
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020
2133

PAPER

Optimal Rejuvenation Policies for Non-Markovian Availability
Models with Aperiodic Checkpointing

Junjun ZHENG†a), Hiroyuki OKAMURA††b), and Tadashi DOHI††c), Members

SUMMARY In this paper, we present non-Markovian availability mod-
els for capturing the dynamics of system behavior of an operational soft-
ware system that undergoes aperiodic time-based software rejuvenation and
checkpointing. Two availability models with rejuvenation are considered
taking account of the procedure after the completion of rollback recovery
operation. We further proceed to investigate whether there exists the opti-
mal rejuvenation schedule that maximizes the steady-state system availabil-
ity, which is derived by means of the phase expansion technique, since the
resulting models are not the trivial stochastic models such as semi-Markov
process and Markov regenerative process, so that it is hard to solve them by
using the common approaches like Laplace-Stieltjes transform and embed-
ded Markov chain techniques. The numerical experiments are conducted to
determine the optimal rejuvenation trigger timing maximizing the steady-
state system availability for each availability model, and to compare both
two models.
key words: software rejuvenation, checkpointing, optimal rejuvenation
policy, non-Markovian process, phase expansion, steady-state availability,
point-wise availability

1. Introduction

The performance of software systems degrades with time
due to software aging phenomenon, which is caused by
aging-related bugs [1] such as the accumulation of errors
during the execution of software, and eventually results in
the crash/hang failures of the system. Huang et al. [2] re-
ported the aging phenomenon in real telecommunication
billing applications where the application experiences a
crash or a hang failure over time. Software aging phe-
nomenon does exist and is inevitable, but nevertheless can
be controlled or even reversed [1], [3]. To cope with the soft-
ware aging, software rejuvenation [3], one of proactive fault
management techniques, has been a promising approach to
improve the system dependability by refreshing the system
internal states. Alonso et al. [4] argued that software re-
juvenation can address aging issues well, but typically in-
volves an overhead, and that the overhead impact of the
rejuvenation techniques is related to their granularity, e.g.,

Manuscript received December 10, 2019.
Manuscript revised May 26, 2020.
Manuscript publicized July 16, 2020.
†The author is with the Department of Information Science

and Engineering, Ritsumeikan University, Kusatsu-shi, 525–8577
Japan.
††The authors are with the Department of Information Engi-

neering, Graduate School of Engineering, Hiroshima University,
Higashihiroshima-shi, 739–8527 Japan.

a) E-mail: jzheng@asl.cs.ritsumei.ac.jp
b) E-mail: okamu@hiroshima-u.ac.jp
c) E-mail: dohi@hiroshima-u.ac.jp

DOI: 10.1587/transinf.2019EDP7321

the OS-level and the application-level rejuvenation schemes
discussed in [5]. Thus, determining an optimal rejuvenation
schedule is crucial for improving the system dependability
and performance efficiently [5]–[7]. For example, Zheng
et al. [5] addressed the optimization problems facing on
both time-based and workload-based software rejuvenation
strategies for transaction-based systems with Markovian ar-
rivals through quasi birth-and-death process and Markov re-
generative process (MRGP) analysis. Dohi et al. [7] consid-
ered two basic software rejuvenation models described by
MRGPs, and tried to solve the transient solutions by means
of Laplace-Stieltjes transform (LST) and its numerical in-
version. In their work, the optimal software rejuvenation
policy that maximizes the interval reliability was numeri-
cally determined.

On the other hand, as another important technique
in the software fault-tolerance, checkpointing, the proce-
dure for saving the current data in the main memory in
the secondary storage, provides an efficient method for sav-
ing re-execution time in the presence of faults [8], and has
been widely-adopted to prevent increasing security threats
in data protection of software systems such as database sys-
tems [9]–[11]. Fukumoto et al. [9] and Dohi et al. [11] in-
troduced different checkpointing schemes, and Ranganathan
and Upadhyaya [10] offered a macroscopic view of the tem-
poral behavior related to the database system states. To
date, several authors discussed the optimal schedules on
both software rejuvenation and checkpointing together by
maximizing the system dependability or performance [12]–
[14]. For example, in [12], a comprehensive evaluation
of aperiodic checkpointing and rejuvenation schemes in
an operational software system was carried out, based on
two kinds of maintenance policies and dynamic program-
ming approach. Zheng et al. [14] recently presented two
non-Markovian state transition diagrams, from the original
stochastic reward Petri nets [15], to describe the dynamics
of an operational software system that undergoes aperiodic
checkpointing, with and without software rejuvenation, re-
spectively, aiming to identify and measure on how a re-
juvenation technique can improve the steady-state system
availability of the targeted system. A numerical comparison
between two models shown that the rejuvenation technique
did help improve the system availability, but did not always
bring the positive improvement effect, and further revealed
the upper and lower bounds of the mean rejuvenation trigger
interval for improving the system availability.

In this paper, we focus on the similar to, but

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



2134
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

somewhat different software systems from [14] where both
aperiodic checkpointing and software rejuvenation are ex-
ecuted, and determine the optimal software rejuvenation
schedule that maximizes the steady-state availability of the
system. Thanks to the stochastic nature, the system be-
havior is modeled by a non-Markovian state transition di-
agram, which is not one of the trivial stochastic models
such as semi-Markov process (SMP) and MRGP. There-
fore, the common approaches, e.g., the LST and the em-
bedded Markov chain techniques, are unavailable for solv-
ing the non-Markovian models in this paper. Instead, the
phase expansion approach is proposed to address the above
issue. The phase expansion [16] is an approximation tech-
nique by using phase-type (PH) distribution, which is de-
fined by the probability distribution of the absorbing time
in a continuous-time Markov chain (CTMC) with absorbing
states. Since the PH distribution is dense for any probabil-
ity distribution defined on positive domain, the PH distribu-
tion can approximate any probability distribution with high
precision. The phase expansion has been proven effective
in both transient and stationary analysis of non-Markovian
models [17], [18]. Most significantly, the main challenge
in this work is not based on the trivial CTMC analysis, but
is modeling of the system behavior with multiple compet-
itive events and derivation of the underlying approximate
CTMC using the phase expansion. In addition, the previous
work [14] has proven the advantages of using the rejuvena-
tion technique, via two models without and with rejuvena-
tion, so in this paper, two availability models with rejuve-
nation concentrated are considered, together with taking ac-
count of the effects of different checkpointing schemes. And
apart from the stationary perspective [14], the transient anal-
ysis is also introduced. For brevity, the main contributions
of this paper are summarized as follows:

