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PAPER

End-to-End Deep ROI Image Compression∗

Hiroaki AKUTSU†a), Member and Takahiro NARUKO†, Nonmember

SUMMARY In this paper, we present the effectiveness of image com-
pression based on a convolutional auto encoder (CAE) with region of in-
terest (ROI) for quality control. We propose a method that adapts image
quality for prioritized parts and non-prioritized parts for CAE-based com-
pression. The proposed method uses annotation information for the distor-
tion weights of the MS-SSIM-based loss function. We show experimental
results using a road damage image dataset that is used to check damaged
parts and an image dataset with segmentation data (ADE20K). The experi-
mental results reveals that the proposed weighted loss function with CAE-
based compression from F. Mentzer et al. learns some characteristics and
preferred bit allocations of the prioritized parts by end-to-end training. In
the case of using road damage image dataset, our method reduces bpp by
31% compared to the original method while meeting quality requirements
that an average weighted MS-SSIM for the road damaged parts be larger
than 0.97 and an average weighted MS-SSIM for the other parts be larger
than 0.95.
key words: deep image compression, ROI, quality control

1. Introduction

The internet of things (IoT) is expected to play a key role
in achieving sustainable development goals (SDGs) set by
the United Nations in 2015 [2]. According to IDC, IoT de-
vices are expected to generate over 90 ZB of data (IoT data)
in 2025 [3]. Image data generated by IoT devices (such
as surveillance cameras, on-vehicle cameras, and smart-
phones) is enormous and is generated at every moment.
These vast amounts of data are expected to enable solutions
that improve public services in the future. To transfer and
store this increasing data, technology that provides a high
compression ratio for the data is needed.

For example, in the field of public infrastructure main-
tenance, massive data are considered to be generated. Be-
cause the population is concentrated in urban areas, rural
areas are depopulated and infrastructure is getting older.
Moreover, due to the declining birthrate and the aging pop-
ulation, human resources for public services are not enough.
Therefore, it is thought that maintenance will be automated
by IoT manner in the future. Furthermore, autonomous
vehicles are expected to generate huge amounts of data
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throughout the city, and these vast amounts of image data
will be used for various digital solutions in the future.

If it is possible to create a specialized compressor for
these applications, the cost of their systems can be reduced.
It can be considered that there are two types of image
compression: general-purpose compression such as JPEG
and compression specialized for application. Deep learn-
ing based compression has some advantages as compression
specialized for application, because by using loss functions
and image datasets suitable for the application, a compres-
sor specialized for the application can be automatically gen-
erated.

In this paper, we present the effectiveness of image
compression based on a convolutional auto encoder (CAE)
with region of interest (ROI) for quality control. The pro-
posed method uses annotation information (e.g. bounding
boxes or segmentation maps) for the distortion weights of
the MS-SSIM-based loss function for training the compres-
sion network. We show experimental results using images
taken by on-vehicle cameras used to check damaged regions
on the roads for maintenance work. And we also show an-
other experimental results using ADE20K dataset with seg-
mentation data to show our proposed method’s effective-
ness.

2. Related Works

2.1 Convolutional Autoencoder Based Image Compres-
sion

Leading research [5]–[7] has covered the compression meth-
ods for images using neural networks. These methods train
a CAE with a large amount of training data. An image com-
pression technique using a neural network has the advantage
that an arbitrary differentiable function can be set as a loss
function and a compressor is trained in an end-to-end man-
ner. In general, image quality measures such as PSNR (a
mean squared error based metric) and MS-SSIM [8] (which
qualifies structural similarities) are used as the loss function.
CAE-based image compression methods such as [5], [6] au-
tomatically learn to adjust to the bit rate necessary for each
part on an image by using a technique called an “importance
map” with end-to-end learning.

Selective generative compression [9] generates por-
tions of images by a generative adversarial network (GAN)
to improve a compression rate further. This method can dra-
matically improve a compression rate up to 0.1 bpp or less
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instead of storing the details of images. However, because
our purpose in this paper is to keep important details such as
the damaged parts of roads, the problem with this approach
is that it changes the shape and characteristics of the parts.

2.2 Other Codecs

JPEG is an image compression codec that has been widely
used as a standard on the internet for decades. The
JPEG2000 image coding standard provides a feature called
region of interest (ROI) [10]. It changes the compression
rate and the quality for each area so that areas specified as
important have high quality. This approach is similar to our
approach. However, our approach differs in that the encoder
and decoder automatically learns the features of the impor-
tant part in the end-to-end manner from the training data
with annotation.

BPG [11] is one of the latest image compression
codecs, based on a subset of the HEVC open video com-
pression standard. These methods are designed to be general
purpose and are often evaluated by the PSNR as a bench-
mark.

