The neighborhood method uses the correlation
between items and users, whereas the latent factor method
derives the latent vector that represents the item and user re-
lationship. In this work, we use matrix factorization [4] as a
representative latent factor method, which shows outstand-
ing performance in recommender systems.

2.1.1 Matrix Factorization

Recommendation systems use items and user information.
Let ri j be the rating of a user ui for item v j. For the set of the
user and the items, the rating matrix R is defined as follows.
Definition 1. Rating matrix
We assume the user set U = {u1, . . . , un} and the item set
V = {v1, . . . , vm}. Let ri j be the rating of a user ui for item v j.
The rating matrix R is as follows:

R = [ri j]n×m

Matrix factorization decomposes rating matrix R to a user
latent vector and an item latent vector, which are used to
create the prediction matrix R̂ = [r̂i j]n×m. The user’s latent
vector and the item’s latent vector are defined as follows.

Definition 2. User latent vector and item latent vector
We assume a prediction matrix R̂, a dimension of latent
vector d, a set of users U = {u1, . . . , un}, a set of items
V = {v1, . . . , vm}, a user latent vector pi ∈ Rd for user ui,
(1 ≤ i ≤ n), and an item latent vector qj ∈ Rd for item
v j, (1 ≤ j ≤ m). The prediction matrix R̂ is calculated as
follows:

∀ui ∈ U, ∀v j ∈ V, r̂i j = pT
i · q j.

A user latent matrix P and an item latent matrix Q are as
follows:

P = [pi]1≤i≤n, Q = [q j]1≤ j≤m.

The goal of matrix factorization is to decompose the rating

Fig. 1 Example of matrix factorization

matrix R into user latent vectors and item latent vectors such
that they are maximally similar to R. That is, the user latent
vector and the item latent vector are to minimize the follow-
ing loss function L.

L =
1
M ·

∑
(i, j)∈M

(
ri j − pT

i q j

)

M is a set of ratings that are given by users to items. The
optimization problem that minimizes the loss function can
be expressed as follows:

(U,V) = min
U,V

∑
ri j∈M

[(
ri j − pT

i q j

)2
+ λ

(
‖pi‖2+ ‖q j‖2

)]
.

The above optimization problem can be solved by the
stochastic gradient descent method.

Figure 1 shows an example of matrix factorization. We
suppose the presence of five users u1, . . . , u5 and five items
v1, . . . , v5, and we do not know r32 and r55, which are the rat-
ings of users u3, u5 to items v2, v5, respectively (Fig. 1 (a)).
We use SGD [4] to decompose the rating matrix into the user
latent matrix and item latent matrix to minimize the loss of
function L. Then, we predict empty ratings (Fig. 1 (c)).

2.2 Differential Privacy

Differential privacy [5] is a mathematical model that pre-
vents information exposure, thus ensuring privacy protec-
tion at a specified level ε, which is customized by users.
Given two neighboring databases D1 and D2, which differ
by only one record, a randomized function K provides ε-
differential privacy if all datasets with D1 and D2 differ by
only one element and all S ⊆ Range(K), that is,

Prob(K(D1) = S)
Prob(K(D2) = S)

≤ eε, S ∈ Range(K), ε > 0.

This description of differential privacy means that specific
individuals in the statistical database cannot be deduced cor-
rectly by keeping the possibility of a change in query results
by inserting/deleting one datum to be less than eε. The larger
the ε, the greater the probability that the two results are dif-
ferent. Conversely, the smaller the ε, the greater the likeli-
hood that the two results are similar. In addition, differential
privacy has the following properties.

Sequential composition: IfMi is an algorithm that satisfies
εi-differential privacy, then for any database D, an algorithm
M[k](D) (which carries out all (M1(D), . . . ,Mk(D))) satis-
fies

(∑k
i=1 εi

)
-differential privacy.
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Parallel composition: IfMi is an algorithm that satisfies εi-
differential privacy and Di is an arbitrary subset of database
D, then M[k](D[k]) (which carries out all (M1(D1), . . . ,
Mk(Dk))) satisfies

(
max
i=1,..,k

ε
)
-differential privacy.

Sequential and parallel compositions have been proven
in [6]. These two properties can be used to represent the
degree of privacy protection of complex algorithms.