• Availability modeling of an operational software sys-
tem with aperiodic time-based software rejuvenation
and two different checkpointing schemes via non-
Markovian state transition diagrams;
• Both stationary and transient solutions of non-

Markovian availability models by using the phase ex-
pansion;
• Comparison of two models and evaluation of their op-

timal software rejuvenation timings, clarifying the ef-
fects of both the rejuvenation and two different check-
pointing schemes.

The rest of this paper is organized as follows. In Sect. 2,
two non-Markovian state transition diagrams for an oper-
ational software system with two different checkpointing
schemes are described. The underlying approximate (alter-
natively, PH-expanded) CTMCs are further derived from the
non-Markovian models using the phase expansion in Sect. 3.
In particular, we formulate both stationary and transient so-
lutions, i.e., the steady-state availability and the point-wise
availability measures of the system, aiming at determin-
ing the optimal software rejuvenation schedules that max-
imize the steady-state system availability from the long-run

operational perspective, and characterizing the transient be-
havior of the system. Section 4 is devoted to the numerical
illustration of our models. Finally, in Sect. 5, we conclude
this paper with some remarks.

2. Model Description

2.1 Assumptions

Consider an operational software system, which suffers
from software aging and undergoes both rejuvenation and
checkpointing by generating rejuvenation points and check-
points aperiodically. When a system failure occurs, the
system undergoes a series of recovery operations including
loading of checkpointed data and rollback recovery. We as-
sume that human error-related failures do not occur during
checkpointing and that the time to generate aging-related
failure follows an absolutely continuous and non-decreasing
failure probability (cumulative distribution function (c.d.f.))
G f ail(t), while the time distribution for failures generated
during rollback recovery due to incorrect recovery opera-
tions is given by F f ail(t). In general, the c.d.f. G f ail(t) for
the aging-related failure time is supposed to have an IFR
(increasing failure rate) property. The checkpoint interval
is assumed to follow c.d.f. Gintv(t), and Gcp(t) is the c.d.f.
of the time needed for checkpointing. Gload(t) and Grc(t)
are the c.d.f.’s for the loading time of checkpointed data and
the time needed until rollback recovery ends, respectively.
Since the rejuvenation points are generated aperiodically,
the distribution function of the time required to trigger a re-
juvenation is assumed to be Gtrig(t), and the c.d.f. of the re-
juvenation overhead (i.e., the time needed for rejuvenation
completion) is represented by Gre j(t).

If either the checkpoint point or the rejuvenation point
is reached before the system failure, the corresponding fault-
tolerant operation (checkpointing or rejuvenation) is exe-
cuted immediately. It should be noted that: (i) the check-
pointing operation does not refresh the system aging, in
other words, the lifetime is not reset after the execution of
checkpointing, while the system is supposed to be as good as
new after the rejuvenation; (ii) the clock of rejuvenation trig-
ger is not reset when the system executes the checkpointing;
and (iii) in the case where the rejuvenation point is reached
when the checkpointing is under execution, the system will
wait for rejuvenation and then will rejuvenate itself imme-
diately once the execution of checkpointing is completed.

In this paper, we consider two availability models, in-
cluding the one with rejuvenation in [14], from the macro-
scopic view based on the procedure just after the completion
of recovery process.

• Model-I: The system state moves to the execution pro-
cess immediately after a rollback recovery [14].
• Model-II: The system executes checkpointing imme-

diately after a rollback recovery.

The reason to take place checkpointing after the rollback re-
covery is that the starting point of the recovery operation is



ZHENG et al.: OPTIMAL REJUVENATION POLICIES FOR NON-MARKOVIAN AVAILABILITY MODELS WITH APERIODIC CHECKPOINTING
2135

Fig. 1 State transition diagrams.

Table 1 Notation in state transition diagrams.

State Description

Normal Normal execution process in the main memory
Checkpointing Checkpointing execution with a disabled rejuvenation
Checkpointing’ Checkpointing execution with an enabled rejuvenation
Failure System failure (such as system hang and crash) occurrence
Recovery Rollback recovery to recover from a system failure
Rejuvenation Software rejuvenation execution to refresh system internal states

updated from the past to the current time by saving the re-
covered data in the secondary storage. In addition, it should
be noticed that the checkpointing operation does not refresh
the system aging and reset the clock of rejuvenation trigger.

2.2 Non-Markovian State Transition Diagrams

The availability models corresponding to Model-I and
Model-II are described by non-Markovian state transition
diagrams, which are neither the SMPs nor the MRGPs, re-
sulting in difficult numerical analysis.

Figure 1 depicts the state transition diagrams for both
Model-I and Model-II. Each model has six states defined
in Table 1 and the c.d.f.’s of the corresponding transitions
are given in Table 2. In Table 2, GEN means the general
distribution, while EXP refers to the exponential distribu-
tion. The reasons of assumptions of the probability distri-
butions are: (i) the exponential distribution is characterized
by a constant failure rate (CFR) and is often used for the
occurrence of relatively “rare events” [19], such as the fail-
ure during rollback recovery; (ii) the aging-related system
failure has an IFR, so that it can be modeled by a Weibull
distribution, which is a general family of the exponential

Table 2 The c.d.f.’s of transitions in state transition diagrams.

