
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020
1647

PAPER

A Server-Based Distributed Storage Using Secret Sharing with
AES-256 for Lightweight Safety Restoration

Sanghun CHOI†a), Shuichiro HARUTA†b), Yichen AN†c), Student Members, and Iwao SASASE†d), Fellow

SUMMARY Since the owner’s data might be leaked from the central-
ized server storage, the distributed storage schemes with the server storage
have been investigated. To ensure the owner’s data in those schemes, they
use Reed Solomon code. However, those schemes occur the burden of data
capacity since the parity data are increased by how much the disconnected
data can be restored. Moreover, the calculation time for the restoration will
be higher since many parity data are needed to restore the disconnected
data. In order to reduce the burden of data capacity and the calculation
time, we proposed the server-based distributed storage using Secret Sharing
with AES-256 for lightweight safety restoration. Although we use Secret
Sharing, the owner’s data will be safely kept in the distributed storage since
all of the divided data are divided into two pieces with the AES-256 and
stored in the peer storage and the server storage. Even though the server
storage keeps the divided data, the server and the peer storages might know
the pair of divided data via Secret Sharing, the owner’s data are secure in
the proposed scheme from the inner attack of Secret Sharing. Furthermore,
the owner’s data can be restored by a few parity data. The evaluations
show that our proposed scheme is improved for lightweight, stability, and
safety.
key words: distributed storage, reed solomon, Secret Sharing

1. Introduction

In these days, with the growth of the network and the
portable devices, many people can easily access the Internet
and enjoy a lot of Internet services. One of the most popu-
lar services is a WCS (Web Cloud Storage) [1] which is the
centralized server storage such as Google Drive [2], Drop-
box [3] and Sky Drive [4] as shown in Fig. 1(a). Thanks to
the WCS and the Internet, whenever an owner can manage
its data without the limitation of storage of its devices. Al-
though the WCS provides convenience nowadays, it has the
problems to concern for ensuring the safety of the owner’s
data [5]–[7]. Firstly as for the personal aspect, according
to [8], [9], the personal data might be leaked by an adver-
sary’s cracking or a misbehaving of server storage’s oper-
ator even if they are encrypted. This is because the per-
sonal data such as the photos are stored into the server stor-
age. In addition, providing personal data to the investigation
agency has already occurred. According to [10], Apple had
already helped FBI agents to solve the criminal case by shar-

Manuscript received September 9, 2019.
Manuscript revised January 29, 2020.
Manuscript publicized April 20, 2020.
†The authors are with Dept. of Information and Computer Sci-

ence, Keio University, Yokohama-shi, 223–8522 Japan.
a) E-mail: choi@sasase.ics.keio.ac.jp
b) E-mail: haruta@sasase.ics.keio.ac.jp
c) E-mail: anyichen@sasase.ics.keio.ac.jp
d) E-mail: sasase@ics.keio.ac.jp

DOI: 10.1587/transinf.2019EDP7243

Fig. 1 Structure of the online storage services

ing stored relevant data in its cloud storage. Furthermore,
according to [11], Google notes that the user’s data can be
provided to the government for investigating regulatory vi-
olations or criminal activity. Secondly, as for the company
aspect, storing important data into single centralized storage
is not recommended for security reason.

To overcome the shortcomings mentioned above, for
safely storing the owner’s data in the storage, the distributed
storage schemes have been studied [12]–[18], [20]–[22].
There are two types of distributed storage schemes. The first
type is, the distributed storage schemes without the server
storage as shown in Fig. 1 (b) which is called a P2P(Peer
to Peer) storage [12]–[14]. The peers are the computer sys-
tems called the nodes which are connected to each other via
the Internet [15]. The peer joins the P2P network as part
of the distributed storage. The owner’s data are separated
with the encryption in the peer storages as the owner wants
to store. Then, the divided data are sent to each of the peers
which are the storage in the P2P as the number of the divided
data. The owner’s original data are restored with the decryp-
tion by gathering the separated data from the peer storages.
However, since each peer storages must have the parity data
for restoring the original data, the burden of data capacity on
the peer will be grown by how much the parity data ensure

Copyright c⃝ 2020 The Institute of Electronics, Information and Communication Engineers



1648
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

the restoration. As for the second type, the distributed stor-
age schemes with the server storage as shown in Fig. 1(c)
have been investigated [16]–[18]. The parity data, to restore
the owner’s data from the leaking of peer storage, is stored
via Reed Solomon code [19] into the server storage. So, the
burden of data capacity on the peer storage is lesser than
the first type. We assume that the distributed storage with
the server storage scheme is suitable. However, in the dis-
tributed storage using Reed Solomon code, the counts and
size of parity data are increased by how much the parity data
are needed to restore the owner’s original data from the leak-
ing of the distributed storage. This occurs the total burden of
limitation for the storage capacity. Moreover, the calculation
time for restoration will be higher since many parity data are
needed to restore disconnected data. To reduce the burden
of data capacity and the calculation time for the distributed
storage with the server storages, we have noted Secret Shar-
ing storage schemes [20]–[22]. Shamir’s Secret Sharing [23]
has been studied to preserve the secret key in safe. The se-
cret key is divided, encrypted and stored into the distributed
storage. The secret key can be restored by using only a few
pieces. By using these points, the owner’s data are stored
like the secret key in the distributed storage. However, there
are two problems as follows: The burden of data capacity
on the peer is high, the distributed data are easily restored if
the pair of share on Secret Sharing is leaked.

We assume that if the problems mentioned above can
be overcome, it will be suitable for the distributed storage
with the server storages scheme. Therefore, we propose the
server-based distributed storage using Secret Sharing with
AES-256 for lightweight safety restoration. The divided
owner’s data will be safely kept by dividing on Secret Shar-
ing with the server storage and AES-256 from leaking the
pair of shares on Secret Sharing. The evaluations show that
the burden of data capacity and the calculation time in the
proposed scheme are lesser than the conventional distributed
storage with server storage using Reed Solomon code and
Secret Sharing. Furthermore, the restoration for when the
divided owner’s data are disconnected is more efficient. The
rest of this paper is constructed as follows. The related work
is explained in Sect. 2. The proposed scheme is described in
Sect. 3. The results and evaluations are shown in Sect. 4.
The discussion and limitation are described in Sect. 5. Fi-
nally, we conclude our research in Sect. 6.

2. Related Work

2.1 Distributed Storage without Server Storage

How to safely keep the owner’s data in the distributed stor-
age without the server storage, when the owner wants to
store and restore its data, is important. One of the ways
to safely keep the owner’s data in the distributed storage is
called P2P storage. In paper [12], the peer joins the P2P
network as part of P2P storage. The owner’s data are sep-
arated with the encryption by how much the owner wants
to store its data into the peer storages. Then, the divided

Fig. 2 Example of the conventional storages

data are sent to each of the peer storage as the number of the
divided data. The owner’s data are restored with the decryp-
tion by gathering the separated data from the peer storages
when the owner wants to restore its data. Each peer just
controls P2P network flows between the owner and the peer
storages. However, in that paper, how to restore the owner’s
data when the peer storages are disconnected is not consid-
ered. In papers [13], [14], to recover the disconnected data
from the peer storages, the owner generates and stores the
backup data for the peer storages. Therefore, each of the
peer storages in the P2P helps each other to repair when one
of the data in the P2P storage is broken. However, this oc-
curs the burden of the data capacity to the peer storage since
the peer storages have to take all of the backup data for other
peers.

