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Analysis of The Similarity of Individual Knowledge and The
Comprehension of Partner’s Representation during Collaborative
Concept Mapping with Reciprocal Kit Build Approach

Lia SADITA†a), Pedro Gabriel Fonteles FURTADO†, Nonmembers, Tsukasa HIRASHIMA†,
and Yusuke HAYASHI†, Members

SUMMARY Concept mapping is one of the instructional strategies
implemented in collaborative learning to support discourse and learning.
While prior studies have established its positive significance on the learning
achievements and attitudes of students, they have also discovered that it can
lead to students conducting less discussion on conceptual knowledge com-
pared to procedural and team coordination. For instance, some inaccurate
ideas are never challenged and can become ingrained. Designing a learning
environment where individual knowledge is acknowledged and developed
constructively is necessary to achieve similarity of individual knowledge
after collaboration. This study applies the Reciprocal Kit Build (RKB) ap-
proach before collaborative concept mapping. The approach consists of
three main phases: (1) individual map construction; (2) re-constructional
map building; and (3) difference map discussion. Finally, each team will
build a group map. Previous studies have shown that the visualization of
similarities and differences during the third phase correlates with the im-
provement of concept map quality. The current paper presents our inves-
tigation on the effects of the first and second phases in terms of the final
group products. We analyze the correlations between the similarity of indi-
vidual knowledge represented in the first-phase maps, the comprehension
of partner’s representation during the second phase, and the changes of map
scores. Our findings indicate that comprehension level is a stronger predic-
tor than the similarity of individual knowledge for estimating score gain.
The ways in which patterns of knowledge transfer from individual to group
maps, which exhibit how the group products are built based on individual
inputs, are also discussed. We illustrate that the number of shared and un-
shared links in the group solutions are proportionally distributed, and that
the number of reconstructed links dominates the group solutions, rather
than the non-reconstructed ones.
key words: collaborative concept map, kit-build, collaborative learning,
boundary crossing

1. Introduction

Mutual understanding of the partner’s perspectives and
shared interpretations of the problem being addressed are
essential requirements for collaboration. Heterogeneous
group composition promotes the negotiation of perspectives
towards a shared understanding. However, in a practical
classroom situation, assessing similarities of prior knowl-
edge beforehand is not always applicable. Previous stud-
ies suggest that social interaction is essential for promoting
knowledge convergence; i.e., an increase in knowledge pos-
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sessed by all collaborating partners after collaboration [1]–
[3]. Some researchers have attempted to promote productive
interaction by employing script, scenario, or visualization
tools [4], [5].

Concept maps have been extensively used as a visual-
ization tool to articulate complex ideas and maintain shared
focus during a discussion. Studies have found that employ-
ing a concept map in collaborative learning shows signif-
icant learning gains related to the quality of student inter-
action during discussions [5], [6]. Moreover, collaborative
concept mapping activity has a positive effect on students’
attitudes, specifically in increasing group motivation and
students’ responsibility for their own learning [5], [7]. How-
ever, conflicting evidence has also been found, indicating
that students spend a considerable amount of time focusing
on task collaboration, procedure coordination, and team co-
ordination, rather than on discussions about the concepts or
relationships involved [8]. Others have also found that some
inaccurate ideas are never challenged and can become in-
grained [9].

A strategy to foster knowledge convergence during
collaboration is by nurturing group members to apply the
knowledge available to them, both shared and unshared
knowledge. The current study employs the Reciprocal Kit
Build (RKB) approach, as introduced by [10], [11], to allow
students to externalize their thinking, exchange knowledge
through reconstruction, and discuss group members’ simi-
lar and dissimilar areas of understanding, with the support
of a difference map. The approach engages group members
to operate on boundary objects; i.e., the map structures and
components. Through utilizing these boundary objects, var-
ious learning mechanisms, such as coordination, reflection,
and transformation of individual knowledge, are expected to
occur.

Previous studies showed that the RKB approach pro-
motes productive discussion [10], [11]. Unlike those stud-
ies, after following the proposed activity, we ask the stu-
dents to build an integrated map that represents their under-
standing as a group. A preliminary study on RKB for col-
laborative learning has explained how the approach affects
collaborative learning outcomes and students’ learning ex-
periences [12]; however, it does not investigate how individ-
ual prior knowledge convergence and comprehension levels
through reconstruction may potentially influence the final
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collaborative product. It also does not identify how knowl-
edge is potentially transferred from individual solutions, ac-
cording to the similarity of knowledge and comprehension
levels between the group members. Thus, the current study
aims to address those issues. Identifying the relationship
between the individual and group product is important since
there is interdependence between these two. The results of
this study highlight the role of individual phases of RKB
activities in foreseeing students’ learning achievements as a
group. The study is implemented in a practical Linear Alge-
bra classroom at a public university in Indonesia.

The structure of this paper is as follows. In Sect. 1, the
motivations behind the research are explained, and relevant
prior researches are discussed in Sect. 2. Section 3 describes
the context and participants of this study, as well as defining
the sources of data collection and the metrics used to deter-
mine the similarity of students’ prior knowledge, the com-
prehension of group partner representation, transfer of ele-
ments from individual to group maps, and the group learn-
ing achievements. The results of this study are discussed in
Sect. 4, while a summary of the results, findings, and limi-
tations of this study is presented in Sect. 5. The conclusions
drawn from this research and some potential future works
are available in Sect. 6.