C.d.f. Description Type

Gintv(t) c.d.f. of the checkpoint interval. GEN
G f ail(t) c.d.f. of the time to generate aging-related failure. GEN
Gcp(t) c.d.f. of the time needed for checkpointing. GEN
Gload(t) c.d.f. of the loading time of checkpointed data. GEN
Grc(t) c.d.f. of the time needed for rollback recovery. GEN
Gtrig(t) c.d.f. of the time required to trigger a rejuvenation. GEN
Gre j(t) c.d.f. of the rejuvenation overhead. GEN
F f ail(t) c.d.f. of the time to generate a failure during roll-

back recovery.
EXP

distribution and is widely adopted to model the failure
events with an IFR [20]; and (iii) the times spent on other
events in Fig. 1 can be modeled by a log-normal distribu-
tion, which is frequently used to mode the times spent on
the recovery operations to repair a maintainable system,
the software rejuvenation against aging phenomena, and
the checkpointing schemes for saving the current data [21]–
[24]. Without loss of generality, state Normal is considered
as the initial state, indicating that the system is in the nor-
mal execution process in the main memory and waits for
the checkpointing, as well as the rejuvenation. At the same



2136
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

time, the system aging accumulates and may lead to the sys-
tem failure. Once the aging-related failure occurs, the sys-
tem enters to state Failure, in which a series of recovery
operations are forced to undergo, that is, the system moves
to state Recovery after the loading of checkpointed data, and
becomes normal again after the completion of the rollback
recovery. The system can go to state Re juvenation or state
Checkpointing before the occurrence of system failure, ac-
cording to the c.d.f.’s of transitions to rejuvenation points
and checkpoints. In particular, state Checkpointing′ repre-
sents the checkpointing execution state of the system with
an enabled rejuvenation (i.e., a rejuvenation point has been
reached).

The main difference between Model-I and Model-II is
the procedure just after the completion of recovery process.
In Model-I, the system goes back to the normal state from
state Recovery, whereas the system executes checkpointing
immediately after the rollback recovery and enters to state
Checkpointing in Model-II.

3. System Availability Analysis

In this section, we first introduce the definition of the PH
distribution [25], and then derive the underlying approxi-
mate CTMCs for the non-Markovian state transition dia-
grams in Fig. 1 with the phase approach by replacing all gen-
eral distributions with the corresponding PH distributions.
Finally, both stationary and transient solutions for Model-I
and Model-II through CTMC analysis are presented. The
measures of interest are the steady-state availability and the
point-wise availability of the system.

3.1 PH Distribution

The PH distribution is defined as the time to absorption in a
finite Markov chain with one absorbing state. Strictly speak-
ing, the PH distribution is classified into continuous and dis-
crete PH distributions. This paper deals with continuous
PH distribution. Without loss of generality, the infinitesi-
mal generator Q of CTMC is assumed to be partitioned as
follows:

Q =
(

T ξ
0 0

)
, (1)

where T and ξ correspond to transition rates between tran-
sient states and the exit rates from transient states to the ab-
sorbing state, respectively. Let α be an initial probability
vector over the transient states. The c.d.f. and p.d.f. (proba-
bility density function) of PH distribution are given by

FPH(t) = 1 − α exp(Tt)1, fPH(t) = α expTt ξ, (2)

in the above equation, 1 is a column vector containing all 1
elements. Note that ξ = −T1, the transient states are called
phases.

The PH distribution has several sub-classes according
to the structure of T (see e.g., [26]). In particular, the acyclic

PH distribution (APH) is the widest class among mathe-
matically tractable PH distributions. Cumani [27] derived
the canonical forms (CFs) as the minimal representation of
APH, which has the smallest number of free parameters.
The CF1 (canonical form 1) is defined by

α =
(
α1 α2 · · · αm

)
, (3)

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1 β1 O
−β2 β2

. . .
. . .

−βm−1 βm−1

O −βm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ξ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
βm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4)

where αi ≥ 0,
∑

i αi = 1 and 0 < β1 ≤ · · · ≤ βm for m phases.
The PH distribution can approximate any kind of probability
distribution defined on non-negative domain, and the accu-
racy of approximation depends on the number of phases and
the phase structure. The purpose of approximation is to de-
termine the PH parameters (α,T, ξ) to approximate the orig-
inal distribution with the fitted PH distribution. In general,
three types of methods have been proposed; moment match-
ing, maximum likelihood estimation (MLE), and Bayes es-
timation [25].

3.2 PH-Expanded CTMCs

The general distributions in Table 2 are approximated by PH
distributions with appropriate phases:

FPH
x (t) = 1 − αx exp(Txt)1x,

f PH
x (t) = αx exp(Txt)ξx (5)

for x ∈ {intv, f ail, cp, load, rc, trig, re j}. The PH parameters
(αx,Tx, ξx) for each approximate distribution are estimated
by using a PH fitting algorithm which is based on MLE with
EM (expectation-maximization) principle [25], [28].

Using the above PH distributions, the PH-expanded
CTMCs for the state transition diagrams in Fig. 1 are de-
rived and formulated in Eqs. (6) and (7) based on the
Kronecker representation [16]. More precisely, Eq. (6) indi-
cates the infinitesimal generator matrix of the approximate
CTMC for Model-I and Eq. (7) represents the infinitesimal
generator matrix of the approximate CTMC for Model-II
with the order {Normal, Checkpointing, Checkpointing’, Re-
juvenation, Failure, Recovery}. In these equations, ⊕ and ⊗
are the Kronecker product and sum [29], I is an identity ma-
trix, and 1/λ f ail is the mean value of c.d.f. F f ail(t), namely,
the mean time to failure during rollback recovery operation.