A typical mechanism for applying differential privacy
is the Laplace mechanism; the Laplace distribution is the
simplest mechanism for applying differential privacy, and
the Laplace mechanism satisfies ε-differential privacy [6]. A
ε-differentially private Laplace noise mechanism is defined
as L(D) = f (D) + X, where X is a random variable drawn
from the Laplace distribution with mean = 0 and standard
deviation =

√
2Δ f /ε. Δf is the sensitivity of the function,

which means that the maximum value of the change in the
query results from the insertion/deletion of a specific indi-
vidual. The Laplace distribution is as follows:

f(x | μ, b) =
1

2b
exp

(
−|x − μ|

b

)
, b > 0.

2.3 Privacy Protection in Recommendation Systems

In 2006, Netflix, a leading movie streaming service, held
a competition called “Netflix Prize” to improve its recom-
mendation performance. For the competition, Netflix pro-
vided 100 million rating details, 480,000 users, and more
than 17,000 films to contest participants. The company im-
plemented anonymization methods, such as the removal of
identifiers, to protect its users’ privacy. However, the com-
bination of the provided details and IMDb data allowed the
identification of Netflix users [3]. As a result, various stud-
ies have emerged to seek ways to protect user privacy while
providing appropriate recommendation performance. Two
main types of studies deal with privacy protection in existing
recommender systems. The first type involves recommenda-
tion systems in distributed environments [7], [8]. Personal
information is distributed in different places. Thus, an at-
tacker will not easily find a user’s personal information by
combining multiple repositories with information.

Second, there is a way to encrypt [9] or mix noise
to user data [10]–[13]. Encrypting personal data can
help protect privacy, but the time complexity for encryp-
tion/decryption is too high. Therefore, most studies focus
on inserting noise to satisfy differential privacy.

McSherry’s study [10] was the first study to apply dif-
ferential privacy to a recommender system. The neigh-
borhood method, a collaborative filtering technique that
makes recommendations by analyzing the correlation be-
tween items, was used. The noise was injected into the
item’s average ratings based on a Laplace mechanism to
satisfy differential privacy. However, the weak point of
the neighborhood method is that it performs poorly com-
pared with the latent factor method. Berlioz’s study [11]
applied differential privacy to matrix factorization and tried
to determine the best step for adding noise in matrix

factorization for recommendation performance. The first
step was to add noise into an original rating matrix be-
fore the matrix factorization. The second step was to add
noise during matrix factorization. The final step was to add
noise into latent matrixes resulting from matrix factoriza-
tion. Among the three methods, the addition of noise into
the rating matrix before matrix factorization performed the
best. Existing studies have limitations because they did not
consider the following two factors.
i) The sparsity of rating matrix: As the size of web services
grows, the number of items increases more rapidly than the
number of user ratings. Consequently, the sparsity of rating
matrixes also increases, which causes difficulty in finding
patterns in matrix factorization and degrades recommenda-
tion performance. Thus, many studies have attempted to
solve the matrix sparsity problem in recommendation sys-
tems. However, when we apply differential privacy into ma-
trix factorization, too much noise is inserted into the sparse
matrix because noise should be inserted for items that are
not rated by users. Thus, when the matrix sparsity prob-
lem is considered in a differentially private recommendation
system, the noise insertion problem must be considered as
well. As far as we know, the proposed technique is the first
to solve this sparsity problem in differentially private matrix
factorization.
ii) Privacy of list of user-rated items: Existing studies fo-
cus only on user rating information to protect the privacy
and adds noise to keep the information safe. However, user-
rated item lists are also sensitive information. For exam-
ple, a user’s pattern of regularly buying a feminine product
can be used to infer that the user is a woman, regardless of
whether they think positively or negatively about that item.
Thus, we should protect lists of user-rated items.

In this study, the proposed differentially private rec-
ommendation algorithm considers the two abovementioned
factors. The proposed technique exhibits better recommen-
dation performance and ensures more thorough privacy pro-
tection than the existing technique.

3. Differentially Private Recommendation Scheme Us-
ing Grouping

In this chapter, we explain how the proposed grouping tech-
nique in matrix factorization enhances recommendation per-
formance. We attempt to solve the sparsity issue by group-
ing techniques and use Laplace mechanisms to protect the
user rating information and the user-rated item list.

3.1 Overview

Figure 2 shows the overall structure of the proposed tech-
nique. We assume a user u with n users u1, . . . , un and m
items i1, . . . , im. First, we generate each user i’s subgroup
based on the users’ similarities and create a user i’s sub-
matrix Ri,u (noisy grouping). During this process, we add
noise into the similarity calculation to protect the user-rated
item list. Then, we insert the noise into the user rating



1686
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Fig. 2 Overall structure of the proposed recommendation system

information to satisfy differential privacy (adding noise to
rating and pattern). The noisy submatrix R′i,u is decomposed
into the user’s latent vectors and the item’s latent vectors. Fi-
nally, we generate submatrix R′′i,u to predict user i’s rating
information for a recommendation.