2. Literature Review

2.1 Collaborative Concept Map

The mental models and schemata that are used by cog-
nitive and educational researchers to explain the complex
phenomenon of human learning, reasoning, and problem
solving are not directly observable [13], [14]. Researchers
thus require adequate tools, instruments, and methodolo-
gies to assist learners to externalize those knowledge struc-
tures [13]. A concept map is a kind of externalization tool
that can be manipulated to promote the sophistication of in-
ternal knowledge representation (learning). The term “con-
cept map” was first introduced by Joseph D. Novak [15] as
a graphical structure that represents one’s cognitive knowl-
edge, consisting of concepts and links. A concept map can
portray the builder’s understanding of the domain depicted
in the map [16].

In a collaborative learning context, concept maps may
act as a shared representation to support the co-construction
of knowledge and maintain shared focus during a discus-
sion. Employing a concept map can also reduce the am-
biguity of discussions. Research suggests that the use
of concept maps supports all collaborative learning pro-
cesses; i.e., externalization and elicitation of task-relevant
knowledge, and conflict- and integration-oriented consensus
building [3], [4]. Nevertheless, studies on various collab-
orative concept mapping activities have also indicated that
this tool can induce more effective discussion; for example,
by adding to the individual preparation stage or increasing
awareness of group members’ knowledge before collabora-
tion. Creating a design of concept map in their own private

spaces can provide students with time to reflect upon, orga-
nize, and develop their understanding, potentially leading to
more effective expression of individual ideas during a dis-
cussion [6], [17]. Increasing group knowledge awareness by
showing the partner’s concept map and providing access to
correlated resources improves the efficiency of knowledge
co-construction because students do not need to collect in-
formation, but are instead, able to start the problem-solving
process directly [18].

2.2 Kit-Build Concept Map

When requested to build a concept map, students are
equipped with instructions and conditions, which are re-
ferred to respectively as task demands and task constraints:
they outline what the student must do to complete the task,
and limitations that they must abide by while solving the
task [16]. The pre-defined conditions and specifications vary
in terms of the structure or the content of the map–from
complete freedom of content and/or structure, to restricted
content and/or structure. To determine the appropriate build-
ing style, the teacher must reflect on the intended purpose of
the exercise, as different conditions can affect the quality of
the constructed maps [16]. Moreover, assessment of concept
maps is highly dependent on the way the maps are created
and the purpose of assessment [16]; therefore, the automa-
tion of such assessment is challenging.

Kit-Build (KB) is a re-constructional approach of con-
cept mapping, wherein students are requested to build a
map based on pre-defined concepts (as nodes) and linking
words [19], [20]. These map components are decomposed
from an concept map built by an expert; for example, the
classroom teacher. Once the map contents are given, the stu-
dents need to find the most suitable structure for them. This
type of concept-map building may not be sufficient to ex-
press an individual’s knowledge structure regarding a partic-
ular topic, but it can allow for prompt evaluation of learners’
comprehension of information delivered by the teacher [20].

By employing the KB approach, it is feasible to achieve
automatic assessment of concept maps. After students
have constructed their maps, the KB analyzer will perform
proposition-based similarity matching and display the re-
sults to the teacher. The teacher can evaluate students’
performance at an individual and a group level. The KB
analyzer shows all the same propositions between teacher
and students as matching links, propositions created by the
teacher but not the students as lacking links, and the propo-
sitions constructed only by students as excessive links. Pro-
viding map components can help learners to initiate the task,
whereas when learners are faced with a blank canvas, they
are often intimidated and have difficulty in constructing a
map [16]. From the viewpoint of the teacher, understand-
ing and misconceptions by learners can be detected imme-
diately [21]. When the teacher provides feedback to learn-
ers, the source of any errors can be traced, and misconcep-
tions can be corrected. Automatic assessment through the
KB approach can attain almost the same level of validity as
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Fig. 1 Illustration of group activities with RKB

well-known manual assessment methods [22].
One extension of the KB approach for collaborative

learning is the Reciprocal Kit-Build (RKB) [10], [11]. In
standard KB, activities involve learners and their teachers
who have different levels of expertise; in contrast, the RKB
consists of a pair of learners. Figure 1 illustrates the se-
quence of RKB activities. Both learners create their map,
then the system decomposes each map into a kit. Afterward,
the kits are exchanged to enable each learner to build a re-
constructional map of their partner’s kit. The initial and the
re-constructed maps are then compared using proposition-
based similarity matching, as in the standard KB approach.
The group members then have a discussion supported by the
difference map visualization (i.e., matching, lacking, or ex-
cessive links).

The matching link represents an agreement between
each pair which comes from the initial proposition that can
be rebuilt by the partner, whereas the lacking link describes
the initial proposition which cannot be reconstructed by the
partner. The excessive link is a proposition that is created by
the partner but not available in the initial map. Both lacking
and excessive links represent disagreement between group
members.