Since the lifetime is not reset when the system enters
to the state Checkpointing, thus the entry of either Q1 or Q2,
(ξintvαcp) ⊗ I ⊗ I, indicates that only the initial states of PH-
expanded CTMC related to Gcp(t) can be entered. On the
other hand, because the checkpointing operation does not
refresh the system aging, the initial states of PH-expanded
CTMC related to G f ail(t) can not be reached after the tran-
sition from state Checkpointing to state Normal, which is



ZHENG et al.: OPTIMAL REJUVENATION POLICIES FOR NON-MARKOVIAN AVAILABILITY MODELS WITH APERIODIC CHECKPOINTING
2137

Q1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tintv⊕T f ail⊕Ttrig (ξintvαcp)⊗I⊗I (1intv⊗1 f ail⊗ξtrig)αre j (1intv⊗ξ f ail⊗1trig)αload
(ξcpαintv)⊗I⊗I Tcp⊕T f ail⊕Ttrig I⊗I⊗ξtrig (1cp⊗1trig⊗ξ f ail)αload

T f ail⊕Tcp (1 f ail⊗ξcp)αre j (ξ f ail⊗1cp)αload
ξre j(αintv⊗α f ail⊗αtrig) Tre j

Tload ξloadαrc
ξrc(αintv⊗α f ail⊗αtrig) (λ f ail⊗1rc)αload (−λ f ail)⊕Trc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(6)

Q2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tintv⊕T f ail⊕Ttrig (ξintvαcp)⊗I⊗I (1intv⊗1 f ail⊗ξtrig)αre j (1intv⊗ξ f ail⊗1trig)αload
(ξcpαintv)⊗I⊗I Tcp⊕T f ail⊕Ttrig I⊗I⊗ξtrig (1cp⊗1trig⊗ξ f ail)αload

T f ail⊕Tcp (1 f ail⊗ξcp)αre j (ξ f ail⊗1cp)αload
ξre j(αintv⊗α f ail⊗αtrig) Tre j

Tload ξloadαrc
ξrc(αcp⊗α f ail⊗αtrig) (λ f ail⊗1rc)αload (−λ f ail)⊕Trc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(7)

represented by (ξcpαintv) ⊗ I ⊗ I. Moreover, the entries,
(1 f ail⊗ξcp)αre j and (ξ f ail⊗1cp)αload, represent the transitions
from the state Checkpointing’ to the state Rejuvenation and
to the state Failure, respectively. The resets of the check-
point interval, the clocks of lifetime and rejuvenation trig-
ger due to the software rejuvenation and recovery in Model-
I, are represented by the entries, ξre j(αintv ⊗ α f ail ⊗ αtrig)
and ξrc(αintv ⊗ α f ail ⊗ αtrig), respectively. While the entry,
ξrc(αcp ⊗ α f ail ⊗ αtrig), in Q2 indicates the checkpointing
procedure after the completion of a rollback recovery.

3.3 System Availability Formulation

Let πss be the steady-state probability vector of a PH-
expanded CTMC, Q. Then it can be computed by solving
the following linear equation [30]:

πssQ = 1, πss1 = 1. (8)

The steady-state system availability is given by

Ass = πssr, (9)

in which r is the reward (column) vector of the PH-expanded
CTMC.

On the other hand, when taking account of the system
state probability, π(t), at an arbitrary time, we define π0 as
the initial state probability vector. Then the transient proba-
bility vector of the states in the PH-expanded CTMC can be
expressed by

π(t) = π0 exp(Qt). (10)

Here, exp(Qt) is the matrix exponential and is given by the
power series exp(Qt) =

∑∞
k=0 (Qt)k/k!. The uniformization

technique [31] is well-known as one of the most effective
methods to solve Eq. (10). Similar to Eq. (9), the point-wise
system availability is formulated by

A(t) = π(t)r. (11)

The point-wise availability, usually known as instantaneous
availability, of the system gives the probability that at a
specified operation time t, the system is operating [17], [18],

[32].
Since the software rejuvenation technique is adopted

to achieve the long-run operation of software systems, the
problem of interest is to solve the optimization problem of
software rejuvenation policy for the target software system,
aiming to find the optimal rejuvenation timing that maxi-
mizes the steady-state availability of the system.

4. Numerical Examples

In this section, we analyze quantitatively the system avail-
ability of a database system, such as a Microsoft SQL server
with aperiodic checkpointing and software rejuvenation. Ta-
ble 3 summarizes the model parameters, whose values are
given according to related literatures [11], [33]. For ex-
ample, the Weibull distribution with IFR is used to model
the system failure time related to software aging with mean
10 hours, and the recovery time of rollback recovery is as-
sumed to be log-normal distributed with coefficient of vari-
ation (CV) equal to 0.2, indicating a less variation among
recovery times.

All general distributions in Table 3 are approximated
by PH distributions with appropriate phases. To our knowl-
edge, the large number of phases is needed to approximate
accurately the original distribution with a small CV, while in
the cases where the values of CV are large, the PH distribu-
tions with small phases such as 10 are accurate enough [18].
As examples, Figs. 2 (a) to 2 (d) illustrate the original gen-
eral distributions and their corresponding PH distributions
for Gintv(t), G f ail(t), Grc(t), and Gtrig(t). In these figures,
the points represent the exact distributions while the dotted

Table 3 The c.d.f.’s of state transitions.

c.d.f. Distribution Mean (hrs.) CV

Gintv(t) Lognormal 1-10 0.2
G f ail(t) Weilbull 10 0.5
Gcp(t) Lognormal 0.05 0.2
Gload(t) Lognormal 0.5 0.2
Grc(t) Lognormal 0.5 0.2
Gtrig(t) Lognormal 5–35 0.1
Gre j(t) Lognormal 0.5 0.2
F f ail(t) Exponential 16.67 1



2138
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Fig. 2 Approximate PH distributions ((a) Gintv(t) (MCI = 6 hrs.), (b) G f ail(t), (c) Grc(t), (d) Gtrig(t)
(MRTI = 12 hrs.).