3.2 Grouping Method

3.2.1 Grouping Score

The ideal submatrix for a recommendation should be a good
representation of a user’s pattern and must have high density.
Therefore, the grouping score function should consider the
following two factors.

The first criterion is to evaluate the density of the user’s
rating. The more ratings a user makes, the more dense the
submatrix. Thus, building a group with a user who makes
numerous ratings is advantageous. We define a rating fre-
quency score function below.

Definition 3. Rating frequency score function
The rating frequency score function with user i freq(i) is de-
fined as follows:

freq(i) =
the number of items which user i rated

the number of whole items
.

The rating frequency score function represents how many
times the user has given ratings.

The second criterion is to estimate how similarly other
users have rated to user i. If user i is grouped with other
users who have a similar rating pattern, the recommendation
performance is enhanced. We use the Jaccard similarity [14]
to evaluate the user’s rating similarity.

Definition 4. Similarity score function
The similarity score functions for the two users i and j is
defined as follows:

sim(si, s j) = jaccard(si, s j) =
|si ∩ s j|
|si ∪ s j| .

The similarity score function represents the user’s rating
similarity as a value between 0 and 1. These proposed crite-
ria can be considered in several ways. Through experiments,

Fig. 3 Example of the grouping method

we find that weighing two factors together to create a sub-
matrix is the most effective method. Therefore, we define a
new grouping score function that allows two criteria to be
considered at once.
Definition 5. Grouping score function
With the size of group k, user i, and for all user j, (1 ≤ j ≤
n), the grouping score function is as follows:

scoreei( j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k
n
· freq( j) +

(
1 − k

n

)
· sim(si, s j), i � j

1, i = j
.

The grouping score function is expressed as the weighted
sum of the rating frequency score function and the simi-
larity score function. The importance of the two functions
depends on group size. For example, if the group size is
small, then the density can easily be raised, whereas the rat-
ing patterns are not maintained well. Therefore, the simi-
larity of the rating pattern becomes increasingly important.
Conversely, if the group size is large, then the frequency of
the user’s ratings becomes highly important because rating
patterns can be maintained well, whereas raising the density
can be difficult.

3.2.2 Grouping Process

We explain the grouping method without noise insertion in
this section. We modify this grouping method into a differ-
entially private grouping method in Sect. 3.3

Given rating matrix R, size of group k, and user u, we
can obtain a submatrix Ri,u through grouping. The process
of grouping is as follows. First, each user obtains a group-
ing score for other users based on themselves. Then, k users
are grouped in descending order of the grouping score, and
submatrix Ri,u is generated. We add noise into the grouping
score calculation process and explain the results in Sect. 3.3.
Through this grouping process, items that have not been
rated by k users are removed. Thus, the number of users
decreases from n to k, and the number of items decreases
from m to m′ (Fig. 3).

Figure 4 shows the algorithm for the grouping tech-
niques. The weight constants of the grouping score are de-
termined in line 1. Then, we obtain grouping scores for all
users from line 2 to line 8. From line 9 to line 12, users with
k number of high grouping scores are grouped into Ru in or-
der of scores. In line 13, items that have not been rated by k
users in the Ru are removed.
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Fig. 4 Grouping method

3.3 Differentially Private Grouping Method

In this chapter, we explain how to apply the Laplace mech-
anism into the grouping method for satisfying differential
privacy.

3.3.1 Privacy Preservation of User Rating Information

The user rating information reveals a user’s preference and
thus contains sensitive personal information. Thus, we add
noise based on the Laplace mechanism into the user rating
information before matrix factorization. When we assume
the minimum value of the rating matrix is rmin and the max-
imum value is rmax, matrix factorization sensitivity is as fol-
lows:

∀i, j ∈ [1, . . . , n], Δri j = rmax − rmin.

We can extract the noise from the Laplace distribution with
the variance Δri j

ε
and insert it to all ratings rij to ensure ε-

differential privacy. Figure 5 illustrates this algorithm.