This visualization of similarities and differences ex-
hibits conflicting ideas and triggers more questions and fur-
ther discussion to resolve the conflicts. Hence, the RKB

approach aligns with the following collaborative learning
processes: the externalization of thinking tasks; elicitation
of knowledge; and conflict-oriented consensus building [4].
Lastly, the group members construct a collaborative map
together (integration-oriented consensus building). An ex-
ploratory study conducted by [12] shows that the quality of
students’ collaborative products under this approach is sig-
nificantly higher than that of their individual maps. The im-
provements also have a moderate positive correlation with
the KB visualization of map differences.

2.3 Learning at Boundary with Reciprocal Kit Build

The KB approach can be categorized as more restrictive
with regard to map contents than other common concept-
map building approaches. The map components, collec-
tively referred to as a kit, have a role as boundary objects
to support communication between different members in a
community of practice; e.g., between learners and teachers.
The concept of boundary objects was introduced by Susan
L. Star and James R. Griesemer in the field of sociology of
science [23] as follows.

Boundary objects are objects which are both plas-
tic enough to adapt to local needs and constraints
of the several parties employing them, yet ro-
bust enough to maintain a common identity across
sites. They may be abstract or concrete. They
have different meanings in different social worlds,
but their structure is common enough to more than
one world to make them recognizable, a means of
translation.

Prior research studies show that boundaries are not seen only
as barriers to learning, but also as “spaces” with potential for
learning [24], [25]. These studies argue that boundaries can
operate as resources for development of intersecting identi-
ties and practices. Four learning mechanisms can take place
at the boundary: identification, coordination, reflection, and
transformation [24], [25].

Boundary crossing can lead to the identification of the
intersecting practices, by which the natures of the practices
are defined in relation to one another. It also can activate
the coordination processes of both practices. Minimal rou-
tinized exchanges between practices are established to make
transitions smoother, with boundary objects acting as medi-
ating artifacts during coordination. Reflection is a profound
effect of boundary crossing, which involves learning to look
differently at one practice by taking on the perspectives pro-
vided by others. In the case of transformation, boundary
crossing leads to changes in practices, and potentially even
the creation of a new, “in-between” practice. Boundary ob-
jects can act as “reminders” that trigger relevant knowledge,
or as “conversation pieces” that ground shared understand-
ing, rather than as containers of knowledge [26].

Concept mapping using the RKB approach exempli-
fies learning activities with boundary objects. In the initial
phase, the predefined nodes are the objects that can be used
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to aid learners to get started, as well as to reflect on other
group members’ perspectives during reconstruction. Recon-
struction is an active attempt to understand the group part-
ner’s representation, rather than simply reading a partner’s
map. After reconstruction, similar and different interpreta-
tions can be detected; therefore, reconstruction is an essen-
tial step that can be used to ground shared understanding
and to trigger relevant knowledge, especially when conflicts
are exhibited by showing the lacking and excessive links.
The visualization of differences creates tensions and allows
for discussion. Tensions can lead the activity to collapse,
or can become reasons for change [27]. Finally, as evolving
artifacts, the concept maps should be transformed into an
integrated product that represents a group-level shared un-
derstanding. Group members negotiate and combine ingre-
dients from different contexts to achieve hybrid solutions.

3. Methods

3.1 Participants and Instructional Context

Forty-four students of a Linear Algebra class participated
in the current study. Most of them were first-year Com-
puter Science students in a public university in Indonesia
(number of male students: 32). The class was delivered in
a blended-learning method, combining face-to-face and on-
line classroom activities. Prior to the experiment, the stu-
dents had been exposed to various collaborative learning ac-
tivities, such as a jigsaw technique and an online discussion
forum. With regard to concept mapping, the students had
prior experience of building concept maps, both individu-
ally and collaboratively, from scratch.

In the Linear Algebra class, the students were learning
about a new concept of a vector as an element of a vector
space. During high school, the students had learned about a
vector as a quantity having direction as well as magnitude.
The new definition of vector required students to accommo-
date their prior knowledge. For the current study, the stu-
dents were asked to create a concept map with their peers
related to Inner Product Space and General Vector Space.

Before the experiment, the teacher had delivered intro-
ductory learning materials, and provided a set of keywords
as predefined concepts (n = 14) to be included in their maps.
Providing the initial concepts is an effective way to deter-
mine students’ prior knowledge at the beginning of a task,
and it is an influential factor in the learning process [16].
The experiment was conducted in a computer laboratory,
and the students were allowed to choose to use their own
laptops or the computers provided by the school. To make it
convenient for the students to exchange knowledge and pro-
vide sufficient feedback to their partners, they were allowed
to select their own partners.

3.2 Experimental Procedures

The experiment was held during two hours of a class session
which was divided into three phases of activities: introduc-

Table 1 Timeline of students’ activities during experiment

Phase Students’ Activity Duration
Introduction Kit-Build practice 5 min.
Individual Create a concept map based on the pre-

defined concepts (first map)
25 min.

Create a re-constructional map based on
the partner’s first map components (sec-
ond map)

20 min.

Collaborative Discussion on shared and difference
maps

10 min.

Create a group concept map (third map) 30 min.

tion, individual, and collaborative phases. The class teacher
played a role as the instructor while a researcher and three
teaching assistants provided technical supports as needed.
The teacher also did not provide any feedback related to
contents of the map during the experiment session. The se-
quence of learners’ activities and the activity duration are
depicted in the Table 1. All participants completed each ac-
tivity design within the timeframe.