To efficiently restore the owner’s data from the leaking
of the peer stroages, Secret Sharing [23] has been investi-
gated for the distributed storage schemes [20]–[22]. There
are two representative Secret Sharing types. Type 1 is called
All-or-Nothing method [24]. The total size of share data is
the same as the size of the original data in All-or-Nothing
method. If the original data size is 10MB and divided into
five parts, the total data size of five parts becomes 10MB. So,
it looks that each peer storages have less data. If k, which is
the value to restore the owner’s data, is set 10, the owner’s
data will be divided into 10 shares in 10MB. In addition,
all peer storages which have the divided data must always
be connected to restore the owner’s data. This means that
if one of the shares is lost, the owner’s data cannot be re-
stored. That is the reason why All-or-Nothing method is
not suitable for the distributed storage scheme. Type 2 is
basic Secret Sharing as shown in Fig. 2(a). Most distribute
storage schemes as Type 2 have been investigated [20]–[22].
The owner’s data, which the owner wants to store in the



CHOI et al.: A SERVER-BASED DISTRIBUTED STORAGE USING SECRET SHARING WITH AES-256 FOR LIGHTWEIGHT SAFETY RESTORATION
1649

distributed storage, are separated into parts data via Secret
Sharing like the secret key is divided. The parts data include
the parity data. The parts data are sent to each of the peer
storages, not the server storage. In Fig. 2(a), if the owner’s
data are divided into five parts via Secret Sharing, if the par-
ity data are set as two to restore the original data, the original
data can be restored with only two parts via Secret Sharing.
This means that the owner can restore its data with a few
parity data. However, this occurs the increase of total data
capacity since each of the size of separated data is the same
as that of the original data via Secret Sharing. If the original
data size is 10MB and divided into five parts, the total data
size of five parts becomes 50MB. This is the serious bur-
den of data capacity for the storage service. Moreover, the
calculation time for restoring the owner’s data by using the
parity data is high. In addition, the attacker who knows the
pair of shares on Secret Sharing can get the owner’s data as
the inner attack. The inner attack means that the leaking of
the owner’s data from peer storage in the distributed storage
service via Secret Sharing. Those are the serious problems
for the safety of the distributed storage.

2.2 Distributed Storage with Server Storage

In papers [16]–[18], Reed Solomon code [19] has been used
for the distributed storage with the server storage to reduce
the burden of data capacity for peer storages. Figure 2(b)
shows the basic structure of Reed Solomon code. The HDD
icon denotes the owner’s original data. The black disk and
blue disk denote the separated data and the parity data, re-
spectively via Reed Solomon code. Before keeping the
owner’s data in the distributed storage, the owner divides
its data into several pieces. Then, the owner generates the
parity data for restoring its data when the divided data are
disconnected. As shown in Fig. 2(b), if the parity parts are
set as two via Reed Solomon code, one of the lost separated
data can be restored by the parity parts via Reed Solomon
code. By using Reed Solomon code for the distributed stor-
age, when the data are disconnected from the peer storages,
the disconnected data will be regenerated by the parity data.
The parity is stored in the server storage to decrease the
stored data size for the peer storages. This server storage
is assumed to be alive always. The parity data are increased
by how much the parity data can recover the disconnected
data. This means that the total data size will be bigger as
the distributed storage has more parity data to restore the
many disconnected data. This is a burden of data capac-
ity for the distributed storage. Moreover, all of the divided
data in the peer storages have to be gathered to restore the
owner’s data. If there are many lost divided data in the dis-
tributed storage, the calculation time will be higher for re-
generating the disconnected data by using the parity data to
restore the owner’s data. Furthermore, to get the owner’s
data, all separated data have to be gathered from the dis-
tributed storage.

2.3 The Advanced Encryption Standard

Advanced Encryption Standard(AES) [25], [26] is a sym-
metric key algorithm, which means the same key is used for
both encrypting and decrypting the data. Several transfor-
mations are to be performed on data stored in an array. For
this, the cipher is to put the data into an array after the cipher
transformations are repeated over several encryption rounds.
The number of rounds is determined by the key length, with
10 rounds for 128-bit keys, 12 rounds for 192-bit keys and
14 rounds for 256-bit keys. This encryption has been used
in the storage scheme [27]. We use AES-256 for the pro-
posed scheme to encrypt the divided data for the initiation
algorithm to ensure security.

3. Proposed Scheme

In order to overcome the shortcomings mentioned in Sect. 2,
we propose the server-based distributed storage using Secret
Sharing with AES-256 for lightweight safety restoration.
We reduce the burden of data capacity and the calculation
time for the distributed storage by combining Secret Shar-
ing with AES-256. AES-256 operates to ensure the security
of the owner’s divided data before converting the divided
data by Secret Sharing. Secret Sharing and the server stor-
age are utilized for the flexible restoring the owner’s data.
Secret Sharing operates that the owner can restore its data
from the distributed storage with a few parity data. Further-
more, to safely keep the owner’s data from the leaking of
the pair of shares on Secret Sharing from the inner attack,
the server storage, which is always ready to be connected,
is used as the same with the distribute storage schemes us-
ing Reed Solomon [16]–[18]. The owner’s data will be pre-
served in the distributed storage from the attacker in the pro-
posed scheme. That is a new approach for the distributed
storage scheme. This section is classified as six categories:
3.1. Encryption, Division, 3.2. Combination, Decryption,
3.3. Key Management, 3.4. Storing Process, 3.5. Restoring
Process, and 3.6. Response Process.

3.1 Encryption, Division

In this part, to reduce the burden of data capacity and the cal-
culation time for the distributed storage, we design the algo-
rithms on AES-256 and Secret Sharing with the server stor-
age. Before processing AES-256, we set that the owner’s
data are divided into two parts per rate to store each part
into the peer storage and the server storage, respectively.
According to [18], the security for the distributed storage is
guaranteed regardless of the rates for dividing data. Authors
denote that even if the server storage has 99% of the owner’s
original data, it is hard for the server-side to decrypt and re-
store the rest of the data. The comparisons of the perfor-
mance per rates are described in Sect. 4. Therefore, we also
denote that the owner’s data can be restored from the pro-
cess of Division, Encryption in AES-256 and Secret Sharing



1650
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Algorithm 1 Division in AES-256 and Secret Sharing
Encryption, Division;
Input: Original data.
Output: Encrypted pieced two data in AES-256.
m = Original data;
Rα = Rate of m for a, Rβ = Rate of m for b;
a = First part of m*Rα, b = Second part of m*Rβ;
Divide m into two pieces as a, b;
Encrypt a, b in AES-256.
Secret Sharing;
Input: b to secret share in n.
Output: Secret shares s1, s2, s3, · · ·, sn of same size as b.
Set the number of share to restore in i
s1 = Share 1 of b, s2 = Share 2 of b, s3 = Share 3 of b, · · ·, sn = Share n of
b;
Convert b to s1, s2, s3, · · ·, sn by Secret Sharing.
Division;
Input: s1, s2, s3, · · ·, sn to divide.
Output: s1 p1, s1 p2, s2 p1, s2 p2, s3 p1, s3 p2, · · ·, sn p1, sn p2.
s1, s2, s3, · · ·, sn in half into s1 p1, s1 p2, s2 p1, s2 p2, s3 p1, s3 p2, · · · , sn p1,
sn p2, respectively.

