
2072
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

PAPER

Construction of an Efficient Divided/Distributed Neural Network
Model Using Edge Computing

Ryuta SHINGAI†a), Yuria HIRAGA†, Hisakazu FUKUOKA†, Takamasa MITANI†, Student Members,
Takashi NAKADA†, Member, and Yasuhiko NAKASHIMA†, Fellow

SUMMARY Modern deep learning has significantly improved perfor-
mance and has been used in a wide variety of applications. Since the
amount of computation required for the inference process of the neural
network is large, it is processed not by the data acquisition location like
a surveillance camera but by the server with abundant computing power
installed in the data center. Edge computing is getting considerable atten-
tion to solve this problem. However, edge computing can provide limited
computation resources. Therefore, we assumed a divided/distributed neural
network model using both the edge device and the server. By processing
part of the convolution layer on edge, the amount of communication be-
comes smaller than that of the sensor data. In this paper, we have evaluated
AlexNet and the other eight models on the distributed environment and es-
timated FPS values with Wi-Fi, 3G, and 5G communication. To reduce
communication costs, we also introduced the compression process before
communication. This compression may degrade the object recognition ac-
curacy. As necessary conditions, we set FPS to 30 or faster and object
recognition accuracy to 69.7% or higher. This value is determined based
on that of an approximation model that binarizes the activation of Neu-
ral Network. We constructed performance and energy models to find the
optimal configuration that consumes minimum energy while satisfying the
necessary conditions. Through the comprehensive evaluation, we found
that the optimal configurations of all nine models. For small models, such
as AlexNet, processing entire models in the edge was the best. On the
other hand, for huge models, such as VGG16, processing entire models in
the server was the best. For medium-size models, the distributed models
were good candidates. We confirmed that our model found the most energy
efficient configuration while satisfying FPS and accuracy requirements, and
the distributed models successfully reduced the energy consumption up to
48.6%, and 6.6% on average. We also found that HEVC compression is
important before transferring the input data or the feature data between the
distributed inference processes.
key words: convolutional neural network, edge computing, distributed
neural network, video compression

1. Introduction

Recently, machine learning has been progressed and in-
tegrated into many applications, such as object detection
and pattern matching. These applications are used in a
wide variety of situations. Automatic operation is an exam-
ple. Deep Convolutional Neural Network (DCNN) achieved
better recognition accuracy than that of human capability
(5.1%) [1].

Deep Convolutional Neural Network (DCNN) consists
of 2 main functionalities, feature extractor, which is im-

Manuscript received December 14, 2019.
Manuscript revised May 18, 2020.
Manuscript publicized July 2, 2020.
†The authors are with Nara Institutet of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
a) E-mail: shingai.ryuta.sm0@is.naist.jp

DOI: 10.1587/transinf.2019EDP7326

Fig. 1 Inference process in DCNN using servers

plemented by a combination of convolutional and pooling
layers, and classification, which is implemented by fully-
connected layers. DCNN achieved 10% or more improve-
ment of the recognition accuracy than conventional tech-
niques. However, DCNN commonly needs a large amount
of calculation. Due to enormous computational costs, mo-
bile devices may not meet their real-time requirements.
Therefore, the calculation of DCNN is usually processed on
servers, having a huge amount of computing resources.

Here are two famous architectures of DCNN:
AlexNet [2] and VGG16 [3]. Both are excellent Neural Net-
work for object recognition. AlexNet is composed of 5 con-
volutional layers, 3 pooling layers, and 3 fully-connected
layers. The VGG16, which is deeper than AlexNet, is com-
posed of 13 convolutional layers, 5 pooling layers, and 3
fully-connected layers. Image recognition using DCNN is
implemented, as shown in Fig. 1 and processes as follows.