Figure 1 shows road damage images encoded by BPG
at different qualities. We found that the details of the dam-
aged parts disappear at a low bit rate of 1.0 bpp or less.

In this paper, we examined the effectiveness of ap-
plying the state-of-the-art CAE-based image compression
method with ROI. We assumed that end-to-end learning
gives the CAE-based methods better compression rates
compared to conventional methods.

Fig. 1 Road damage images at different qualities encoded by BPG (using
Adachi 20170906093840 [4]).

Fig. 2 Network architecture overview.

3. Proposed Method

Assuming that there are important and unimportant parts in
the image, we aim to control the allocation of the amount of
bits according to the specified image quality for prioritized
and non-prioritized parts. Our method adds the following
steps to the CAE-based image compression method.

1. Use a loss function with a distortion loss that changes
parameters of an image quality metric for each area ac-
cording to the auxiliary annotation information.

2. Append a new encoder input channel and feed it an-
notation information for manual quality control (op-
tional).

In order to apply the proposed method 1, it is neces-
sary that annotation imformation indicating important parts
are available in addition to the image data as the network
training data. If the annotation information is always pro-
vided even after training, the compression ratio sometimes
can be improved by applying method 2 additionally. How-
ever, as describe in Chapter 4, since this difference is very
small, it works well even if there is no annotation informa-
tion after training the network. Therefore, from a practical
point of view, method 2 is optional.

3.1 Network Architecture

We employ [6] as the network architecture of the compres-
sor. Figure 2 shows the entire architecture overview. The
annotation information A is a two-dimensional array (W×H)
of values representing the degree of importance of each
pixel on the image. A is use for calculating distortion
weights of our MS-SSIM-based loss function during net-
work training. A is optionally used as encoder input for
manual quality control during and after the network train-
ing.

If we use the annotation information A as encoder in-
put, A is input into 1 out of 4 channels of the encoder. Image
data in RGB format (3×W×H) is input into 3 out of 4 chan-
nels of the encoder.
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Fig. 3 wMS S S IM calculation overview.

The importance map which is introduced in [6] is a
CNN (the last layer of the encoder) channel output for mask-
ing the other CNN channels output in order to control the
number of active channels for each area of the image. Mask
bits are constructed from the importance map values and
element-wise multipled with the other channel outputs, de-
tails are shown in [6]. By our proposal loss function, CNN
learns to produce the importance map to control image qual-
ity of the important part and the other part.

3.2 Loss Function

We defined weighted MS-SSIM (wMSSSIM), image quality
metrics that reflect annotation information. They are used
for image quality assessment and loss function for quality
control in this paper.

3.2.1 Weighted MS-SSIM

SSIM is an image quality metric that takes structural similar-
ity for good approximation of perceived image quality, and
multi-scale SSIM (MS-SSIM) is a multi-scale extension of
SSIM [8].

Let xi, j and yi, j be the ith local image patches at the
jth scale, let ai, j be the ith local annotation weight at the
jth scale, let M be the number of scales, let β j be the scale
weight at the jth scale, let ssim be the local SSIM metric
function, and let cs be the local contrast and structure met-
ric function, then the weighted MS-SSIM (wMS S S IM) is
computed as

wMS S S IM = [
∑

i ai,M ssim(xi,M , yi,M)∑
i ai,M

]βM

M−1∏

j=1

[

∑
i ai, jcs(xi, j, yi, j)∑

i ai, j
]β j . (1)

Figure 3 shows the entire wMS S S IM calculation
overview. In MS-SSIM calculation, the images are sub-
sampled to each scale and Gaussian filtering is performed
to the images for the local ssim and cs calculation. Our
method also performs the same process for the annotation
information A to calculate ai, j to realize the natural im-
age quality change at the boundaries between the priority
parts and the other parts. In our experiment, A has a con-
stant positive value c for the prioritized area and 0 for the

Table 1 Experimental conditions.

Items Conditions

Base model [6]

Encoder and Decoder:
3 Layer 2DCNN
+ 15 Residual blocks
Entropy Estimator:
2 Layer 3DCNN (masked)
+ 1 Residual block

Training iteration 100,000 iterations of batches
Train data
(RoadDamageDataset)

6,925 cliped images from [4]
(Width:160, Height:160)

Test data
(RoadDamageDataset)

1,811 files from [4]
(exclude images with no damaged parts)
(Width:256, Height:256)

Train data
(ADE20K)

5,268 cliped car images from [13]
(Width:160, Height:160)

Test data
(ADE20K)

132 files from [13]
(exclude images with no car parts)
(Width:256, Height:256)

Quality settings
(RoadDamageDataset)

Tp = 0.03 (wMS S S IMp = 0.97),
Tnp = 0.05 (wMS S S IMnp = 0.95)
λ = 5

Quality settings
(ADE20K)

Tp = 0.02 (wMS S S IMp = 0.98),
Tnp = 0.05 (wMS S S IMnp = 0.95)
λ = 25

non-prioritized area. Let Aj be the subsampled A for each
scale j (note that A = A1), and let ai, j be the local an-
notation patches from Aj, then we get ai, j by performing
Gaussian filter to ai, j. We used parameter M = 5 and
β j = {0.0448, 0.2856, 0.3001, 0.2363, 0.1333} same as pa-
per [8]. Gaussian filter parameter is σ = 1.5 and Gaussian
kernel size is set to 11.