α f ail =

(
4.112827e-01 6.721564e-02 5.504224e-02 1.590405e-01 1.721057e-01 5.630395e-02 4.259914e-02 3.055624e-02 5.838983e-03
1.486544e-05

)
,

T f ail =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.6151369 0.6151369
−0.6151506 0.6151506

−0.6151597 0.6151597
−0.6410000 0.6410000

−0.6634417 0.6634417
−0.6911681 0.6911681

−0.7780073 0.7780073
−0.9173205 0.9173205

−1.1043270 1.1043270
−1.347526

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ξ f ail =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0

1.347526

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

lines refer to the approximate PH distributions. From these
figures, it is clear that both estimated PH distributions can
approximate all the general distributions accurately enough.

In particular, for the distribution G f ail(t) with CV = 0.5, the
approximate PH distribution with 10 phases were estimated
with parameters in Eq. (12).



ZHENG et al.: OPTIMAL REJUVENATION POLICIES FOR NON-MARKOVIAN AVAILABILITY MODELS WITH APERIODIC CHECKPOINTING
2139

Table 4 Steady-state availability of Model-I.

MCI (hrs). MRTI = 5 hrs. MRTI = 7 hrs. MRTI = 10 hrs. MRTI = 13 hrs. MRTI = 15 hrs.

1 0.84850 0.86206 0.86796 0.86821 0.86758
2 0.87067 0.88438 0.89024 0.89025 0.88942
3 0.87876 0.89200 0.89788 0.89779 0.89692
4 0.88154 0.89626 0.90174 0.90162 0.90073
5 0.88469 0.89810 0.90415 0.90393 0.90303
6 0.88735 0.89954 0.90576 0.90548 0.90456
7 0.88867 0.90117 0.90666 0.90665 0.90567
8 0.88913 0.90254 0.90741 0.90744 0.90652
9 0.88926 0.90341 0.90818 0.90800 0.90714
10 0.88929 0.90387 0.90892 0.90849 0.90761

Table 5 Steady-state availability of Model-II.

MCI (hrs). MRTI = 5 hrs. MRTI = 7 hrs. MRTI = 10 hrs. MRTI = 13 hrs. MRTI = 15 hrs.

1 0.84682 0.85978 0.86492 0.86458 0.86367
2 0.86905 0.88213 0.88718 0.88658 0.88547
3 0.87716 0.88976 0.89482 0.89412 0.89295
4 0.87996 0.89402 0.89868 0.89794 0.89675
5 0.88312 0.89587 0.90109 0.90025 0.89906
6 0.88579 0.89731 0.90270 0.90180 0.90058
7 0.88710 0.89895 0.90360 0.90297 0.90169
8 0.88756 0.90033 0.90435 0.90375 0.90254
9 0.88769 0.90119 0.90513 0.90431 0.90316
10 0.88772 0.90164 0.90586 0.90480 0.90363

In order to evaluate effects of the checkpoint interval
and the rejuvenation trigger interval on the system avail-
ability, as seen in Table 3, let the mean checkpoint interval
(MCI) vary from 1 to 10 hours and the mean rejuvenation
trigger interval (MRTI) does from 5 to 35 hours.

4.1 Steady-State Availability

This subsection gives the steady-state system availabilities
for both Model-I and Model-II shown in Tables 4 and 5,
respectively where MRTI = 5, 7, 10, 13, and 15 hours.

From Table 4, it is observed that the steady-state avail-
ability under each case of MRTI increases as the mean
checkpoint interval increases, indicating that the shorter
checkpoint interval (i.e., more frequent checkpointing) de-
creases the steady-state system availability. This is due to
the fact that only the checkpointing operation is not able to
refresh the system aging, but brings the undesired down-
time, which results in the decrease of system availability. In
addition, we can see that in each case of MCI the steady-
state availability increases when MRTI ≤ 10 hours and de-
creases when MRTI > 10 hours. These mean there might
exist an optimal MRTI that maximizes the steady-state sys-
tem availability. Table 5 shows the steady-state availabil-
ity of Model-II, so that the similar conclusions to Model-
I are derived. Since the system is unavailable during the
checkpointing operation, it is reasonable to consider that the
Model-II involves much more downtime than the Model-I,
so that the steady-state availability of Model-II is smaller
than that of Model-I.

In the next subsection, we turn our attention to find
the optimal MRTIs maximizing the steady-state system

availabilities of Model-I and Model-II.

4.2 Optimal Rejuvenation Trigger Timings

Here, we compute the steady-state system availabilities in
cases where the mean rejuvenation trigger interval varies
from 5 to 35 hours and the mean checkpoint interval is fixed
as 1, 2, . . ., and 10, respectively, aiming to determine the op-
timal rejuvenation timing from the viewpoint of steady-state
system availability. The sensitivity of the steady-state avail-
ability on the mean rejuvenation trigger interval in the cases
of MCI = 2, 4, 6, 8 and 10 for both Model-I and Model-II is
illustrated in Fig. 3.

In both of Figs. 3 (a) and 3 (b), we see that the steady-
state availabilities show unimodal curves with respect to the
mean rejuvenation trigger interval in all the cases of MCI. In
other words, there exists an optimal rejuvenation trigger tim-
ing that maximizes the steady-state availability of the sys-
tem in each case. More specifically, when the rejuvenation
trigger interval is too short, the time overhead caused by the
rejuvenation operation is very sensitive to the steady-state
system availability, and decreases the steady-state availabil-
ity against the motivation of triggering software rejuvena-
tion. On the contrary, if the rejuvenation trigger interval
is too long, the downtime due to the system failure also
causes relatively smooth decrease in the steady-state system
availability.