Algorithm 2 Restoration
Combination;
Input: s2 p1, s2 p2, s3 p1, s3 p2 from the peer storages.
Output: s2, s3.
Combine s2 p1 with s2 p2, s3 p1 with s3 p2 to be s1, s2, respectively
Decryption;
Input: s2, s3.
Output: b.
Convert s2 with s3 to be b in i on Secret Sharing
Input: a, b.
Output: m.
Decrypt a, b in AES-256;
Restore m by combining decrypted a with decrypted b

without any problem for regenerating the owner’s data. Fig-
ure 3 shows the structure of the proposed scheme. There are
the personal device, the peer storages, and the server storage
for the proposed scheme. The size of the original data is set
as 10MB to explain. Algorithm 1 shows the process of En-
cryption, Division. As shown in Algorithm 1, the original
data of the owner m, which is the black hard disk drive icon
in Fig. 3, is divided into the two parts as a, which is the or-
ange file icon, and b, which is the gray file icon, per rates Rα,
Rβ in Fig. 3(a). The rates, Rα, Rβ of the size of m are change-
able by how much the owner wants to save its storage space.
a, b are encrypted by AES-256 to keep secure the owner’s
data. b is converted by Secret Sharing within i, which is
needed the parity number of share to restore b, when the
distributed data and the peer storages are disconnected be-
fore b is stored into the peer storages. Here, if i set as two,
b will be restored via Secret Sharing with two shares. To
increase the value of i for restoring b, after b divided data
are stored, divided b must be gathered and decrypted with
AES-256. In addition, since the value of i is encrypted by
AES-256, it cannot increase the value of i without AES-256.
To guarantee the restoration, b is converted in Secret Shar-
ing into parts as s1 which is the yellow-green disk, s2 which
is the green disk, s3 which is the sky-blue disk, · · ·, sn which

Fig. 3 Structure of Proposed Scheme

is the blue disk within n which is set the number of the shares
by Secret Sharing. In that time, the data size of s1, s2, s3,
· · ·, sn are set as the same as b by Secret Sharing. If the
data size of b is 10MB and divided into four parts, each
part has 10MB, respectively as the same with b. To pre-
serve the original data from the leaking of pairs of shares on
Secret Sharing, s1, s2, s3, · · ·, sn are divide into half into
two parts, respectively, as s1 p1, s1 p2, s2 p1, s2 p2, s3 p1, s3 p2,
· · ·, sn p1, sn p2. As shown in Fig. 3(b), the owner sends s1 p1,
s2 p1, s3 p1, · · ·, sn p1 into each peer storages. a, s1 p2, s2 p2,
s3 p2, · · ·, sn p2 are stored into the server storage by the owner.
The separated data are safely kept in the distributed storage.
Then, a is sent to the server storage to save the capacity of
storage for peer storages. The attacker cannot seek where
separated data are located since the server storage and the
peer storages cannot know which storages have the pair of
share to restore b. Moreover, even if the pair of share on
Secre Sharing is leaked and the peer storage and the server
storage have the part of the original data, the original data
are securely kept since it is hard to restore and get the origi-
nal data.



CHOI et al.: A SERVER-BASED DISTRIBUTED STORAGE USING SECRET SHARING WITH AES-256 FOR LIGHTWEIGHT SAFETY RESTORATION
1651

3.2 Combination, Decryption

This part shows how we reduce the calculation time when
the owner restores its data from the distributed storage. The
owner does not need to receive all of the divided stored data
from the peer storages for the restoration. Moreover, the
owner can restore its data with a few parity data from the
leaking of peer storages. Here, to restore the original data
m, the owner has to gather the divided stored data from the
peer storages and the server storage. As shown in Algorithm
2 and Fig. 3(c), the owner just downloads s2 p1 which is the
half green disk of s2, s3 p1 which is the half sky-blue disk
of s3 from the peer storages and s2 p2 which is pair data of
s2 p1, s3 p2 which is the pair data of s3 p1, a which is the or-
ange file icon from the server storage to decrypt, respec-
tively. Then, the owner combines s2 p1, s3 p1 and s2 p2, s3 p2

to be s2 and s3, respectively. If i is set as two, b will be
restored by s2 and s3 in i via Secret Sharing. This means
that only two parity data exist in the distributed storage, the
owner’s data can be restored regardless of when peer stor-
ages are disconnected. This ensures fast restoration with a
few parity data. After restoring b, a and b are decrypted by
AES-256. Then, the owner combines the decrypted a with
the decrypted b to be the original data m. Therefore, the
owner’s data will be securely restored with a few parity data
via the AES-256 with Secret Sharing.

3.3 Key Management

In the proposed scheme, the secret key of AES-256 is used
to encrypt two separated data which are the a, b. Figure 4
shows the structure of key management. To safely restore
and store the secret key regardless of leaking the peer stor-
age, the secret key is converted by Secret Sharing into the
pieces as k1, k2, k3, · · ·, kn as shown in Fig. 4. However, Se-
cret Sharing method is weak from the inner attack by leak-
ing the pairs of shares on Secret Sharing. To safely keep
the secret key from the inner attack, k1, k2, k3, · · ·, kn are
divided in half into two parts as k1 p1, k1 p2, and k2 p1, k2 p2,
etc., as the process of division in Fig. 4. Then, those sep-
arated secret keys are stored into the peer storages and the
server storage, respectively. The secret key is regenerated
by gathering and combining the divided data of the secret
key, such as k1 p1, k1 p2, and k2 p1, k2 p2 only by the owner. In
the proposed scheme, the attacker cannot get the secret key
from the owner since the owner does not have the secret key.
This is because the divided secret keys are stored in the peer
storages and the server storage. Moreover, the attacker can-
not restore the owner’s secret key even if the pair of share on
Secret Sharing is leaked since it is hard to know which store
has the pair of share for restoring the secret key. Therefore,
we can safely manage and keep the secret key.

3.4 Storing Process

As for the storing process for the owner’s data, firstly the

Fig. 4 Structure of Key Management

owner joins the distributed storage network as new peer stor-
age. Then, the owner separates its data into the divided data.
After the owner’s divided data are encrypted by using AES-
256, they are converted by Secret Sharing. To store them,
the owner randomly selects the peer storages. The owner
records which distributed storages store the pieced data to
the hash table while simultaneously sending the pieced data.
The hash table is located in the owner’s device. Moreover,
since the peer storages are randomly selected by the owner
and just keep his/her data, they even do not know each con-
nection of the peer storages. The peer storages and the
server storage just hold the owner’s divided data.

3.4.1 Owner

(1) Join to the distributed storage network as new peer
storage.

(2) Divide the original data m into a, b.

(3) Encrypt a, b by using AES-256.

(4) Convert b into N shares s1, s2, s3, ···, sn by using Secret
Sharing and Set the number i of shares to restore b.

(5) Divide s1, s2, s3, · · ·, sn in half into N pieces s1 p1, s1 p2,
s2 p1, s2 p2, · · ·, sn p1, sn p2, respectively.

(6) Select the peer storages to store the divided data while
recording the storage list to hash table

(7) Send s1 p1, s2 p1, ···, sn p1 one by one to the peer storages.

(8) Send a, s1 p2, s2 p2, · · ·, sn p2 to the server storage.

3.4.2 Peer storage

(1) Keep connecting the distributed storage network.

(2) Receive one by one in s1 p1, s2 p1, · · ·, sn p1 from the
owner.



1652
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

3.4.3 Server Storage

(1) Keep connecting the distributed storage network.

(2) Receive a, s1 p2, s2 p2, · · ·, sn p2 from the owner.