During the introductory phase the teacher explained the
overall learning activities and requested students to create
a simple map by using a web-version of the RKB system.
Next, at the individual phase, the students were asked to
build their own concept maps based on the nodes given. Af-
ter submission, the RKB system decomposed the map into
a set of unconnected nodes and links (kit) and displayed it
to the corresponding partner. The students reconstructed a
new map based on the retrieved kit. After completing the
map, the system performed a propositional-level matching
between the first (initial) map and the second (reconstructed)
map then presented the results to the students. This system
feedback enabled students to detect similarities and differ-
ences between their representations and conduct a discus-
sion during the collaborative phase. Finally, each group was
requested to build a single map that represents their collab-
orative product.

3.3 Data Source and Measurements

3.3.1 Data Source

Knowledge convergence is divided into knowledge equiva-
lence and shared knowledge, which can be evaluated prior
to, during, and/or after collaboration [28]. Knowledge
equivalence refers to learners in a group possessing a sim-
ilar degree of knowledge related to a specified subject, re-
gardless of the specific concepts constituting the knowledge
content [28]. While shared knowledge alludes to the knowl-
edge of specific concepts that learners within a group have
in common [28]. This study evaluates knowledge conver-
gence at a group level prior to collaboration, based on the
definition of shared knowledge on the assigned task.

All students’ individual maps (i.e., the first and sec-
ond maps), and the collaborative group maps, were recorded
through a web-based RKB system. The similarities and dif-
ferences among group members or between individual maps
and the group map were measured to determine the simi-
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larity of knowledge and potential knowledge transfer from
individual inputs. The similarity of knowledge at struc-
tural and semantic levels was calculated automatically based
on the map links and linking words [29]. Moreover, as
an expert, the class instructor was responsible for assess-
ing all students’ individual and group maps based on the
completeness and correctness of the information presented.
The change of map scores was analyzed to determine group
learning achievements by using a normalized change for-
mula [30].

3.3.2 Similarity of Students’ Prior Knowledge Before Col-
laboration

The similarity of individual prior knowledge is investigated
based on the students’ first maps. A concept map can be
represented as a graph, hence graph similarity measures can
be used to identify the similarity between map elements
such as nodes and links. In this study, since all individuals’
maps consist of pre-defined nodes, the similarities and dif-
ferences regarding individual knowledge representation are
portrayed based on the map links and their corresponding
linking words.

The concept map similarity measures are adopted from
the formula used by Ifenthaler [13], which follows the sim-
ilarity definition proposed by Lin [31]; that a similarity be-
tween objects A and B is related to their commonality and
the differences between them. The maximum similarity be-
tween objects A and B is reached when A and B are identical,
regardless of how much commonality they share. The simi-
larity between A and B is measured by the ratio between the
amount of information required to state the commonality of
A and B and the information needed to fully describe what
A and B are [31].

A graph G = (V, E) is a finite set V of n nodes and a
set E of edges, where E is a subset of V × V . Given two
undirected and labeled graphs, A = (V, EA) and B = (V, EB),
with common node set V , S (A, B) is the similarity between
A and B as measured by S . S EAB consists of shared links
between EA and EB while UEAB contains a set of unshared
links created by only one of the group members.

S EAB = EA ∩ EB (1)

UEAB = EA � EB (2)

S (A, B) =
|S EAB|

|S EAB| + |UEAB |
2

(3)

The current study only considered structural similarity as in
Eq. (3) to measure the similarity between two concept maps
since it represents the whole structure of the maps as graphs.
The score is defined on a scale between 0 (no structural simi-
larity between two maps) and 1 (absolute similarity between
two maps).

Further investigation on the similarity of a pair’s link-
ing words is also carried out to discover semantic similarity
between two individual maps. However, this measurement
only covers common map elements that were defined by the

students, such as the shared links. The similarity of link-
ing words is calculated by employing the Term Frequency-
Inverse Document Frequency (TF-IDF) cosine similarity
formula [29] for each shared link on the first maps. This ap-
proach is widely used to establish the similarity between two
texts. It can be categorized as a lexical similarity approach
based on character and statement matching. To enhance
the quality of measurement, some text pre-processing tech-
niques are applied, such as text normalization (e.g., trans-
forming to lower case, removing punctuation, stemming)
and stop-word removal. Using the TF-IDF cosine similarity
formula, the similarity score is between 0 and 1. In addition,
linking-word similarity falls into three following categories:
no similarity if the score is 0; moderately low similarity
if the score lies between 0–.509; and moderately high sim-
ilarity if greater than .509. This categorization is based on
the first and third quartiles of the similarity score distribution
(M = .27, S D = .34,Q1 = 0,Q3 = .509). The first quar-
tile (Q1) is the middle number between the smallest number
and the median of the data set, while the third quartile (Q3)
is defined as the middle number between the median and the
highest number of the data set.

3.3.3 Comprehension of The Partner’s Map Components

Comprehension of the components of the partner’s map rep-
resents how effectively an individual can express their un-
derstanding of their partner’s map components (nodes and
links), in the form of a concept map. Since the list of con-
cepts is defined by the teacher, the measurement only con-
siders the reconstructed partner’s links.

A graph GA = (V, EA) is a finite set V of n nodes and
a set E of edges built by student A. A graph RA = (V, ERA)
is a graph re-constructed by student A’s partner. Let EMA be
the set of A’s first map links that are connected to the same
nodes by the partner in the second map, while ENA consists
of the links that are joined to different nodes.