The optimal rejuvenation trigger timings and their cor-
responding maximum steady-state availabilities for Model-I
and Model-II in all the cases are presented in Table 6. From
this table, the optimal MRTIs for all cases of MCI in both
of Model-I and Model-II are very similar, that means, the



2140
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Fig. 3 Sensitivity of the system availabilities on the mean rejuvenation trigger timing for (a) Model-I
and (b) Model-II.

Table 6 Optimal rejuvenation trigger timings.

MCI (hrs.)
Model-I Model-II

MRTI (hrs.) Ass MRTI (hrs.) Ass

1 11.6 0.86841 10.9 0.86509
2 11.3 0.89059 10.7 0.88729
3 11.2 0.89819 10.6 0.89491
4 11.2 0.90206 10.7 0.89879
5 11.1 0.90435 10.4 0.90112
6 11.0 0.90603 10.5 0.90279
7 11.3 0.90708 10.8 0.90377
8 11.4 0.90777 10.7 0.90446
9 11.1 0.90838 10.4 0.90515
10 10.7 0.90902 10.1 0.90586

variation in the checkpoint interval has only a very slight
influence on the optimal rejuvenation trigger timing. It
should be pointed out that the optimal MRTIs of Model-II
are slightly smaller than those of Model-I, in other words,
for the system where the checkpointing operation is exe-
cuted immediately after the rollback recovery, a rejuvena-
tion schedule with a relatively shorter rejuvenation trigger
interval is preferred, compared with the case where the sys-
tem state moves to the execution process immediately after
the rollback recovery.

4.3 Point-Wise Availability

In this subsection, the point-wise system availabilities of
two models are considered to characterize the transient be-
havior of the system. Figure 4 depicts the point-wise avail-
abilities of Model-I and Model-II by time t = 12 hours in the
case of MCI = 6 hours and MRTI = 11.0 hours. In partic-
ular, the curve in solid line illustrates the point-wise system
availability of Model-I with respect to the operational time
when the optimal rejuvenation trigger timing is applied for
the case of MCI = 6 hours as in Table 6. The oscillations
observed can be explained by the fact that at the beginning,
no rejuvenation is performed and the point-wise availabil-
ity first decreases due to aging-related failures, at later it is

Fig. 4 Point-wise system availabilities for two models by t = 12 hours
(MCI = 6, MRTI = 11.0).

improved by the execution of rejuvenation. The similar
trend on the point-wise availability can be found under
Model-II. The point-wise availability of Model-II is slightly
lower than that of Model-I, because of an additional check-
pointing operation.

On another hand, the point-wise system availability of
Model-II under an optimal rejuvenation trigger timing (i.e.,
MCI = 6, MRTI = 10.5) is shown in solid curve of Fig. 5,
while the dotted curve gives the point-wise availability in
the case of MCI = 6 hours and MRTI = 11.0 hours. From
this figure, the results in two cases are very close before
t = 10 hours, and the point-wise availability with the op-
timal rejuvenation trigger timing becomes lower, compared
with the case of MRTI = 11.0 hours, after t = 10 hours.
This implies that the optimal rejuvenation trigger timing,
which maximizes the steady-state system availability, may
not be the best choice for maximizing the point-wise system
availability.

Although Model-I outperforms Model-II from the
perspective of system availability (both stationary and



ZHENG et al.: OPTIMAL REJUVENATION POLICIES FOR NON-MARKOVIAN AVAILABILITY MODELS WITH APERIODIC CHECKPOINTING
2141

Fig. 5 Point-wise system availability for Model-II.

transient viewpoints), there are no remarkable difference be-
tween these results. But significantly, that under Model-II,
the starting point of the recovery operation can be updated
from the past to the current time.

5. Conclusions

In this paper, we have considered two non-Markovian avail-
ability models for the software systems that undergo aperi-
odic checkpointing and software rejuvenation. Due to the
non-Markovian property and complexity, the state transi-
tion diagrams were converted to the approximate CTMCs
via phase expansion, and then the system availabilities for
both models were formulated based on the CTMC analysis.
It should be noted that the challenge in our approach is not
based on the trivial CTMC analysis, but is reduced to both
modeling of the system behavior with multiple competitive
events and derivation of the approximate CTMC using the
phase expansion. Our numerical experiments have clarified:
(i) the checkpointing operation was not able to refresh the
system aging, but unfortunately involved downtime, result-
ing in the decrease of the system availability; and (ii) there
existed the optimal rejuvenation trigger timing that maxi-
mizes the steady-state system availability.

In the future, we will extend our work to solve more
complicated software systems with the other rejuvenation
and checkpointing schemes, for example, the time-based pe-
riodic rejuvenation or checkpointing for failures related to
human error caused by the system operator’s mis-operations
during checkpointing.

References

[1] M. Grottke and K.S. Trivedi, “Fighting bugs: remove, retry, repli-
cate, and rejuvenate,” IEEE Computer, vol.40, no.2, pp.107–109,
2007. DOI:10.1109/MC.2007.55

[2] Y. Huang, C. Kintala, N. Kolettis, and N.D. Funton, “Software reju-
venation: analysis, module and applications,” Proc. 25th IEEE Inter-
national Symposium on Fault Tolerant Computing (FTC’95), IEEE
CPS, pp.381–390, 1995. DOI:10.1109/FTCS.1995.466961

[3] K.S. Trivedi and K. Vaidyanathan, “Software aging and rejuvena-
tion,” Wiley Encyclopedia of Computer Science and Engineering,
pp.1–8, John Wiley & Sons, 2007. DOI:10.1002/9780470050118.
ecse394