3.5 Restoring Process

As for when the owner wants to retrieve its data, firstly the
owner checks the peer storages which are connected via the
hash table. The owner only knows which pieces are needed
to restore the original data. This is because the owner man-
ages the pieced data and the divided secret keys, which are
located in the distributed storage, to restore the original data
by using the hash table. After the owner gathers its divided
data from the peer storages, the owner restores one of the
parts of its original data via Secret Sharing. The owner
has to get its divided data as a priority from peer storages.
This is because peer storages can be disconnected while
the server storage is reliable. Then, the owner contacts the
server storage to receives the rest of the parts of its original
data. Finally, the owner’s original data can be restored after
the parts of its original data are decrypted via AES-256.

3.5.1 Owner

(1) Check the peer storages which are connected in the
distributed storage network via the hash table.

(2) Receive s1 p1, s2 p1 from the peer storages if the number
i of shares is two to restore b.

(3) Receive a, s1 p2, s2 p2 from the server storage.

(4) Combine s1 p1, s1 p2, s2 p1, s2 p2 to s1, s2.

(5) Restore b by using s1, s2 via Secret Sharing.

(6) Decrypt a, b via AES-256.

(7) Restore the original data m by combining a, b.

3.5.2 Peer storage and Server storage

(1) Send the data which are requested to the owner.

3.6 Response Process

The peers just hold the owner’s divided data until the owner
requests its divided data to restore its original data from the
peers. In addition, the owner does not keep tracking its data.
The owner just tracks its data when the owner stores and
restores its data in peer storages by using the hash table.
This means that the owner does not keep checking how peer
storages hold its data. However, the owner can check the
status of stored data in three cases as below:

(1) When the owner stores its divided data to peers.

(2) When the owner requests for its data to peers.

(3) When the owner checks how the peers hold its data.

As for the case (1), the peers respond to the owner after

Table 1 Experiments Environment

Items Parameter value

Operating System Ubuntu Linux 16.04.3 LTS
Programming language Python

CPU Intel i9-7900X 3.38Ghz
Memory 64GB
Data Size 1GB

Number of the peer storages 100
Number of the parity share 2

Table 2 Calculation time in AES-256 per rates on 1GB

Case Rate Encryption Decryption Total
[SEC] [SEC] [SEC]

1 a:80% / b:20% 11 11 22
2 a:82% / b:18% 11 11 22
3 a:84% / b:16% 11 11 22
4 a:86% / b:14% 11 11 22
5 a:88% / b:12% 11 10 21
6 a:90% / b:10% 10 10 20
7 a:92% / b:8% 10 10 20
8 a:94% / b:6% 10 10 20
9 a:96% / b:4% 9 10 19
10 a:98% / b:2% 9 10 19

Table 3 Calculation time in Secret Sharing on b

Case Rate Encryption Decryption Total
[SEC] [SEC] [SEC]

1 b:20% 0.0033 0.0011 0.0044
2 b:18% 0.0030 0.0009 0.0039
3 b:16% 0.0026 0.0009 0.0036
4 b:14% 0.0024 0.0008 0.0032
5 b:12% 0.0019 0.0006 0.0025
6 b:10% 0.0017 0.0005 0.0022
7 b:8% 0.0013 0.0004 0.0017
8 b:6% 0.0010 0.0003 0.0013
9 b:4% 0.0007 0.0003 0.0010

10 b:2% 0.0004 0.0002 0.0006

they hold the owner’s divided data. As for the case (2), the
peers respond to how they hold the owner’s data to the owner
when the owner wants to gather its divided data to restore
the original data from peers. As for the case (3), the peers
respond like the case (2) when the owner checks its data
which is located in the peers by using its hash table.

4. Results and Evaluations

We compare the proposed scheme with the conventional
distributed storage scheme using Reed Solomon and Se-
cret Sharing in terms of lightweight, stability, and safety.
The lightweight part describes the comparison data size and
the calculation time. The stability part shows the efficiency
for restoring the owner’s data from the distributed storage.
The safety part explains how our proposed scheme guaran-
tees the security for the owner’s data.

4.1 Lightweight

Here, the evaluations of the lightweight are classified into



CHOI et al.: A SERVER-BASED DISTRIBUTED STORAGE USING SECRET SHARING WITH AES-256 FOR LIGHTWEIGHT SAFETY RESTORATION
1653

Fig. 5 Comparison of the data size on a single peer

Fig. 6 Comparison of the data size of the parity data

Fig. 7 Comparison of the total data size

two points: Reduction of the burden of data capacity, Re-
duction of the calculation time in the environment of the
experiments are shown in Table 1. To evaluate, we need to
clearly set the rates for dividing the original data since there
is no suitable rate of data for the peer storage and the server
storage in the conventional distributed storage schemes. To

clearly set the rate of data, we compare the performance in
the situation where the rates for dividing the original data
changes from 80%, 20% to 98%, 2%. Table 2 shows the
calculation time in AES-256 per rate. As we can see from
Table 2, as a is larger, the calculation time becomes slightly
less since the process for dividing the original data into a, b
are light. However, there is no big difference in the calcu-
lation time in 10 cases since the rate of data has been less
impact on the process of AES-256. The original data are
restored from a, b without any problem for regenerating the
original data. Table 3 shows the comparison of the calcu-
lation time in Secret Sharing for the owner. As we can see
from Table 3, the calculation time of Secret Sharing for b is
lesser as the size of b is smaller. This is because the burden
of the operation on Secret Sharing for the owner is low. As
for the following simulation, we need to set a suitable rate
for dividing original data. Each rate for a, b can be change-
able by the owner since the impact by changing the rate on
the security is less. Therefore, we use the middle rates for a,
b as 90%, 10% respectively to evaluate the performances be-
tween the proposed scheme and the conventional schemes.

4.1.1 Reduction of the Burden of Data Capacity

S ingleReed = fReed(m) =
m
n

(1)

S ingleS ecret = fS ecret(m) = m′ (2)

a = α ∗ m, b = (1 − α) ∗ m, fS ecret(b) = c (3)

Parity = (2 ∗ n) ∗ β = ρ (4)

S ingleProposed =
c
2
= d (5)

TotalReed = (
m
n
∗ n) + (

m
n
∗ ρ) (6)

TotalS ecret = m′ ∗ n (7)

TotalProposed = (a + c ∗ n) + (c ∗ n) (8)

This section explains how we reduce the burden of data ca-
pacity. Figure 5 shows the comparison of data size on the
single peer for the distributed storages from 10 peers to 100
peers. m, n, denote the original data 1GB and the number of
peer storages, respectively. In the conventional distributed
storage using Reed Solomon, m is divided as n as shown in
(1) through Reed Solomon operation. The peer storages in
the distributed storages have the same size of divided data
via Reed Solomon. The data size on the single peer in the
distributed storage using Reed Solomon is decreasing with
the increasing the number of the peer storages in (1). In the
conventional distributed storage using the Secreting Shar-
ing, the owner’s original data are converted as the number