1. The sensors get the data, compress, and send them to
the server.

2. The server receives and decompresses the data and ex-
ecutes the inference process.

3. The server sends the results back to the user.

However, recently proposed models of DCNN became
much deeper and bigger than previous models. They require
huge computation power. In the conventional method, all
of DCNN are processed on servers, which have computing
resources in abundance. As the size of DCNN grows and
IoT devices increase [4], traffic congestion, and the power
consumption of network switches and servers are drastically
increased. To cope with this overconcentration, other com-
putational infrastructures that are independent of the cloud
server are required.

As a solution to these problems, many researchers and
companies recently have paid great attention to edge com-
puting [5], [6] to process the data near their sources. So,
we introduce that the process of a part of the neural net-
work model could be executed by using edge computing.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



SHINGAI et al.: CONSTRUCTION OF AN EFFICIENT DIVIDED/DISTRIBUTED NEURAL NETWORK MODEL USING EDGE COMPUTING
2073

Our target is to implement the system to process machine
learning in the divided/distributed neural network model.
Since we need to find which optimal split boundary from
the viewpoints of FPS, object recognition accuracy, and en-
ergy consumption, we did a preliminary evaluation. Firstly,
we confirm the results when applying HEVC compression
to intermediate data of each layer, and then summarize the
indicators of the energy consumption in communication and
inference process. Finally, in the comprehensive evaluation,
we evaluate which split layer is optimal and whether com-
pression is necessary.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes related work on approximation models,
edge computing, and applications that require the object
recognition task. Section 3 shows preliminary evaluations
to find the optimal split boundary. Section 4 indicates a
method of applying compression to the intermediate data.
Section 5 shows the relationship between compression and
recognition accuracy, and comprehensive evaluation. Sec-
tion 6 shows the experimental results. A conclusion is de-
scribed in Sect. 7.

2. Related Works

2.1 Approximate Computing for CNNs

As Neural Networks evolve, a recognition based on CNN
needs a large amount of memory and computational power.
For that reason, while they work well on expensive ma-
chines, including high-end GPU, they are often unsuitable
for smaller devices like cell phones and embedded devices.
Recently, the construction of a neural network with reduced
calculation cost and an equivalent model scale has been de-
veloped. Lightweight CNNs reduced precision computation
have been developed. In Binary-Weight-Networks [7], [8],
all the weight values are approximated with binary val-
ues. A convolutional neural network with binary weights is
smaller (1/32×) than the same network with single-precision
floating-point weight values. Since weight values are bi-
nary, convolutions can be performed by only addition and
subtraction (without multiplication), resulting in more than
2× speed up. Also, XNOR-Nets [8] approximates both the
weights and the inputs in the convolutional and fully con-
nected layers to binary values. Binary weights and binary
inputs allow an efficient calculation of convolutional oper-
ations. Since all of the operands of the convolutions are
binary, the convolutions can be performed by XNOR and
Bitcounting operations [7].

Ternary Weight Networks (TWNs) [9] is a model com-
pression method that has neural networks with weights
constrained to +1, 0, and −1. TWNs have a more pre-
cise expression than the Binary-Weight-Networks. TWNs
achieved higher accuracy than that of the Binary-Weight-
Network. However, it is still lower than that of the full
precision models. Like XNOR-Nets, there is a Neural Net-
work model replacing floating-point matrix multiplications
with ternary convolutions (based on sparse binary kernels),

with both activations and weights restricted to values of {−1,
0, +1} [10]. This model can be calculated using a masked
Hamming distance, an XOR/XNOR operation followed by
a popcount, and reduce the computational cost by up to 1/16.
This approach does not require high computational perfor-
mance but needs exploring the theoretical advantages of ex-
plicit sparsity promotion to reduce the risk of overfitting. To
solve these problems, we propose a faster, more accurate,
and more efficient distributed model without excessive pre-
cision reduction.

2.2 Distributed DCNN

To reduce computation costs, BranchyNet [11] have adopted
early exits from additional side branches. BranchyNet al-
lows exiting the network early via these branches when re-
sults are already inferred with high confidence. The original
longest path is only used when any early exits are not confi-
dent.