By taking a weighted average using scaled annotation
weights ai, j for each scale to the MS-SSIM, the image qual-
ity metrics reflect the importance of each part.

We referred to paper [12] that uses information con-
tent weight with MS-SSIM. In [12], the information con-
tent weight are calculated from only the local image infor-
mation to improve performance of perceptual quallity. Our
approach is different in that we use specified external anno-
tation information for weight.

3.2.2 Quality Control Loss Function

In order to optimize the rate-distortion trade-off in im-
age compression by end-to-end learning, the following
loss function is generally used as in CAE-based compres-
sion [5]–[7].

L = Le + λLd (2)

Le represents the information entropy that corresponds
to bpp. Le is calculated by an entropy estimator based on
CNN (see [6] for details). λ is a parameter that determines
the desired rate-distortion trade-off. Ld is a distortion term
that qualifies an image quality. Ld is defined by the follow-
ing equation in our method.

Ld = max(1 − wMS S S IMp,Tp)

+max(1 − wMS S S IMnp,Tnp) (3)
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Fig. 4 Experimental results (using Adachi 20170906093840).

wMS S S IMp and wMS S S IMnp represent image qual-
ity calculated by Eq. (1) in prioritized parts and non-
prioritized parts. Target distortion of priority parts Tp and
non-priority parts Tnp are given by quality settings. Max
operations are used because it is prioritized to reduce bpp
once the target quality levels of the parts are satisfied.
wMS S S IMp is calculated with A, and wMS S S IMnp is cal-
culated with the inverse of A, i.e. c−A. However, if a priority
area does not exist, wMS S S IMp cannot be calculated be-
cause A is a zero matrix and

∑
i ai, j equals 0, which leads to

0-division in Eq. (1). This problem also occur when the non-
prioritized area does not exist when calculate wMS S S IMnp.
To avoid this problem, a sufficiently small coefficient is
added to A during training.

4. Experiments

4.1 Experimental Conditions

We evaluated the effectiveness of our method with the Road-

DamageDataset [4], which is a dataset of images that con-
tain damaged parts of a road. The RoadDamageDataset
contains annotation information and image data, which are
downsampled to 256×256 pixels in this evaluation. We also
evaluated the proposed method with ADE20K dataset which
contains segmentation information and set area with cars
as the prioritized parts. ADE20K segmentation information
and image data are downsampled and clipped to 256 × 256
pixels for evaluations. For details on the network architec-
ture and implementation that our method employs as a base,
refer to paper [6]. The settings of this experiment are sum-
marized in Table 1. We set the chroma format to 4:4:4 and
4:2:0, and we set compression level to 9 (maximum) when
evaluating BPG. Quantizer parameter settings are described
in each figure and tables. The other parameters are set to
default values. We used BPG version 0.9.8 for the evalua-
tions. We used ImageMagick 6.8.9-9 for the JPEG compres-
sion evaluations. JPEG quality level settings are described
in each figure and the other parameters are set to default val-
ues. (the chroma format is 4:2:0).
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Table 2 Experimental results (averages of RoadDamageDataset test data).

Method bpp wMS S S IMp wMS S S IMnp wPS NRp wPS NRnp MS − S S IM PS NR

Proposal train (w input A) 0.251 0.970 0.952 26.78 22.06 0.955 22.51
Proposal train (w/o input A) 0.263 0.970 0.953 27.04 21.98 0.956 22.45
Normal train 0.382 0.970 0.973 27.81 23.55 0.973 23.95
BPG 4:4:4 (q = 32) 1.183 0.970 0.985 32.93 33.39 0.982 33.28
BPG 4:2:0 (q = 32) 1.122 0.968 0.982 32.67 32.63 0.979 32.61

Table 3 Experimental results (averages of car images in ADE20K).

Method bpp wMS S S IMp wMS S S IMnp wPS NRp wPS NRnp MS − S S IM PS NR

Proposal train (w input A) 0.249 0.979 0.957 23.90 24.50 0.960 24.48
Proposal train (w/o input A) 0.251 0.977 0.957 23.88 24.65 0.959 24.62
Normal train 0.312 0.973 0.974 23.00 25.93 0.974 25.68
BPG 4:4:4 (q = 40) 0.338 0.975 0.961 26.43 28.83 0.962 28.65
BPG 4:2:0 (q = 40) 0.323 0.972 0.957 26.08 28.51 0.958 28.33

Fig. 5 Importance maps and an annotation information (using Adachi 20170906093840).