1654
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

of peer storage by Secret Sharing. m′ denotes the converted
data size by Secret Sharing in (2). Since the divided data size
as the same with the owner’s original 1GB data, the data size
is much larger. Every peer storage in the distributed storage
stores 1GB data regardless of the increasing the peer stor-
ages via Secret Sharing. So, the size of data which the peer
stores is much larger as shown in Fig. 5. However, in the
proposed scheme, the data size which the peer will store is
much smaller even if we adapt Secret Sharing as shown in
Fig. 5. Where β in (3), ρ in (4) denote the size of parity data,
the percentage for restoration, respectively. m is separated
into a, b by using AES-256. α denotes the percentage of
data size for a 90% of m, b 10% of m. Through Secret Shar-
ing in (3), the shared data c from b have the same size as b.
After the owner divides c into two parts as d in (5), d will be
stored in the single peer storage in the proposed distributed
storage. The peer only stores d 5% data from the original
data in the proposed scheme. So, the owner’s burden of the
capacity can be reduced in the proposed scheme. Figure 6
shows the comparison of the parity data size while reflect-
ing the restoration percentage from 10% to 80% in 100 peer
storages. Here, we assume that the owner’s 1GB data are
divided into 100 pieces and stored in 100 peer storages, re-
spectively. In the distributed storage using Reed Solomon,
the parity data size is increasing as the restoration rate is
growing. The parity data size in the distributed storage using
Reed Solomon for 80% restoration is 1.593MB. In the con-
ventional Secret Sharing storage and the proposed scheme,
the parity data size is the same and fixed via Secret Sharing
regardless of the restoration rate. Moreover, since two parity
data are set to restore the owner’s original data, the restora-
tion rate is guaranteed 80% more even though the owner’s
data 8 divided data are disconnected from 10 peer storages.
This means that the proposed scheme ensures the higher
restoration than the distributed storage using Reed Solomon.
In the conventional Secret Sharing storage, the size of parity
data is much larger since 1GB data is converted via Secret
Sharing method. The parity data size in the conventional
Secret Sharing storage for 80% restoration is 1GB. How-
ever, in the proposed scheme, the size of parity data is
smaller since only 10% of 1GB data is converted on Se-
cret Sharing method and divided into two pieces which the
half of 10%. The parity data size in the proposed scheme
for 80% restoration is 25MB. Figure 7 shows the compar-
ison of the total data size on the distributed storage for the
restoration rate of 80% from 10 peers to 100 peers. The total
data size of the conventional distributed storage using Reed
Solomon is the same regardless of increasing the number of
the peers since Reed Solomon code makes the size of data to
be equal in (6). The total data size of the conventional Secret
Sharing storage is growing in (7) by raising the restoration
rate and the number of the peers in the distributed storage.
In (8), the total data size in the proposed scheme is much
smaller than the convention schemes since a few pari ty data
are needed for the restoration. This shows that our proposed
scheme can reduce the burden of data capacity for the dis-
tributed storage.

4.1.2 Reduction of Calculation Time

Here, to compare the calculation time, we evaluate the cal-
culation time when the owner divides, encrypts and sends
the data to peers storages from 10 to 100. Figure 8 shows
the comparison of the calculation time without the restora-
tion. As for the sending and encryption time in Fig. 8(a),
the calculation time of the conventional Secret Sharing stor-
age is much higher than the distributed storage using Reed
Solomon and the proposed scheme since the process for
converting 1GB via Secret Sharing takes more time. How-
ever, the calculation time of our proposed scheme is low
since only 10% of 1GB data is converted via Secret Shar-
ing. As shown in Fig. 8(b), the calculation time of the pro-
posed scheme is a bit higher since the owner has to re-
ceive the data from server storage and peer storages re-
gardless of the restoration. The distributed storage using
Reed Solomon and the conventional Secret Sharing down-
load the data only from peer storages if there is no restora-
tion about the owner’s data. Additionally, the decryption
with AES-256 in the proposed scheme takes more time.
However, the total calculation time of our proposed scheme
is low as shown in Fig. 8(c). Figure 9 shows the com-
parison of the calculation time of receiving and decryption
with the restoration. We evaluate the receiving and decryp-
tion time in cases of restoration 10%, 50%, 100% from 10
peer storages to 100 peer storages. The calculation time
of the distributed storage using Reed Solomon is higher in
Fig. 9(a) since the operation of Reed Solomon takes more
time to restore the disconnected data. From the restoration
of 50% disconnected data in Fig. 9(b), the calculation time
of the distributed storage using Reed Solomon is increasing
rapidly since the process of regenerating the disconnected
data takes more time. Finally, from restoration 80% dis-
connected data in Fig. 9(c), the calculation time of the dis-
tributed storage using Reed Solomon is highest. The calcu-
lation time of the distributed storage using Reed Solomon
is increasing and much higher with the restoration rate since
the operation of Reed Solomon needs many parity data to re-
store disconnected data. On the other hand, the calculation
time of the proposed scheme and the conventional Secret
Sharing storage is lower regardless of the restoration rate.
This is because, in both schemes, the disconnected data can
be restored by Secret Sharing with a few parity data. As
shown in Fig. 9, the calculation time of the proposed scheme
is a bit higher than the conventional Secret Sharing storage
since the decryption with AES-256 takes additional time to
restore data in the proposed scheme. However, as shown in
Fig. 10, the total calculation time of our proposed scheme
is much lesser than the other schemes. This shows that our
proposed scheme can reduce the calculation time for the dis-
tributed storage.

4.2 Stability

The proposed scheme shows the stability in two categories



CHOI et al.: A SERVER-BASED DISTRIBUTED STORAGE USING SECRET SHARING WITH AES-256 FOR LIGHTWEIGHT SAFETY RESTORATION
1655

Fig. 8 Comparison of the calculation time without the restoration

Fig. 9 Comparison of the calculation time of Receiving - Decryption with the restoration

Fig. 10 Comparison of total calculation time with the restoration

as Restoration with a few data and Restoration from discon-
nected peer storage.

4.2.1 Restoration with a Few Data

In the distributed storage using Reed Solomon, in order to
restore the stored data in the peer storage, the parity data
are mandatory. This means that the parity data will be in-
creased by how much the parity data can recover the dis-
connected data. For example, when the count of the pieced
stored data are 10, if one of 10 is lost, two parity data are
needed to restore the original data. Moreover, to regener-
ate the original data, the owner has to gather all pieced data
from the distributed storage. That is, if the owner finds that
some pieced data are disconnected, the original data will
be restored after the disconnected data are repaired by the
parity data. However, our proposed scheme is more flexi-
ble than the distributed storage using Reed Solomon. The

owner does not need to gather all pieced data and regener-
ate the lost divided data from the distributed storage to get
the original data in the proposed scheme. For example, if
the count of the pieced stored data are 10 and the parity data
are set as 2 to restore the original data, even if 8 pieced data
are disconnected, the original data will be restored by using
only 2 parity data through Secret Sharing. This means that
the owner’s data will be restored with a few parity data from
the distributed storage.

4.2.2 Restoration from Disconnected Peer Storage

The owner’s data can be restored although there are the dis-
connections from the peer storages. This is because Secret
Sharing in the proposed scheme ensures the restoration of
the owner’s data from the disconnections of peer storages as
we mentioned in 4.2.1. If all peers do not respond when the
owner requests for gathering its data to restore original data,



1656
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Table 4 Synthesis results

Scheme Dependency on Burden of the data capacity Volume of the parity data Calculation time Calculation time
the server storage without restoration with restoration

Reed Solomon High Mid High Low High
Secret Sharing Low High Mid High Low

Proposed High Low Low Low Low

the owner’s data will be lost. There is no way to restore
the owner’s data from lost all peers. However, according
to [31], all peers are offline at the same time is less. The
owner’s data can be restored when the least peers are back.