Based on this idea, Distributed Deep Neural Net-
work [12] have been proposed. Only early exits are imple-
mented on the edge device, and the rest of the longest path
is implemented on the server. If the ratio of early exit is high
enough, both computation and communication costs can be
reduced. However, additional training is required to make
early exits. Moreover, data compression is not considered at
all.

In contrast to these ideas, since our idea is independent
of the neural network models, any additional training is not
required. The video compression is effective for any model
whose input is time-series data.

2.3 Edge Computing

Owing to a huge amount of computing resources, DCNN is
usually processed in the cloud server. However, rapidly in-
creasing demand brings traffic congestion and overconcen-
tration of power consumption. To deal with these problems,
edge computing [5], [6] has been recently paid great atten-
tion.

We propose processing the inference process of DCNN
within this edge device as much as possible. When most
processes of DCNN is executed within the edge device, traf-
fic congestion and overconcentration in the cloud server are
resolved.

Additionally, it is possible to process with lower power
consumption than the process on the server. Recently, Jet-
son TX2 [13] and Jetson Nano [14] developed by NVIDIA
are good candidates for edge computing. Jetson TX2 and
nano are modular AI supercomputers with NVIDIA Pascal
and Maxwell architectures, respectively. These devices can
execute the inference process with low energy consumption.

2.4 Possible Applications

One of the applications that we assumed, for example, is au-
tomobiles detecting the objects used the model on DCNN



2074
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

that had been learned for well detecting the passersby and
the other automobiles. The datasets they have been evalu-
ated upon [15]–[17] have been targeted at the approximate
frame rate of 30 Frames Per Second (FPS). Therefore, a
processing speed of 30 FPS is required for the implementa-
tion of a practical application. By eliminating the learning
phase, it is possible to process the inference within the dis-
tributed neural network model. In this paper, we focus on
the inference phase of DCNN.

Also, the object detection used in automobiles is con-
sidered to be insufficient for future implementation in a 4G
environment with the delay of 4G. Therefore, it is expected
that a communication band (5G [18]) with high-speed com-
munication will be installed.

3. Preliminary Evaluation

Figure 1 shows the inference process of DCNN on the
server. Conventional implementation causes problems of
network congestion and overconcentration of the calculation
load on the server, as described in Sect. 1. We split the lay-
ers of DCNN into two and assign them to multiple devices.
That is, we introduce a model divided/distributed method,
which calculates DCNN more efficiently.

We explain the flow of the process of divided DCNN
using edge computing. When DCNN is implemented on two
devices, edge device processes data from the input data to a
certain layer in DCNN, and the other device processes the
remained layers. The input size is 224 × 224, and input bit-
depth is 8 for each RGB color.

Table 1 shows the average execution times of all mod-
els on a server GPU. The calculation time of resnet152,
which is the largest, is 16.4 times larger than that of
AlexNet, which is the smallest. This causes the overcon-
centration of computation. In order to balance the amount
of computation, the split boundary should be the middle of
the layers.

As split boundaries, 1) we mainly chose after pooling
layers, which reduce the amount of data largely. Addition-
ally, in some models, there are branch and marge in the data
flow. If we divide the models during branched computation,
we should transfer multiple data streams. Therefore, 2) we
should not divide during branched computation. According
to these policies, we divided the models as follows.

For VGG16 and GoogLeNet, the split boundary is se-
lected from after 5 and 4 pooling layers, respectively. For
AlexNet, it is selected from after 5 convolution layers.
For MobileNet, it is selected from after 7 inverted residual
blocks. For SqueezeNet and ResNet, it is selected from 8
fire modules and 4 residual blocks and before the first of
these modules or blocks, respectively.

If a pooling layer follows these boundaries, the bound-
aries are moved to just after the pooling layer, according to
the first policy.