EMA = ERA ∩ EA (4)

ENA = ERA � EA (5)

The element of EMA is called a reconstructed link, while
ENA consists of non-reconstructed links. Given two undi-
rected and labeled re-constructional graphs RA and RB with
common node set V , C(A, B) is the comprehension value be-
tween student A and B, as a pair in a group, defined as:

C(A, B) =
|EMA + EMB|

|EMA + EMB| + |ENA+ENB |
2

(6)

3.3.4 Transfer of Elements from Individual to Group Maps

The transition (or change) of elements from the first maps
to the second maps and the group maps provides a deeper
understanding of how the individuals build on each other’s
ideas to construct a collaborative product. The transfer of
elements is indicative of an individual’s input in the group
solution. The number of concepts in the group solution that
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exist in at least one of the group member’s individual maps
is used in [32] to measure individual-to-group transfer.

In the current study, link connections and linking words
are considered as elements for measuring transfers. The
number of individual map links, both shared and unshared,
accepted as components for the group map describes the
transfer of link elements. From those transferred links, the
corresponding linking words in the individual and group
maps are extracted to measure semantic similarity. By ap-
plying the TF-IDF cosine similarity formula [29]) and some
pre-processing techniques, the similarity score is calculated.
The similarity value is from 0 to 1 inclusive, with the mean
of .68 and standard deviation of .37. Furthermore, the first
and third quartiles of the data distribution are used to define
thresholds for categorization (Q1 = .366,Q3 = 1). The cat-
egories of individual-to-group linking word similarity are as
follows:

• follow initial: the group of linking words that are sim-
ilar with at least one of the individual linking words
(similarity value of equal to or more than .99);
• modify initial: the group of linking words that are

modified from one of the individual linking words
(similarity value above .366 and below .99);
• new: the group of linking words that are not similar to

any of the individual linking words (similarity value of
below .366).

3.3.5 Group Learning Achievements: Map Score Change

To measure the change of map score from the individual
to the collaborative phase, this study adopts the normalized
change formula proposed by Marx and Cummings [30]. The
procedure involves the ratio of the gain to the maximum pos-
sible gain, or the loss to the maximum possible loss. If the
gain is zero, the normalized change c = 0, except when a
student earns a zero or a perfect score on the pre-test and
post-test. Since this study aims to investigate the learning
outcomes at the group level, the average of individuals’ first
map score is defined as the pre-score, while the final collab-
orative map score is regarded as the post-score. Let ais rep-
resent the average of individual (first) map score, and gms
represent the final collaborative map score for each group.
The normalized score gain (c) is defined as follows.

c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gms−ais
100−ais if gms > ais

drop if gms = ais = 100 or 0

0 if gms = ais
gms−ais

ais if gms < ais

(7)

4. Results

4.1 Relationship Between Group Prior Knowledge Simi-
larity, Comprehension of the Partner’s Kit, and Map
Score Change

Table 2 summarizes the descriptive statistics of the similar-

Table 2 Descriptive statistics

Data M S D Min Max
S (A, B) .47 .27 0 .93
C(A, B) .85 .12 .65 1

ais 72.21 18.22 41.43 98.57
gms 90 7.31 75.71 100

c .54 .34 -.09 1

Fig. 2 Scatter plot of group prior knowledge similarity and normalized
gain from individual to collaborative map

ity (S (A, B)), comprehension level (C(A, B)), and the av-
erage individual score (ais), group map score (gms), and
normalized change (c). From the 22 groups of participants,
one group should be omitted from the analysis because they
achieved perfect scores on both the ais and gms. A paired-
samples t-test is conducted to compare the group average
individual score and the group map score. There is a signif-
icant difference between the average individual score (M =
72.21, S D = 18.22) and the group map score (M = 90, S D =
7.31); t(20) = 4.92, p < .01. These results show that in gen-
eral, the collaborative outcomes increased. Eighteen groups
showed better group map outcomes, two groups retained the
same scores, and one group received a lower score. The
detail of changes of map qualities from individual maps to
group map is presented in [12].

Figure 2 depicts the distribution of the group’s prior
knowledge similarity (Eq. (3)) and normalized score gain
from individual to group map (Eq. (7)). Two groups have
the same similarity value and normalized gain, (S (A, B) =
.93, c = 0). This duplicate score is marked with a dou-
ble circle and asterisk symbol (***) in Fig. 2. Based on the
structural similarity of the first individual maps, there are 6
groups with similarity values of equal to or more than .714,
9 groups with similarity values between .214 and .714, and
the other 6 groups have lower similarity values. The vari-
able group prior knowledge similarity and normalized score
gain are found to be weakly negatively correlated, R(19) =
−.278, p = .22.

Figure 3 shows correlation between the comprehension
level of the partner’s representation (Eq. (6)) and normalized
score gain (Eq. (7)). The comprehension of the partner’s
presentation and normalized score gain are moderately neg-
atively correlated, R(19) = −.51, p < .05. As comprehension
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Fig. 3 Scatter plot of group comprehension level and normalized gain
from individual to collaborative map

Fig. 4 Mosaic plot of similarity of prior knowledge and comprehension
of partner’s kit

increases, normalized change decreases. Though the simi-
larity of prior knowledge and comprehension of the part-
ner’s map elements show a moderately positive correlation
with significant coefficient, R(19) = .47, p < .05, compre-
hension level is a stronger predictor than level of similarity
of prior knowledge for normalized score gain. Both Fig. 2
and 3 depict the new results presented by the current study.