3.3.2 Privacy Preservation of User-Rated Item List

The list of the user’s rated items should also be protected.
Therefore, we apply the randomized algorithm [12] to the
user’s rating pattern (Fig. 6).
Theorem 1
Randomized algorithm [15] ensures ε-differential privacy.
Proof
With p = 2

1+eε , if si j is 1, then the probability that ŝi j will
be 1 is 1 − p + p

2 = 1 − p
2 . Conversely, when si j is 0, then

the probability that ŝi j will be 1 is p
2 . Randomized algorithm

Fig. 5 Differential private input perturbation

Fig. 6 Differential private randomized algorithm

f , which receives si j and returns ŝi j, satisfies the following
formula:

Pr[ f (1) = 1]
Pr[ f (0) = 1]

=
1 − p

2
p
2

=
2 − p

p
=

2 − 2
1+eε

2
1+eε

=
2 + 2eε − 2

2
= eε .

Thus, the random algorithm f meets ε-differential privacy.

3.3.3 Privacy in Grouping Score

When we estimate the grouping score, the user-rated item
list can be revealed. Therefore, we add noise based on
Laplace mechanisms into the grouping estimation process.
For this purpose, we define the grouping score sensitivity as
follows.

Theorem 2.
The sensitivity of the grouping score is k

n · 1
m −

(
1− k

n

)
· 1

nmin−1
for the number of users n, the minimum number of the user-
rated item nmin, and the size of the group k.
Proof
A grouping score is a numerical value used to estimate the
benefit when two users i and j belong to the same group.
First, if users i and user j are the same user, then the sensi-
tivity of the grouping score is evidently zero.

The grouping score sensitivity when users i and user j
are not the same user is as follows.
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scoreei( j) =
k
n
· freq( j) +

(
1 − k

n

)
· sim(si, s j). (1)

Let us start with the first term in Eq. (1). Freq (j) = nj/m
represents the ratio of the number of user-rated items against
the number of all items. If one of the items rated by user j
is changed to nj−1 or nj+1, then freq (j) will be (nj−1/m) or
(nj+1/m). Therefore, in case of a difference in one rating
detail, the difference between the first term of Eq. (1) is, at
most, k/n · 1/m.

Then, we explain the second term in Eq. (2). Let us
assume that mi∪ j is a set of items that user i and user j
commonly rated. When one rating detail t differs, mi∪ j is
changed in four cases. (1) Add one item to mi∪ j, (2) subtract
one item to mi∪ j, (3) add one item to (mi∪ j)C , and (4) subtract
one item to (mi∪ j)C . We explain the similarity difference for
each case.
(1) The similarity difference when adding one item to mi∪ j

is as follows:

sim(si, s j) =
ni∩ j

ni∪ j
=

ni∩ j

ni + n j − ni∩ j
→ sim(si, s j)

=
ni∩ j + 1

(ni + n j + 1) − (ni∩ j + 1)

Therefore, the difference in the similarity is as follows:

Δsim =
ni∩ j + 1

ni + n j − ni∩ j
− ni∩ j

ni + n j − ni∩ j
=

1
ni + n j − ni∩ j

.

The maximum value of the similarity difference is 1
max(ni,n j)

because of the maximum value of ni∩ j is min(ni, n j)
(2) The similarity difference when subtracting one item to
mi∪ j is as follows:

Δsim =
ni∩ j

ni + n j − ni∩ j
− ni∩ j − 1

ni + n j − ni∩ j
=

1
ni + n j − ni∩ j

=
1

max(ni, n j)
.

The others are the same as in Case (1).
(3) The similarity difference when adding one item to
(mi∪ j)C is as follows:

sim(si, s j) =
ni∩ j

ni∪ j
=

ni∩ j

ni + n j − ni∩ j
→ sim(si, s j)

=
ni∩ j + 1

(ni + n j + 1) − ni∩ j
.

The difference of the similarity is as follows:

Δsim =
ni∩ j

ni + n j − ni∩ j
− ni∩ j

ni + n j − ni∩ j + 1
. (2)

For the sake of presentation convenience, let ni + n j be X
and ni∩ j be Y. Then, Eq. (2) is expressed as follows:

Δsim =
Y

X−Y
− Y

X−Y +1
=

Y
(X−Y)(X−Y −1)

. (3)

The denominator of Eq. (3) can be summarized as follows:

(X − Y)(X − Y − 1) = Y2 + (1 − 2X)Y + X2 − X. (4)

Equation (4) has minimal value when Y = X − 1/2. The
denominator of Eq. (3) is minimized when Y is min (ni, nj),
given that the maximum value of Y, min, (ni, nj) is less than
ni + ni − 1/2. In addition, the maximum value of the numer-
ator of Formula 3 is min (ni, nj). Therefore, Formula 3 can
be summarized as follows:

Δsim =
Y

(X − Y)(X − Y − 1)

≤ min(ni, n j)

max(ni, n j) · (max(ni, n j)+1)

≤ min(ni, n j)

min(ni, n j) · (max(ni, n j)+1)
=

1
max(ni, n j)+1

.