Figure 2 shows the amount of output of each boundary
and amount of computation before and after each bound-
ary. In addition to AlexNet and VGG16, we also evaluate

Table 1 Calculation time on a server GPU

model calculation time [ms/frame]
alexnet 0.300
vgg16 3.864

mobilenet 0.941
squeezenet 0.653
googlenet 1.112
resnet18 0.749
resnet50 2.016
resnet101 3.435
resnet152 4.925

Fig. 2 Division ratio of computation (formar and latter) and amount of
output (size) on each split boundary

GoogLeNet, MobileNet v2, SqueezeNet, and ResNet18, 50,
101, and 152. For example, if we choose the split boundary
2 on AlexNet, the computation costs can be divided by 3:7.

4. How to Apply Compression

For practical applications of image recognition in the IoT
era, a popular type of input data is images that are contin-
uously captured (i.e., video) rather than many independent
images. In the technical competitions, huge numbers and a
wide variety of pictures are suitable for measuring the av-
erage recognition accuracy. However, this kind of dataset
is too far from reality. In this paper, for practical uses, we
treat the video stream obtained from surveillance or object
inspection cameras.

Since DCNN commonly requires a huge amount of
computation, it is hard for a single device on the edge device
to process them. At the same time, the divided approach re-
quires network communication between devices. This over-
head is not negligible.

The conventional implementation of DCNN requires
data transmission from the sensors to the server. If the size
of data is large and the communication costs are not neg-
ligible, the total performance is decreased. In many cases,
we can observe that as the amount of edge computing is in-
creased, the amount of data of the former layer is decreased.
Note that there are some exceptions, such as split boundaries
2 and 3 of ResNet 50, 101, and 152. At these boundaries,
the amount of data is significantly larger than that of input
data or split boundary 1. Therefore, these boundaries may
not be suitable for distributed execution.

In previous research [19], H.265/HEVC compres-
sion [20] was adopted as a compression method for inter-



SHINGAI et al.: CONSTRUCTION OF AN EFFICIENT DIVIDED/DISTRIBUTED NEURAL NETWORK MODEL USING EDGE COMPUTING
2075

Fig. 3 Frame composition from multi-channel image

mediate data of the neural network model. We thought that
HEVC is optimal in this experiment because it achieves a
high video compression rate. HEVC compression has a
minimum CTU size, which is 16 × 16. The output data
from the pooling layer in the latter half of AlexNet or some
models are smaller than that, so it cannot be compressed di-
rectly. Therefore, we compose multiple channel images by
tiling, as shown in Fig. 3 in order to fit the input of HEVC
compression.

The higher the recognition accuracy, the higher the re-
liability of the user as an actual application. In the previous
study, only AlexNet was targeted, but in this experiment,
the other eight models with a large number of layers are
also evaluated. By implementing a divided/distributed neu-
ral network model, the overall energy consumption is ex-
pected to be lower than with a conventional way of process-
ing the entire inference process on the server.

5. Experimental Setup

In this experiment, we applied HEVC compression as a
video compression method. And, AlexNet and GoogLeNet,
MobileNet v2, SqueezeNet, VGG16, and resnet18, 50, 101,
and 152 are adopted as the distributed neural network mod-
els. We investigate the relationship among the FPS, ob-
ject recognition accuracy, and the energy consumption in
divided/distributed neural network models. We validated a
comprehensive evaluation based on the inference process,
the encoding/decoding process of the compress method, and
communication.

5.1 Object Recognition and Compression Method

We investigate the efficiency of the video compression for
the feature data extracted from the convolution layers of
DCNN and the trade-off between the compression ratio and
recognition accuracy. At first, Intermediate data of DCNN
is extracted by the executing former layer. The first half of
the model processed on the edge device. After encoding,
transferring, and decoding, the server continues with the in-
ference process and executes the object recognition task.