In total, over 445 unique links are written by the stu-
dents in their first maps (see Fig. 4). Thirty-one percent of
those links belong to shared links (n = 140), while the re-
maining links are unshared (n = 305). Almost all shared
links can be reconstructed (99%, n = 138). Some unshared
links can also be reconstructed (62%, n = 190). The number
of unshared links which can be reconstructed is higher than
that for non-reconstructed links (n = 115).

4.2 Individual Contributions to Collaborative Products

In this subsection, the similarity levels between the actual
collaborative product and each group member’s individ-
ual map are compared. Figure 5 depicts the distribution
of shared, unshared, reconstructed, and non-reconstructed
links across all group maps. The total number of group links
generated by the 21 groups of students is 307, of which 92%

Fig. 5 Source of group map components

Fig. 6 Transfer of individual linking words to group map

(n = 282) resembles the first map’s links. Both shared and
unshared links contributed proportionally to the group map
(n = 137 and n = 145, respectively). The number of shared
and unshared links is different from the one in Sect. 4.1 be-
cause not all individual links were composed in the group
maps. The reconstructed shared and unshared links were
more likely to be accepted than the group links. None of
the non-reconstructed shared links are represented among
the group links, and few of the non-reconstructed unshared
links are available in the group maps (17%, n = 25 out of
145). Further, about 8% of the group links are newly gener-
ated links. Since most of the group links are similar to the
initial links in the students’ first maps, the similarity levels
between the linking words of the initial and the group links
are measured. The distribution of linking-word similarity
among different types of links is also presented in Fig. 5.

Moreover, Fig. 6 shows how the students employed
linking words from the initially shared links to compose
group propositions. When the similarity of initial linking
words is moderately high, the tendency is to use any group
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member’s initial linking words without modifications. In
cases when the similarity is moderately low, any of the
group member’s linking words could be chosen (69%, n =
29). However, the tendency is to modify or create new link-
ing words (56%, n = 38) when there is no similarity.

5. Discussion

The results indicate that there is an improvement in the
generated map based on expert judgement and normalized
change measurement (M = .54, S D = .34), as shown in Ta-
ble 2. Further, Pearson’s correlation analysis shows that
comprehension level and normalized change of products
from individual to group level shows a moderately negative
correlation, with a significant coefficient, while similarity of
prior knowledge reveals a weaker correlation with normal-
ized change. The results show that the comprehension of the
partner’s representation is a stronger predictor to detect the
normalized change when compared to the similarity of prior
knowledge.

The similarity between the individual and group maps
represents individual input to the group outcome. Providing
a set of disconnected partner’s map components prompted
students to reflect their understanding of their partner’s rep-
resentation. A Wilcoxon signed-rank test indicates that the
median of the similarity score between students’ second
maps and their partners’ first maps (Mdn = .746) is signif-
icantly higher than the median of the similarity score be-
tween students’ second and first maps (Mdn = .6),Z =
224.5, p < 0.01. This illustrates that, when students re-
constructed their partners’ components, they were making
an effort to understand their partners’ maps, rather than to
express their own initial maps by using new components.
In this context, the map components function as bound-
ary objects that can be operated to identify similarities or
differences in perspectives, and as mediating artifacts dur-
ing coordination. Furthermore, boundary-crossing activities
may lead to changes in practice (transformation of knowl-
edge) [25].

Surprisingly, the results also show that the numbers of
shared and unshared links in the group solutions are propor-
tionally distributed. While constructing a group map, the
students were tempted to manipulate their first map com-
ponents rather than creating new links. This is an indi-
cation that the students were reflecting on their individual
available knowledge to construct the group product. The
results also demonstrate a considerable number of recon-
structed unshared links in the group map, which could in-
dicate that the students were able to accept reconstructed
elements as parts of group solutions, although they involved
different representations. Many initial linking words with
zero similarity scores from the shared links were modified,
which reveals that the students attempted to resolve conflicts
regarding different link definitions. In contrast, the individ-
ual linking words with higher similarity scores were more
likely to be included in the group map without any modi-
fication. Figure 7 shows an example of the transformation

Fig. 7 Sample of individual maps of two students in a group, their re-
constructed maps, the corresponding union map with the categorization of
links, and the newly transformed group map

from individuals to group following the unshared or non-
reconstructed links; i.e., related to the node of orthogonal
projection. In the group map that link connection differs
from any existing individual map components. The incor-
rect knowledge on the individual maps was finally corrected
through the collaborative activity.

Allowing students to review all members’ first maps,
as a form of access to distributed cognitive resources,
should positively affect the broadness of group problem so-
lutions [32]. To support the creation and evolution of ac-
tive boundary objects, Fischer suggests providing systems
that can create awareness of each other’s work among group
members, afford opportunities for individual reflection and
exploration, enable co-creation, allow participants to build
on the work of others, and provide mechanisms to help draw
out tacit knowledge and perspectives [26]. Reconstruction
and discussion supported with the difference map during
the RKB activities trigger reflection and exploration activity,
enabling group members to review each other’s representa-
tion. Also, such an approach may potentially foster knowl-
edge convergence after collaboration; that is, the similarity
of knowledge possessed by group members after collabora-
tive learning [28]. Interdependence exists between the effec-
tiveness of group and individual learning, and more success-
ful groups are more beneficial to their members as individu-
als [32].