4.3 Safety

Here, we explain how we guarantee the safety of the owner’s
data in the distributed storage scheme. In the conventional
Secret Sharing storage, if the pair of data are leaked, the
divided data might be restored. This is a serious problem
for safety. When 10 separated converted data are stored
in the peer storages, if two or more peers know the pair
of stored data, those peers can get the owner’s original one
via the Secret Sharing. The Secret Sharing method is weak
from the inner attack. In the distributed storage using Reed
Solomon, the server can get the original data by using the
parity data since the parity data are located in the server stor-
age. To overcome those problems and ensure the safety of
the owner’s data in the proposed scheme, the pair of shares
is divided into half to protect the owner’s data from leaking
of the pair of shares on Secret Sharing. Half of the pair of
shares is encrypted by AES-256. Those shares are stored in
the peer storages and server storage. Moreover, a secret key
for AES-256 is also divided and stored only by the owner re-
spectively. The owner only knows the connections of shares
in the peer storages and server storage via its hash table.
Therefore, the attacker will experience difficulty in getting
the owner’s data even if it knows the pair of shares on Secret
Sharing. Moreover, although the server acts as the storage
like the conventional Reed Solomon storage in the proposed
scheme, the server cannot know and find where, which peer
storage has the divided data as same as the attacker. Fur-
thermore, in the proposed scheme, even if the server storage
has the 90% of the owner’s encrypted data on AES-256 and
the half of divided data on the Secret Sharing, the server
cannot restore the owner’s original data. Similarly, the peer
storages cannot regenerate the data since they only have a
half like the server storage. Although the server storage and
the Secret Sharing has the problem from the leaking of data
pairs are adapted to the proposed scheme, the owner’s data
can be safely stored.

5. Discussion and Limitation

We research how to improve the performance of the owner
in the distributed storage scheme. Table 4 shows the syn-
thesis results. Even if the proposed scheme shows better
performance than the conventional storage schemes, there
are limitations in the proposed scheme.

5.1 Threat of the Attack to the Server Storage

We assume that there is no absolutely secure server storage.
Therefore, to protect the owner’s data is important in the
distributed storage with server storage scheme. For this, the
owner’s data are divided and encrypted by Secret Sharing
and AES-256 in the proposed scheme. However, there might
be a problem in the proposed scheme since the server stor-
age is utilized. As shown in Table 4, the proposed scheme
and the distributed storage using Reed Solomon are depen-
dent on the server storage since the parity data for restor-
ing the owner’s data are stored in the server storage in both
schemes. The server storage is reliable to reduce the burden
of data capacity on the peer storage. If the server storage is
attacked, the parity data for the peer might be lost. So, we
should discuss the threat of the attack on the server storage.
we can consider three cases of the attack scenarios for the
server storage as below:

(1) The stored data in the server storage are leaked by the
manager of the server.

(2) The stored data in the server storage are threatened by
the attacker.

(3) The server storage is downed.

As for the case (1), the manager of the server might get the
original data although the original data are encrypted. Since
the manager has the whole data, the manager can threaten
the original data in various ways such as the brute force.
However, in the proposed scheme, the manager cannot deal
with the original data since the original data are divided and
stored in the peer storages. As for the case (2), the attacker
might get the original data like the manager of the server
in case (1). However, the attacker cannot get the original
data for the same reason with the case (1). Moreover, in
the proposed scheme, the attacker is hard to seek where the
divided data are stored into peer storages. The secret key
for the original data are also separated into peer storages.
Therefore, the attacker cannot get and gather the original
data. As for the case (3), if the server storage is downed,
the owner cannot get original data in the centralized storage
and the distributed storage with the server storage including
the proposed scheme and the conventional scheme. This is
because the server storage has the parts of the original data
and the parity data for restoring data in the peer storages are
disconnected. This is the same problem for both schemes.
The two attack scenarios for the server storage can be solved
in the proposed scheme. Therefore, the owner’s data will be
kept safe in the proposed scheme although the server storage



CHOI et al.: A SERVER-BASED DISTRIBUTED STORAGE USING SECRET SHARING WITH AES-256 FOR LIGHTWEIGHT SAFETY RESTORATION
1657

Fig. 11 Comparison of the performances for Secret Sharing

Fig. 12 Comparison of the performances for the storage service

might be threatened.

5.2 Comparison with Other Secret Sharing

To evaluate Shamir Secret Sharing in the proposed scheme
in more various aspects, we compared the Shamir’s Secret
Sharing with Ramp Secret Sharing [28] and XOR Secret
Sharing [29] from 10 peers to 100 peers in terms of the
total data size, the calculation time of sending-encryption,
the calculation time of restoration-decryption. Figure 11
shows the comparisons of the performances for Secret Shar-
ing. Figure 11(a) shows the comparison of total data size.
The total data size of Ramp Secret Sharing is less than half
XOR Secreting Sharing and Shamir’s Secret Sharing since
Ramp Secret Sharing sets the size of share on Secret Shar-
ing to be less by grouping each share as the participants.
However, the size of share is big in XOR Secret Sharing
and Shamir’s Secret Sharing since each share has the same
size as the original data. Therefore, Ramp Secret Sharing
might be suitable for lightweight distributed storage. Fig-
ure 11(b) and Fig. 11(c) show that the comparisons of the
calculation time for sending and restoring the data from peer
storages in Shamir’s Secret Sharing in the proposed scheme
is much lesser than Ramp Secret Sharing and XOR Secret
Sharing since it takes more calculation time to encrypt and
decrypt the share from the groups of share and peer storages
in Ramp Secret Sharing. This is because the process of XOR

Secret Sharing is heavy to compare the binary for XOR op-
eration, the calculation time for encrypting and decrypting
much higher. By contrast, Shamir’s Secret Sharing in the
proposed scheme shows better performance. For the future
works, we will deal with Ramp Secret Sharing to reduce the
calculation time for distributed storage.

5.3 Comparison of the Performances with the Server Stor-
age

To evaluate the performances of the proposed scheme with
the server storage, we evaluated the process by using IO-
zone [30] from 4k record size to 128k record size for 1GB.
Figure 12 shows the comparison of performances for the
storage service. In Fig. 12(a), R and W denote the sequen-
tial read and sequential write, respectively. RR and RW de-
note the random read and the random write, respectively in
Fig. 12(b). As shown in Fig. 12(a) and Fig. 12(b), the pro-
posed scheme costs are higher than the server storage. The
distributed storages occur higher overhead to read and write
the data than the server storage. Because unlike the sin-
gle server storage, the owner must access many peer stor-
ages. This means that distributed storage might be heavy
for scalability. To evaluate the deduplication of the proposed
scheme, we used a source-based deduplication method [32].
In the source-based deduplication method, the client has
to make the difference between the original data and the



1658
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

changed data with the deduplication. To deduplicate the data
in the storage, the client sends the patch file to the storage.
Then, the storage updates the data to be changed by using
the patch file. We compared the calculation time for the
deduplication of the proposed scheme with the single sever
storage method. We assume that there is a different rate
from 10% to 90% for the deduplication. There are 100 peer
storages in the proposed scheme. Figure 12(c) shows the
comparison of the calculation time for the deduplication. In
Fig. 12(c), Ex and Up denote the extraction of the difference
from data and updating the data, respectively. As shown
in Fig. 12, the calculation time of the proposed scheme are
higher than the single server storage. Because, unlike the
single server storage, the operation of the deduplication for
100 peer storage by the owner takes more time. Therefore,
for these reasons, although the distributed storage can solve
the problems of the server storage, the performances might
be low for the storage service.

5.4 Incentive and Payment

As for the incentive, the proposed scheme can be applied to
the commercial distributed storage services such as Maids-
afe [13] and Storj [17]. The reason is that the peer, which
just provides its storage without saving its data to other
peers, exists in the proposed scheme. The peer can ex-
pect the incentive. According to [13], [17], the peer can
get money from the operator while providing its storage for
the commercial distributed storage service. As for the pay-
ment, the owner does not pay anything to use in the pro-
posed scheme. However, in the commercial distributed stor-
age service [13], [17], the owner pays to the operator for
using storage service. Therefore, if the proposed scheme is
used for commercial service, the owner needs to pay to use
the storage service.