(4) The similarity difference when subtracting one item to
(mi∪ j)C is similar with that in Case (3).

Δsim ≤ min(ni, n j)

min(ni, n j) · (max(ni, n j) − 1)

=
1

max(ni, n j) − 1

Among the four cases discussed above, the largest differ-
ence of the similarity function is 1

max(ni,n j)−1 . If the min-
imum value among the ratings of all users is nmin, then

1
max(ni,n j)−1 ≤ 1

nmin−1 . Thus, the difference between the sec-
ond term of Eq. (1) when one rating detail differs is maxi-
mum

(
1 − k

n

)
· 1

max(ni,n j)−1 .
In summary, the sensitivity of the grouping score is as

follows:

Δscore ≤ k
n
· 1

m
+

(
1 − k

n

)
· 1

nmin − 1
.

4. Experiment and Analysis

In this chapter, we validate the proposed technique in com-
parison with the existing method.

4.1 Experimental Environment

We use Super Micro Computer, Inc.’s SuperServer 7049P-
TR (64-bit), consisting of CPU Intel Xeon Silver 4110 and
64 GB memory, and the operating system is Ubuntu 16.04.2
LTS. The proposed technique is implemented in Python
2.7.12.

We use the datasets MovieLens [16] and Book-
Crossing [17] to evaluate the proposed techniques. These
datasets are commonly used benchmark datasets in recom-
mendation system research.

To evaluate the performance of the recommender sys-
tem, we compare the original submatrix and predicted sub-
matrix, which removes one arbitrary rating detail ri j and
performs matrix factorization. We explain our estimation
measure with examples. We remove the rating information
that user u1 rates to item m1 with five users u1, . . . , u5 and
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Fig. 7 Example of measurement

Fig. 8 Density change by group size

five items m1, . . . ,m5 in Fig. 7 a. Then, we perform a matrix
factorization to the rating matrix (Fig. 7 b) that one rating
information has been removed to obtain the prediction ma-
trix (Fig. 7 c). We repeat this process for all other user-rated
items and estimate the RMSE (Root Mean Square Error) be-
tween the prediction matrix and the original matrix for rec-
ommendation performance evaluation. RMSE is calculated
as follows:

RMSE =

√
1
n

∑n

i=1
(ri − r̂i)2

(n = Total number of rating information, ri = original rating
information i, r̂i = predictive rating information i)

4.2 Experiment Result

4.2.1 Increased Density by Grouping Method

First, we measure the density of the submatrix according to
the group size parameter k to confirm that the density in-
creases through grouping. The density is calculated as fol-
lows:

densityi =
# of rating informationi

# of itemi × # of useri

(# of itemi = Number of items in submatrixi, # of useri =

Number of users in submatrixi, # of useri = Number of rat-
ing information in submatrixi,)

Figure 8 shows the result of measuring the average for
density of all submatrix while changing the group size k.
As shown in the figure, the density increases as the group
size decrease. Thus, density is increased when the grouping
algorithm is used as intended in this study.

Fig. 9 Recommender performance comparison by grouping

4.2.2 Grouping Score

The proposed grouping score function simultaneously con-
siders the user’s rating frequency and the similarity of the
rating pattern. The user’s rating frequency and the similar-
ity of the rating pattern can be reflected together in several
ways. First, only the rating frequency is examined. Then,
the users with a rating frequency lower than 10% are re-
moved, and grouping can be performed in order of high-
est rating pattern similarity. This method is called den sim.
Second, the rating pattern similarity is taken into account
first, and the rating similarity of the lower 10% is excluded.
Then, the remaining users are grouped in order of highest
rating frequency. This method is called sim den. Finally,
the linear method applies weight to both criteria and con-
siders them simultaneously. We experiment with the three
methods to determine the most efficient one.

As shown in Fig. 9, we can confirm that the linear
method, which uses the weighted user’s rating frequency
and the similarity of the rating pattern, has the best perfor-
mance. Therefore, we use the linear method to calculate the
grouping scores.

4.2.3 Recommender Performance Increase by Grouping
Method

In this section, we confirm the improvement in recommen-
dation performance by grouping. We represent the matrix
factorization technique used in the existing recommendation
system as MF (Matrix Factorization), and the technique pro-
posed in this paper is referred to as GM (Grouping Method).