The current study’s results have been derived based
on the group learning outcomes; however, further investi-
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gation of the effect at the individual level is important. This
study excluded consideration of the effectiveness at the level
of the individual since we did not collect individual post-
collaboration maps, due to time limitations enforced by con-
ducting the experiment in a practical classroom. The simi-
larity between the group and individual post-collaboration
maps represents the knowledge that is transferred from the
shared group cognition to individual cognition, and is in-
dicative of individual learning outputs [32].

6. Conclusion

The present study conducted an investigation on how the
similarity of individual prior knowledge and the compre-
hension of partner’s representation during the RKB activi-
ties may influence the students’ final collaborative outcome.
The results of this investigation show that the comprehen-
sion of partner’s representation in the form of reconstruction
is a stronger predictor for estimating score gain, rather than
the similarity of prior knowledge. Reconstruction triggers
learners’ interaction by providing the boundaries for stu-
dents to operate on their initial knowledge. Similarities in
prior knowledge may influence the broadness of group solu-
tions. In addition, the evaluation of partner comprehension
through reconstruction has potential for encouraging further
modification of individual knowledge.

One of the more significant findings to emerge from
this study is that students work on their individual ideas
during the collaborative phase. They utilize their initial
shared and unshared knowledge when building collabora-
tive products. A considerable number of reconstructed links
dominate the final group maps, despite the similarity of
links. Different linking words are more likely to be modi-
fied, while the highly similar ones are easily accepted as it
is. Active reviewing on individual ideas has the potential to
foster knowledge convergence after collaboration. However,
the current study has not addressed it yet. A future study in-
vestigating the analysis of knowledge similarity after collab-
oration is needed to reveal the effect of the RKB approach
at the individual learning achievements. Another limitation
of this study is that the number of participants and course
subjects were relatively small. Further research needs to be
done with more participants and various course topics.

The findings of this study have some important impli-
cations for future practice. This study suggests developing
a feedback system based on the similarity of prior knowl-
edge and the comprehension of the partner’s representation.
The system could provide a recommendation for the teacher
to form a group in consideration of the similarity of initial
maps. Moreover, the teacher may utilize the results of recon-
struction to predict the group outcomes. If necessary, spe-
cific treatment should be provided to assist learners who face
difficulties to progress. In addition, the system may display
an integrated difference map to support learners in accom-
modating different representations while composing a group
map. The integrated map could show the reconstructed and
non-reconstructed elements. A recommendation to select or

modify the initial linking words could be useful to enhance
the final results and reduce the time necessary to construct
a group map. Combining different perspectives is a chal-
lenging task for the students. If this process is supported,
the number of transfers from group to individual cognition
would be potentially increasing. Hence, fostering knowl-
edge convergence after collaboration.
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[16] A.J. Cañas, J.D. Novak, and P. Reiska, “Freedom vs. restriction of
content and structure during concept mapping - Possibilities and lim-
itations for construction and assessment,” Proc. Fifth Int. Conference
on Concept Mapping, 2012.

[17] C. Gracia-Moreno, J.-F. Cerisier, B. Devauchelle, F. Gamboa, and
L. Pierrot, “Collaborative knowledge building through simultaneous
private and public workspaces,” Data Driven Approaches in Digital
Education, vol.10474, pp.553–556, 2017.

[18] T. Engelmann and F.W. Hesse, “How digital concept maps about
the collaborators’ knowledge and information influence comput-
er-supported collaborative problem solving,” International Jour-
nal of Computer-Supported Collaborative Learning, vol.5, no.3,
pp.299–319, 2010.

[19] T. Hirashima, K. Yamasaki, H. Fukuda, and H. Funaoi, “Framework
of Kit-Build concept map for automatic diagnosis and its prelimi-
nary use,” Research and Practice in Technology Enhanced Learning,
vol.10, no.1, p.17, 2015.

[20] T. Hirashima, “Reconstructional concept map: Automatic assess-
ment and reciprocal reconstruction,” Proc. 2nd Annual International
Conference Learning Innovation, 2018.

[21] J. Pailai, W. Wunnasri, K. Yoshida, Y. Hayashi, and T. Hirashima,
“The practical use of Kit-Build concept map on formative assess-
ment,” Research and Practice in Technology Enhanced Learning,
vol.12, no.1, p.20, 2017.

[22] W. Wunnasri, J. Pailai, Y. Hayashi, and T. Hirashima, “Validity of
Kit-Build method for assessment of learner-build map by comparing
with manual methods,” IEICE Trans. Inf.& Syst., vol.E101-D, no.4,
pp.1141–1150, 2018.

[23] S.L. Star and J.R. Griesemer, “Institutional ecology, ‘translations’
and boundary objects: Amateurs and professionals in berkeley’s mu-
seum of vertebrate zoology, 1907-39,” Social Studies of Science,
vol.19, no.3, pp.387–420, 1989.