Two networks are independently constructed and
trained for case (i) annotation data is input to the encoder
as a hint and (ii) the annotation data is not input. The main
reason for comparing the two cases is to show that the pro-
posed method can automatically learn important parts with-
out manually inputting annotation data and achieve almost
the same bit rate.

4.2 Results

The experimental results are shown in Figs. 4 and 6 (a)–
(g). We define wPSNRp and wPSNRnp as PSNR value in
the prioritized and non-prioritized parts respectively and use
them as a quality metric in addition to wMSSSIM. With the
CAE-based compression [6] trained by our methods ((d) and
(e)), the portion has a higher quality compared to the con-
ventional codecs like JPEG (b) and BPG (c) under the same
level bpp conditions. Compared to method [6] without our
methods (f) and BPG (g) our methods ((d) and (e)) reduces
bpp under the same level or even lower quality conditions
of the prioritized portion. Our method ((d) and (e)) works
because the quality of the important area (wMSSSIMp) is
higher than the whole picture quality (MS-SSIM) compared
to the original (f). According to the RoadDamageDataset
results in Figs. 4 (c) and (d), the wPSNR of the damaged
part of the BPG is 27.56, and the wPSNR of the proposed
method is lower than that (27.20). Despite the low wPSNR

of the proposed method, the damaged parts can be visually
confirmed (they disappear in BPG). Therefore, it can be seen
that wMSSSIM is more suitable in this case.

Table 2 shows the results of the average bpp of test im-
age data under the same quality level conditions in the pri-
oritized parts (wMS S S IMp). The bpps are theoretical value
calculated by the entropy estimator. Note that the theoretical
values include small errors that are less than 0.1% in most
image data compared to actual values. Compared to the
method [6] without the proposed method (normal train), the
method [6] with the proposed method reduces the amount of
data by 31% on average even without receiving the annota-
tion as the encoder input while the wMSSSIMs in the dam-
aged parts are on the same level. The proposed method with
the annotation input for the encoder reduces the amount of
data by 34% on average. Table 3 shows results on ADE20K.
As a result, we confirmed that the compression rate was im-
proved by 19% than [6] with even wMSSSIMps are on the
better condition. In the case of the car, even with a compres-
sion method such as BPG, the area of the car tends to have
high wMSSSIM. However, even in this case, the proposed
method provides a higher compression ratio than BPG with
wMSSSIMps are on the same level.

4.3 Annotation Effects

Figures 5 (a)–(c) and Figs. 7 (a)–(c) show visualized impor-
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Fig. 6 Experimental results (using ADE val 00000855).

Fig. 7 Importance maps and an annotation information (using ADE val 00000855).

tance maps of the reference image presented in Figs. 4 and
6, in which the red parts represent larger amount of bits.
(a) is an importance map without a proposal method. (b) is
an importance map when the network is trained by the pro-
posed loss function without receiving the annotation as the

encoder input. (c) is an importance map with the proposed
method with the encoder annotation input. (d) is the ground
truth annotation of the image where black represents prior-
ity parts. Compared to (a), (b) shows that the damaged parts
have a lot of bit allocation and the parts without damage do
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Fig. 8 Encoded images and importance maps (upper is normal MS-SSIM train with [6] and lower is
proposal train with [6] w/o input A).
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not. This means that by the proposed method, the network
learns the characteristics of the damaged parts and it real-
izes automatic control of bit allocation. (c) shows a stronger
correlation with the input annotation, which indicates that
more specific bit allocation is possible with manual annota-
tion input.

Another images of the experimental results are shown
in Fig. 8. Upper is normal MS-SSIM train with [6] and lower
is proposal train with [6] without input A. The results show
that by the proposed method, the network learns the char-
acteristics of the multiple types of damaged parts (e.g. paint
damage, road crack) and car parts and realizes automatic
control of bit allocation.

5. Conclusion

We proposed a method to improve the compression rate
of CAE-based compression method while maintaining the
given quality of the prioritized parts using annotation infor-
mation that expresses the importance of each part of the im-
age. We show experimental results using a road damage
image dataset and ADE20K dataset.

The experimental results show that our weighted loss
function enables CAE-based compression [6] to learn the
characteristics and preferred bit allocations of the prioritized
parts by end-to-end training. In the case of using road dam-
age image dataset, our method reduces bpp by 31% com-
pared to the original method [6] while maintaining the pre-
determined image quality in the parts.
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