We then determine whether the grouping method can
enhance the recommendation performance. First, MF is
used in existing recommender systems, whereas the tech-
nique proposed in this study is called the GM GM.

We compare recommendation performance without ap-
plying differential privacy when matrix factorization is ap-
plied to the rating matrix and the proposed grouping method.
First, let us consider the effect of group size on recommen-
dation performance. The smaller the group size, the higher
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Fig. 10 Recommender performance comparison by group size

Fig. 11 Performance of recommender systems with consideration for privacy

Fig. 12 Recommender performance comparison by group size

the density. However, the information about the rating
pattern decreases. Conversely, if the group size increases,
the information on the rating pattern increases, but the den-
sity decreases. Therefore, the appropriate group size k for
grouping is important to the recommendation performance
enhancement.

Figure 10 shows that the recommender performance
is not favorable when the group size is very small or very
large. The performance of the proposed technique in the
MovieLense dataset is better than that of the previous rec-
ommender techniques until the group size k is 5 to 80.
Among them, k shows the best performance when it is 20.

In the BookCrossing dataset, the recommender performance
is best when k is 10. For the MF, RMSE value is not af-
fected by the k value because grouping is not performed.
However, GM shows RMSE value is changed according to
the k value as described earlier. This result shows that the
appropriate group size is important for our proposed tech-
nique. We also evaluates the performance improvement of
the proposed technique over the existing technique with the
application of differential privacy. We represent the pro-
posed technique as DP-GM (Differential Private Grouping
Method) and the existing technique as IP+RA (Input Per-
turbation + Randomized Algorithm). In Fig. 11, the solid
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Fig. 13 Recommender performance comparison by sensitivity

lines denote the performance of existing and proposed tech-
niques that consider privacy, and the dotted lines repre-
sent the performance of existing and proposed techniques
that do not consider privacy. For both datasets, the pro-
posed method GP performs better for all ε than the existing
technique IP+RA. This result shows that the matrix spar-
sity has been reduced by grouping, and the performance
enhancement using grouping remains when the noise is in-
serted for privacy protection. The experimental results also
show that as the epsilon value increases, RMSE score ap-
proaches the original RMSE score which differential privacy
is not applied.

In Fig. 12, we fix the privacy budget ε and change the
group size k. For the MovieLens dataset, the optimum value
is given when the group size is 20, as in the case without
differential privacy. Additionally, the proposed technique’s
recommendation performance is better than that of the exist-
ing technique. For the BookCrossing dataset, the proposed
method performs better than the existing technique when the
group size is 5. This result verifies that performance im-
provements by grouping remain when the noise is inserted
as same as the previous experiment. In addition, Fig. 10, 11,
12 results show that the appropriate group size k for group-
ing varies depending on the dataset’s property. We cannot
find out what features of the dataset affect the k value. Thus,
it is our future work to find out how to decide an appropriate
k value according to the dataset’s property.

Figure 13 is the experimental result of sensitivity. Sen-
sitivity is important for applying differential privacy based
on the Laplace mechanism because it determines the amount
of noise. In general, sensitivity is set to 1 in Laplace
Mechasnim. However, the proposed technique can more
accurately calculate the sensitivity less than 1 as shown in
Theorem. 2 in Sect. 3.3.3, and the proposed sensitivity sig-
nificantly reduces the amount of noise. Figure 13 shows the
comparison between naı̈ve sensitivity and proposed group-
ing sensitivity. We can validate that the proposed grouping
sensitivity can improve the recommendation performance
over that of the existing technique.

5. Conclusion

Web service users are overwhelmed by the vast amount of
digital data on the web, and the amount of digital data is
constantly growing. Therefore, the need for recommenda-
tion systems and recommendation algorithms is steadily in-
creasing. However, the personal information used in rec-
ommendation systems is at risk of serious privacy breaches.
In this study, we attempt to solve the sparsity problem
in the user rating information for recommendation and
consider the user-rated item list protection scheme, which is
overlooked by the existing privacy protection scheme. For
this purpose, we solve the sparsity problem through group-
ing and propose a differentially private recommendation al-
gorithm, which considers user-rated item list information.
We experimentally validate that the proposed method can
improve the recommendation performance by the setting of
an appropriate grouping size. In the future, we will conduct
research on techniques to improve recommendation perfor-
mance based on privacy budget allocation and grouping.
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