6. Conclusion

We have proposed the server-based distributed storage using
Secret Sharing with AES-256 for lightweight safety restora-
tion. The evaluations show that our proposed scheme has
three advantages for the lightweight, the stability and the
safety. The burden of data capacity and the calculation time
can be reduced for the lightweight. As for the stability, the
owner’s data will be flexibly restored with a few parity data
when the peer storages are disconnected. In the safety part,
the owner’s data will be securely kept although Secret Shar-
ing method has the weakness of leaking the pair of data.
Therefore, the owner can securely store its data in our pro-
posed scheme.

Acknowledgments

This work is partly supported by the Grant in Aid for Scien-
tific Research (No.17K06440) from Japan Society for Pro-
motion of Science (JSPS).

References

[1] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet Things J., vol.3, no.6, pp.854, Dec.
2016.

[2] D. Quick and K.K.R. Choo, “Google drive: Forensic analysis of data
remnants,” J. Network and Computer Applications, vol.40, pp.179,
ELSEVIER, April 2014.

[3] I. Drago, M. Mellia, M.M. Munafo, A. Sperotto, R. Sadre, and A.
Pras, “Inside Dropbox: Understanding personal cloud storage ser-
vices,” Proc. 2012 ACM Conference on Internet Measurement Con-
ference - IMC ’12, pp.481, Nov. 2012.

[4] D. Quick and K.K.R. Choo, “Digital Droplets: Microsoft SkyDrive
Forensic Data Remnants,” Future Generation Computer Systems,
vol.29, no.6, pp.1378, Aug. 2013.

[5] C. Wang,, S.S.M. Chow, Q. Wang,, K. Ren, and W. Lou, “Privacy
Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.
Comput., pp.62, no.2, pp.362–375, Feb. 2011.

[6] L. Xiao,, D. Xu,, C. Xie, N.B. Mandayam, and H.V. Poor, “Cloud
Storage Defense Against Advanced Persistent Threats: A Prospect
Theoretic Study,” IEEE J. Selected Areas in Communications,
vol.35, no.3, pp.534–544, March 2017.

[7] M. Du,, Q. Wang,, M. He,, and J. Weng, “Privacy-Preserving In-
dexing and Query Processing for Secure Dynamic Cloud Storage,”
IEEE Trans. Inf. Forensics Security, vol.13, no.9, pp.2320–2332,
Sept. 2018.

[8] J. Li, J. Wu, and L. Chen, “Block-Secure: Blockchain Based Scheme
for Secure P2P Cloud Storage,” Information Sciences, vol.465,
pp.219–231, Oct. 2018.

[9] B. Cui, Z. Liu, and L. Wang, “Key-Aggregate Searchable Encryption
(KASE) for Group Data Sharing via Cloud Storage,” IEEE Trans.
Comput., vol.65, no.8, pp.2374–2385, Aug. 2016.

[10] “FBI asks Apple for help cracking Pensacola gunman’s iPhones,”
Available: https://www.washingtonpost.com/national-security/
fbi-asks-apple-for-help-cracking-pensacola-gunmans-iphones/
2020/01/07/b829ac72-3178-11ea-91fd-82d4e04a3fac story.html
[Internet]

[11] “Legal process for user data requests FAQs,” Available: https://
support.google.com/transparencyreport/answer/7381738?hl=en [In-
ternet]

[12] B. Tomas and B. Vuksic, “Peer to peer distributed storage and com-
puting cloud system,” 34th Int. Conf. Information Technology Inter-
faces, pp.79, IEEE, 2012.

[13] F. Jacob, J. Mittag, and H. Hartenstein, “A security analysis of the
emerging P2P-based personal cloud platform maidsafe,” 14th Int.
Conf. Trust, Security and Privacy in Computing and Communica-
tions, pp.1403, IEEE, 2015.

[14] F. Rizzo, G.L. Spoto, P. Brizzi, D. Bonino, G.D. Bella, P.
Castrogiovanni, Istituto Superiore, and Mario Boella, “Beekup: A
distributed and safe P2P storage framework for ioe applications,”
20th Conference on Innovations in Clouds, Internet and Networks,
pp.44, IEEE, 2017.

[15] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE
Commun. Surveys Tuts., vol.7, no.2, pp.72–93, 2005.

[16] J.S. Plank and L. Xu, “Optimizing cauchy reed-solomon codes
for fault-tolerant network storage applications,” IEEE Interantional
Symposium on Network Computing and Apllications, pp.173, 2006.

[17] S. Wilkinson, “Storj a peer-to-peer cloud storage network files as
encrypted shards,” StorJ, 2014, pp.1. Available: https://storj.io/storj.
pdf [Internet]

[18] T. Wangian, J. Zhou, X. Chen, G. Wang, A. Liu, and Y. Liu, “A three-
layer privacy preserving cloud storage scheme based on computa-
tional intelligence in fog computing,” IEEE Trans. Emerging Topics
in Computational Intelligence, vol.2, no.1, pp.3, Feb. 2018.

[19] I.S. Reed and G. Solomon, “Polynomial codes over certain finite

http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1016/j.jnca.2013.09.016
http://dx.doi.org/10.1016/j.jnca.2013.09.016
http://dx.doi.org/10.1016/j.jnca.2013.09.016
http://dx.doi.org/https://doi.org/10.1145/2398776.2398827
http://dx.doi.org/https://doi.org/10.1145/2398776.2398827
http://dx.doi.org/https://doi.org/10.1145/2398776.2398827
http://dx.doi.org/https://doi.org/10.1145/2398776.2398827
http://dx.doi.org/10.1016/j.future.2013.02.001
http://dx.doi.org/10.1016/j.future.2013.02.001
http://dx.doi.org/10.1016/j.future.2013.02.001
http://dx.doi.org/10.1109/TC.2011.245
http://dx.doi.org/10.1109/TC.2011.245
http://dx.doi.org/10.1109/TC.2011.245
http://dx.doi.org/10.1109/JSAC.2017.2659418
http://dx.doi.org/10.1109/JSAC.2017.2659418
http://dx.doi.org/10.1109/JSAC.2017.2659418
http://dx.doi.org/10.1109/JSAC.2017.2659418
http://dx.doi.org/10.1109/TIFS.2018.2818651
http://dx.doi.org/10.1109/TIFS.2018.2818651
http://dx.doi.org/10.1109/TIFS.2018.2818651
http://dx.doi.org/10.1109/TIFS.2018.2818651
http://dx.doi.org/10.1016/j.ins.2018.06.071
http://dx.doi.org/10.1016/j.ins.2018.06.071
http://dx.doi.org/10.1016/j.ins.2018.06.071
http://dx.doi.org/10.1109/TC.2015.2389959
http://dx.doi.org/10.1109/TC.2015.2389959
http://dx.doi.org/10.1109/TC.2015.2389959
http://dx.doi.org/10.2498/iti.2012.0442
http://dx.doi.org/10.2498/iti.2012.0442
http://dx.doi.org/10.2498/iti.2012.0442
http://dx.doi.org/10.1109/Trustcom.2015.538
http://dx.doi.org/10.1109/Trustcom.2015.538
http://dx.doi.org/10.1109/Trustcom.2015.538
http://dx.doi.org/10.1109/Trustcom.2015.538
http://dx.doi.org/10.1109/ICIN.2017.7899248
http://dx.doi.org/10.1109/ICIN.2017.7899248
http://dx.doi.org/10.1109/ICIN.2017.7899248
http://dx.doi.org/10.1109/ICIN.2017.7899248
http://dx.doi.org/10.1109/ICIN.2017.7899248
http://dx.doi.org/10.1109/COMST.2005.1610546
http://dx.doi.org/10.1109/COMST.2005.1610546
http://dx.doi.org/10.1109/COMST.2005.1610546
http://dx.doi.org/10.1109/NCA.2006.43
http://dx.doi.org/10.1109/NCA.2006.43
http://dx.doi.org/10.1109/NCA.2006.43
http://dx.doi.org/10.1109/TETCI.2017.2764109
http://dx.doi.org/10.1109/TETCI.2017.2764109
http://dx.doi.org/10.1109/TETCI.2017.2764109
http://dx.doi.org/10.1109/TETCI.2017.2764109
http://dx.doi.org/10.1137/0108018