[4] J. Alonso, R. Matias, E. Vicente, A. Maria, and K.S. Trivedi,
“A comparative experimental study of software rejuvenation over-
head,” Performance Evaluation, vol.70, no.3, pp.231–250, 2013.
DOI:10.1016/j.peva.2012.09.002

[5] J. Zheng, H. Okamura, L. Li, and T. Dohi, “A comprehensive evalu-
ation of software rejuvenation policies for transaction systems with
Markovian arrivals,” IEEE Trans. Rel., vol.66, no.4, pp.1157–1177,
2017. DOI:10.1109/TR.2017.2741526

[6] G. Ning, J. Zhao, Y. Lou, J. Alonso, R. Matias, K.S. Trivedi, B.-B.
Yin, and K.-Y. Cai, “Optimization of two-granularity software re-
juvenation policy based on the Markov regenerative process,” IEEE
Trans. Rel., vol.65, no.4, pp.1630–1646, 2016. DOI:10.1109/TR.
2016.2570539

[7] T. Dohi, J. Zheng, H. Okamura, and K.S. Trivedi, “Optimal periodic
software rejuvenation policies based on interval reliability criteria,”
Reliability Engineering and System Safety, vol.180, pp.463–475,
2018. DOI:10.1016/j.ress.2018.08.009

[8] Y. Zhang and K. Chakrabarty, “Fault recovery based on checkpoint-
ing for hard real-time embedded systems,” Proc. 18th IEEE Sym-
posium on Defect and Fault Tolerance in VLSI Systems (DFT’03),
IEEE CPS, pp.320–327, 2003. DOI:10.1109/DFTVS.2003.1250127

[9] S. Fukumoto, N. Kaio, and S. Osaki, “Optimal checkpointing poli-
cies using the checkpointing density,” Journal of Information Pro-
cessing, vol.15, no.1, pp.87–92, 1992.

[10] A. Ranganathan and S.J. Upadhyaya, “Performance evaluation of
rollback-recovery techniques in computer programs,” IEEE Trans.
Rel., vol.42, no.2, pp.220–226, 1993. DOI:10.1109/24.229490

[11] T. Dohi, S. Osajima, N. Kaio, and S. Osaki, “On the effects of check-
point institution methods for a macroscopic database model,” Elec-
tronics and Communications in Japan (Part III: Fundamental Elec-
tronic Science), vol.83, no.9, pp.23–33, 2000.

[12] H. Okamura and T. Dohi, “Comprehensive evaluation of aperi-
odic checkpointing and rejuvenation schemes in operational soft-
ware system,” Journal of Systems and Software, vol.83, no.9,
pp.1591–1604, 2010. DOI:10.1016/j.jss.2009.06.058

[13] G. Levitin, L. Xing, and L. Luo, “Joint optimal checkpointing
and rejuvenation policy for real-time computing tasks,” Relia-
bility Engineering and System Safety, vol.182, pp.63–72, 2019.
DOI:10.1016/j.ress.2018.10.006

[14] J. Zheng, H. Okamura, and T. Dohi, “A phase expansion for non-
Markovian availability models with time-based aperiodic rejuvena-
tion and checkpointing,” Communications in Statistics - Theory and
Methods, vol.49, no.15, pp.3712–3729, 2020. DOI:10.1080/
03610926.2019.1708400

[15] G. Bolch, S. Greiner, H. De Meer, and K.S. Trivedi, Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications, 2nd ed., John Wiley & Sons,
New York, NY, USA, 2006.

[16] K.S. Trivedi and A. Bobbio, Reliability and Availability Engineer-
ing: Modeling, Analysis, and Applications, Cambridge University
Press, 2017.

[17] J. Zheng, H. Okamura, and T. Dohi, “Security evaluation of a
VM-based intrusion-tolerant system with pull-type patch manage-
ment,” Proc. 2019 IEEE 19th International Symposium on High As-
surance Systems Engineering (HASE’19), IEEE CPS, pp.156–163,
2019. DOI:10.1109/HASE.2019.00032

[18] J. Zheng, H. Okamura, and T. Dohi, “A transient interval reli-
ability analysis for software rejuvenation models with phase ex-
pansion,” Software Quality Journal, vol.28, pp.173–194, 2020.
DOI:10.1007/s11219-019-09458-1

[19] K. Balakrishnan, Exponential Distribution: Theory, Methods and
Applications, Routledge, 2018.

[20] H. Rinne, The Weibull Distribution: A Handbook, CRC press, 2008.

http://dx.doi.org/10.1109/mc.2007.55
http://dx.doi.org/10.1109/ftcs.1995.466961
http://dx.doi.org/10.1002/9780470050118.ecse394
http://dx.doi.org/10.1016/j.peva.2012.09.002
http://dx.doi.org/10.1109/tr.2017.2741526
http://dx.doi.org/10.1109/tr.2016.2570539
http://dx.doi.org/10.1016/j.ress.2018.08.009
http://dx.doi.org/10.1109/dftvs.2003.1250127
http://dx.doi.org/10.1109/24.229490
http://dx.doi.org/10.1016/j.jss.2009.06.058
http://dx.doi.org/10.1016/j.ress.2018.10.006
http://dx.doi.org/10.1080/03610926.2019.1708400
http://dx.doi.org/10.1002/0471791571
http://dx.doi.org/10.1017/9781316163047
http://dx.doi.org/10.1109/hase.2019.00032
http://dx.doi.org/10.1007/s11219-019-09458-1
http://dx.doi.org/10.1201/9780203756348
http://dx.doi.org/10.1201/9781420087444


2142
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

[21] B. Schroeder and G.A. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Transactions on De-
pendable and Secure Computing, vol.7, no.4, pp.337–350, 2010.
DOI:10.1109/TDSC.2009.4

[22] O. Connor, Practical Reliability Engineering, John Wiley & Sons,
2012.