[24] S.F. Akkerman and A. Bakker, “Boundary crossing and bound-
ary objects,” Review of Educational Research, vol.81, no.2,
pp.132–169, 2011.

[25] S.F. Akkerman, “Learning at boundaries,” International Journal of
Educational Research, vol.50, no.1, pp.21–25, 2011.

[26] G. Fischer, E. Giaccardi, H. Eden, M. Sugimoto, and Y. Ye, “Be-
yond binary choices: Integrating individual and social creativity,”
International Journal of Human Computer Studies, vol.63, no.4-5,
pp.482–512, 2005.

[27] Y. Engeström, “Developmental studies of work as a testbench of
activity theory: The case of primary care medical practice,” in Un-
derstanding Practice: Perspectives on Activity and Context, ed. S.
Chaiklin and J. Lave, pp.64–103, Cambridge University Press, 1993.

[28] A. Weinberger, K. Stegmann, and F. Fischer, “Knowledge conver-
gence in collaborative learning: Concepts and assessment,” Learn-
ing and Instruction, vol.17, no.4, pp.416–426, 2007.

[29] G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between Eu-
clidean and Cosine Angle Distance for nearest neighbor queries,”
Proc. ACM Symposium on Applied Computing, pp.1232–1237,
2004.

[30] J.D. Marx and K. Cummings, “Normalized change,” American Jour-
nal of Physics, vol.75, no.1, pp.87–91, 2007.

[31] D. Lin, “An information-theoretic definition of similarity,” Proc. of
the Fifteenth International Conference on Machine Learning, ICML
’98, San Francisco, CA, USA, pp.296–304, 1998.

[32] N. Stoyanova and P. Kommers, “Concept mapping as a medium of
shared cognition in computer-supported collaborative problem solv-
ing,” Journal of Interactive Learning Research, vol.13, no.1, pp.111–
133, 2002.

Lia Sadita received her B.Comp.Sc. de-
gree from Universitas Indonesia in 2009 and
M.Eng. degree from Korea University of Sci-
ence & Technology in 2013. During 2013–
2017, she worked at the Faculty of Computer
Science, Universitas Indonesia as a teaching as-
sistant and junior lecturer. She is now a doc-
toral student in Hiroshima University with re-
search works on computer-supported collabora-
tive learning and re-constructional concept map-
ping. She is interested in topics related with

collaborative learning, learning analytics, online education, and human-
computer interaction.

Pedro Gabriel Fonteles Furtado received
his Master of Engineering degree at Hiroshima
University in 2017 and remains there as a Ph.D.
student. Pedro has contributed in the field of
Computers in Education with research regard-
ing serious games for improving foreign lan-
guage inferencing and for teaching arithmetic
word structure to young children. He is cur-
rently interested in gameful design, computer-
assisted vocabulary learning and flow state ori-
ented design.

Tsukasa Hirashima received his B.E., M.E.
and Ph.D. from Osaka University in 1986, 1988,
and 1991, respectively. He worked at The Insti-
tute of Scientific and Industrial Research, Osaka
University as a research associate and lecturer
from 1991 to 1997. During 1997–2003, he
worked in the Graduate School of Information
Engineering at Kyushu Institute of Technology
as an associate professor. He has been a pro-
fessor of the Graduate School, Department of
Information Engineering, Hiroshima University

since 2004. Learning Engineering is his major research field. He has re-
ceived international awards as the Outstanding Paper Award of EDME-
DIA95, the Best Paper Award of ICCE2001 & 2002, Honorable Mention
Award of AIED2009, APSCE Distinguished Researcher Award in 2009,
and the ICCE2015 Best Technical Design Paper Award.

Yusuke Hayashi is an associate profes-
sor of the Graduate School of Engineering at
Hiroshima University, ever since 2012. He re-
ceived his Ph.D. from the Graduate School of
Engineering Science, Osaka University, Japan,
in 2003. He was a research associate of the
school of Knowledge Science, Japan Advanced
Institute of Science and Technology (JAIST)
from 2003 to 2005, an assistant professor of the
Institute of Scientific and Industrial Research
(ISIR), Osaka University from 2005 to 2010 and

an associate professor of the Information Technology Center, Nagoya Uni-
versity from 2010 to 2012. He has been engaged in research on Knowledge
modeling, Ontological engineering, and Learning engineering. He has re-
ceived international awards as the Best Paper Award of ICCE2006 and the
Best Technical Design Paper Award of ICCE2015.

http://dx.doi.org/10.1007/978-3-319-40397-7_13
http://dx.doi.org/10.1007/978-3-319-66610-5_61
http://dx.doi.org/10.1007/s11412-010-9089-1
http://dx.doi.org/10.1186/s41039-015-0018-9
http://dx.doi.org/10.1186/s41039-017-0060-x
http://dx.doi.org/10.1587/transinf.2017edp7177
http://dx.doi.org/10.1177/030631289019003001
http://dx.doi.org/10.3102/0034654311404435
http://dx.doi.org/10.1016/j.ijer.2011.04.005
http://dx.doi.org/10.1016/j.ijhcs.2005.04.014
http://dx.doi.org/10.1016/j.learninstruc.2007.03.007
http://dx.doi.org/10.1145/967900.968151
http://dx.doi.org/10.1119/1.2372468