CHOI et al.: A SERVER-BASED DISTRIBUTED STORAGE USING SECRET SHARING WITH AES-256 FOR LIGHTWEIGHT SAFETY RESTORATION
1659

fields,” Soc. Indust, vol.8, no.2, pp.300, June 1960.
[20] Q. Wang, J. Jing, and J. Lin, “A secure storage system combining

secret sharing schemes and Byzantine quorum mechanisms,” 10th
IEEE Int. Conf. Computer and Information Technology, pp.596,
2010.

[21] M. Fukumitsu, S. Hasegawa, J. Iwazaki, M. Sakai, and D. Takahashi,
“A proposal of a secure P2P-type storage scheme by using the Se-
cret Sharing and the blockchain,” IEEE 31st Int. Conf. Advanced
Information Networking and Applications, pp.803, 2017.

[22] R.K. Raman and L.R. Varshney, “Distributed storage meets secret
sharing on the blockchain,” Information Theory and Applications
Workshop, pp.1, IEEE, 2018.

[23] A. Shamir, “How to share a secret,” Algorithms Unplugged, pp.159,
2011.

[24] R.L. Rivest, “All-or-Nothing encryption and the package transform,”
Springer Fast Software Encryption, vol.1267, pp.210–218 1997.

[25] J Daemen and V Rijmen, “The design of Rijndael: AES-the ad-
vancedencryption standard,” Springer, 2013.

[26] A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the
full AES-192 and AES-256,” Lect. Notes Comput. Sci. (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol.5912 LNCS, pp.1, 2009.

[27] V.R. Pancholi and B. Patel, “Enhancement of Cloud Computing Se-
curity with Secure Data Storage using AES,” International Journal
for Innovative Research in Science & Technology (IJIRST), 2(09),
pp.18, 2016.

[28] G.R. Blakley and C. Meadows, “Security of Ramp Schemes,”
CRYPT 1984, pp.242–268, 1984.

[29] A.K. Chattopadhyay, D. Ghosh, P. Maitra, A. Nag, and H.N. Saha,
“A Verifiable (n,n) Secret Image Sharing Scheme Using XOR Op-
erations,” 9th IEEE Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON), pp.1025–1031,
2018.

[30] IOzone “Filesystem Benchmark,” Available: http://www.iozone.org
[Internet]

[31] K. Nils, “Secure Volunteer Computing for Distributed Cryptanaly-
sis,” Kassel university press, 2018, 260 Pages.

[32] S. Lee and D. Choi, “Privacy-preserving cross-user source-based
data deduplication in cloud storage,” Int. Conf. ICT Convergence,
pp.329–330, 2012.

Sanghun Choi received his M.Sc. degrees
from Keio University in 2018. He is a Ph.D.
student at Keio University. His research interest
is a security and privacy for the location system,
the cloud system and IoT. He is a member of
IEICE and IEEE.

Shuichiro Haruta was born in Saitama,
Japan in 1992. He received his B.E., M.E., and
Ph.D. (Engineering) degrees in Department of
Information and Computer Science, Keio Uni-
versity, Yokohama, Japan in 2015, 2017 and
2020, respectively. His research interest is se-
curity privacy for Internet of Things. He was
a research associate at Keio University (2017–
2018).

Yichen An received his M.Sc. degrees from
Keio University in 2020. His research interest
is an information security. He is a member of
IEICE.

Iwao Sasase was born in Osaka, Japan in
1956. He received the B.E., M.E., and D.Eng.
degrees in Electrical Engineering from Keio
University, Yokohama, Japan, in 1979, 1981 and
1984, respectively. From 1984 to 1986, he was a
Post Doctoral Fellow and Lecturer of Electri- cal
Engineering at the University of Ottawa, ON,
Canada. He is currently a Professor of Informa-
tion and Computer Science at Keio University,
Yokohama, Japan. His research interests include
modulation and coding, broadband mobile and

wireless communications, optical communications, communication net-
works and information theory. He has authored more than 295 journal pa-
pers and 440 international conference papers. He granted 45 Ph.D. degrees
to his students in the above field. Dr. Sasase received the 1984 IEEE Com-
munications Society (ComSoc) Student Paper Award (Region 10), 1986
Inoue Memorial Young Engineer Award, 1988 Hiroshi Ando Memorial
Young Engineer Award, 1988 Shinohara Memorial Young Engineer Award,
1996 Institute of Electronics, Information, and Communication Engineers
(IEICE) of Japan Switching System Technical Group Best Paper Award,
and WPMC 2008 Best Paper Award. He is now serving as a Vice-President
of IEICE. He served as President of the IEICE Communications Society
(2012–2014). He was Board of Governors Member-at-Large (2010–2012),
Japan Chapter Chair (2011–2012), Director of the Asia Pacific Region
(2004–2005), Chair of the Satellite and Space Communications Techni-
cal Committee (2000–2002) of IEEE ComSoc., Vice President of the Com-
munications Society (2004–2006), Chair of the Network System Technical
Committee (2004–2006), Chair of the Communication System Technical
Committee (2002–2004) of the IEICE Communications Society, Director
of the Society of Information Theory and Its Applications in Japan (2001–
2002). He is Fellow of IEICE, and Senior Member of IEEE, Member of
the Information Processing Society of Japan.

http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1109/CIT.2010.123
http://dx.doi.org/10.1109/CIT.2010.123
http://dx.doi.org/10.1109/CIT.2010.123
http://dx.doi.org/10.1109/CIT.2010.123
http://dx.doi.org/10.1109/AINA.2017.11
http://dx.doi.org/10.1109/AINA.2017.11
http://dx.doi.org/10.1109/AINA.2017.11
http://dx.doi.org/10.1109/AINA.2017.11
http://dx.doi.org/10.1109/ITA.2018.8503089
http://dx.doi.org/10.1109/ITA.2018.8503089
http://dx.doi.org/10.1109/ITA.2018.8503089
http://dx.doi.org/10.1007/BFb0052348
http://dx.doi.org/10.1007/BFb0052348
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/3-540-39568-7_20
http://dx.doi.org/10.1007/3-540-39568-7_20
http://dx.doi.org/10.1109/UEMCON.2018.8796568
http://dx.doi.org/10.1109/UEMCON.2018.8796568
http://dx.doi.org/10.1109/UEMCON.2018.8796568
http://dx.doi.org/10.1109/UEMCON.2018.8796568
http://dx.doi.org/10.1109/UEMCON.2018.8796568
http://dx.doi.org/10.19211/KUP9783737604277
http://dx.doi.org/10.19211/KUP9783737604277
http://dx.doi.org/10.1109/ICTC.2012.6386851
http://dx.doi.org/10.1109/ICTC.2012.6386851
http://dx.doi.org/10.1109/ICTC.2012.6386851