[23] R. Vinayak and S. Dharmaraja, “Semi-Markov modeling approach
for deteriorating systems with preventive maintenance,” Interna-
tional Journal of Performability Engineering, vol.8, no.5, pp.515–
526, 2012. DOI:10.23940/ijpe.12.5.p515.mag

[24] K. Wolter, “Stochastic models for restart, rejuvenation and check-
pointing,” Habilitation Thesis, Humboldt-University, Institut Infor-
matik, Berlin, Tech. Rep., 2008.

[25] H. Okamura and T. Dohi, “Fitting phase-type distributions and
Markovian arrival processes: algorithms and tools,” Principles of
Performance and Reliability Modeling and Evaluation, F. Lance and
P. Antonio (eds.), pp.49–75, Springer, 2016. DOI:10.1007/978-3-
319-30599-8 3

[26] P. Kemper, D. Müller, and A. Thümmler, “Combining response
surface methodology with numerical methods for optimization of
Markovian models,” IEEE Transactions on Dependable and Secure
Computing, vol.3, no.3, pp.259–269, 2006. DOI:10.1109/TDSC.
2006.28

[27] A. Cumani, “On the canonical representation of homogeneous
Markov processes modelling failure-time distributions,” Microelec-
tronics Reliability, vol.22, no.3, pp.583–602, 1982. DOI:10.1016/
0026-2714(82)90033-6

[28] H. Okamura, T. Dohi, and K.S. Trivedi, “Improvement of
expectation-maximization algorithm for phase-type distributions
with grouped and truncated data,” Applied Stochastic Mod-
els in Business and Industry, vol.29, no.2, pp.141–156, 2013.
DOI:10.1002/asmb.1919

[29] T. Dayar, Analyzing Markov Chains Using Kronecker Products:
Theory and Applications, Springer Science & Business Media,
2012.

[30] K.S. Trivedi, Probability and Statistics with Reliability, Queuing,
and Computer Science Applications, 2nd ed., John Wiley & Sons,
2001.

[31] A. Reibman and K.S. Trivedi, “Numerical transient analysis of
Markov models,” Computers & Operations Research, vol.15, no.1,
pp.19–36, 1988. DOI:10.1016/0305-0548(88)90026-3

[32] G.H. Sandler, System Reliability Engineering, Prentice-Hall,
Englewood Cliffs, New Jersey, 1963.

[33] C.H.C. Leung and E. Currie, “The effect of failures on the perfor-
mance of long-duration database transactions,” The Computer Jour-
nal, vol.38, no.6, pp.471–478, 1995. DOI:10.1093/comjnl/38.6.471

Junjun Zheng received the B.S.E. de-
gree in engineering from Fujian Normal Univer-
sity, Fuzhou, China, in 2010, and the M.S. and
D.Eng. degrees in engineering from Hiroshima
University, Higashihiroshima, Japan, in 2013
and 2016, respectively. In 2016 and 2017, he
was a Visiting Researcher with the Department
of Information Engineering, Graduate School of
Engineering, Hiroshima University. Since 2018,
he has been an Assistant Professor with the De-
partment of Information Science and Engineer-

ing, Ritsumeikan University, Japan. His research interests include perfor-
mance evaluation and dependable computing. Dr. Zheng is a member of the
Operations Research Society of Japan, the Reliability Engineering Associ-
ation of Japan, the Institute of Electrical, Information and Communication
Engineers, and the Institute of Electrical and Electronics Engineers.

Hiroyuki Okamura received the B.S.E.,
M.S., and D.Eng. degrees in engineering from
Hiroshima University, Higashihiroshima, Japan,
in 1995, 1997, and 2001, respectively. In 1998,
he joined Hiroshima University as an Assistant
Professor, where he has been an Associate Pro-
fessor with the Department of Information Engi-
neering, Graduate School of Engineering, since
2003. He is now a Processor with the De-
partment of Information Engineering, Graduate
School of Engineering, since 2018. His research

interests include performance evaluation, dependable computing, and ap-
plied statistics. Dr. Okamura is a member of the Operations Research So-
ciety of Japan, the Institute of Electrical, Information and Communication
Engineers, the Japan Society for Industrial and Applied Mathematics, the
Information Processing Society of Japan, the Association for Computing
Machinery, and the Institute of Electrical and Electronics Engineers.

Tadashi Dohi received the B.S.E.,
M.S., and D.Eng. degrees in engineering from
Hiroshima University, Higashihiroshima, Japan,
in 1989, 1991, and 1995, respectively. In 1992
and 2000, he was a Visiting Researcher with the
Faculty of Commerce and Business Administra-
tion, University of British Columbia, Canada,
and the Hudson School of Engineering, Duke
University, USA, respectively, on the leave from
Hiroshima University. Since 2002, he has been
a Professor with the Department of Information

Engineering, Graduate School of Engineering, Hiroshima University. His
research interests include reliability engineering, software reliability, and
dependable computing. Dr. Dohi is a member of the Operations Research
Society of Japan, the Institute of Electrical, Information and Communica-
tion Engineers, the Information Processing Society of Japan, the Reliability
Engineering Association of Japan, and the Institute of Electrical and Elec-
tronics Engineers. He is also an Associate Editor of the IEEE TRANSAC-
TIONS ON RELIABILITY among others.

http://dx.doi.org/10.1109/tdsc.2009.4
http://dx.doi.org/10.1007/978-3-319-30599-8_3
http://dx.doi.org/10.1109/tdsc.2006.28
http://dx.doi.org/10.1016/0026-2714(82)90033-6
http://dx.doi.org/10.1002/asmb.1919
http://dx.doi.org/10.1007/978-1-4614-4190-8
http://dx.doi.org/10.1016/0305-0548(88)90026-3
http://dx.doi.org/10.1093/comjnl/38.6.471