We used a caffe Model Zoo [21] via torchvision as the
trained models of AlexNet and the other eight models in
the experiment. These models are trained for the task of
classifying 1000 classes using the ImageNet data set pub-
lished in the ILSVRC competition. As the verification data,
we used the video captured by a fixed-point camera of ele-
phants, jaguar, buffalo, zebra, and panda. These videos have

Table 2 Execution enviroment

GPU (tx2) Jetson TX2 (NVIDIA Pascal,
256 CUDA Cores)

GPU (nano) Jetson Nano (NVIDIA Maxwell,
128 CUDA Cores)

GPU (server) GTX1080TiOC (NVIDIA Pascal,
3584 CUDA Cores)

input video 224 × 224

622, 520, 1256, 590, and 429 frames, respectively. There are
three labels classified as elephants in the training dataset,
“African elephant,” “Indian elephant,” and “tusker.” We
evaluated the accuracy when one of the three labels was in-
cluded in Top5. For the other four animals, only one label
exists for each animal. Unfortunately, some models can-
not recognize some animals. For example, with VGG16,
the recognition accuracy of pandas is less than 30% without
any split nor compression. Therefore, such combinations
are excluded before evaluation.

First of all, we compared these models constructed
as distributed neural network models. For the distributed
model, we applied H.265/HEVC to intermediate data ex-
tracted from the former layers. HEVC compression has
a Quantization parameter (Qp). It manages the trade-off
between compression ratio and image quality. HEVC has
another parameter that specifies the GOP width of motion
compensation (interframe prediction). The GOP is a group
unit composed of multiple consecutive frames (I picture, P
picture, B picture), and I picture is placed in the first frame.
In this experiment, the GOP width is set to 30 frames (I: 1,
P: 29, B: 0). NvEnc encoder does not support creation for B
pictures in many GPUs to realize real-time encoding. There-
fore, the compressed data is composed of I pictures and P
pictures. In the distributed model, we evaluated the com-
pression ratio and object recognition accuracy. Also, the de-
tails of the execution environment are described in Table 2.
As edge GPUs, we evaluated with Jetson TX2 and Jetson
Nano.

5.2 Comprehensive Evaluation

Based on the above experiments, we evaluate the overall dis-
tributed neural network models. In the distributed neural
network models, the following steps proceed step by step (1)
extraction of intermediate data, (2) compression process, (3)
communication, (4) decompression process, and (5) rest of
the inference process. We assumed that the five processes of
the distributed model are performed by pipeline processing.

In this experiment, the HEVC compression/decompres-
sion process is executed by a server GPU and edge GPU (tx2
and nano). NvEnc [22] is adopted to use hardware encoder
integrated with these GPUs. In the overall evaluation, we
used all the processing time and the power consumption for
the distributed model. The energy consumption includes the
total energy consumption per frame for the inference pro-
cess on the edge device and the server, the compression/
decompression process, and communication.



2076
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 3 Energy consumption in communication

Communication standard Energy Consumption [J/bit]
Wi-Fi (40M [bps]) 5.3 × 10−9

3G (1M [bps]) 3.5 × 10−7

5G (50M [bps]) 6.7 × 10−8

In communication, we assumed Wi-Fi (40M[bps]) [23],
3G (1M[bps]) [23], and 5G (50M[bps]) as the effective com-
munication speed of the channel.

Our requirements are setting to 30 FPS or higher for
the processing speed and to 69.7% or higher achieved by
XNOR-Nets, for object recognition accuracy.

5.3 Performance and Energy Models

Here, the calculation method of FPS and energy consump-
tion used in a comprehensive evaluation is described. In the
inference process, tformer is the processing time executed on
the GPU of the edge device, and tlatter is the processing time
executed on the GPU of the server. The HEVC compression
time is tcomp, and the decompression time is tdecomp. We mea-
sured these values with real equipment. Also, the processing
time required for communication is obtained by Eq. (1).

tcomm = size/throughput (1)

We assume these five processes can be done in parallel by
pipeline manner. Therefore, Eq. (2) shows how to calculate
FPS.

FPS = 1/max(tformer, tcomp, tcomm, tdecomp, tlatter) (2)

Finally, the measurement method of energy consump-
tion is described below. The energy consumption J for the
inference process and the compression/decompression pro-
cess is calculated by Eq. (3),

J = P · t (3)

which is a product of the power consumption P of GPU and
the processing time t. We measured voltage and current of
power lines with a voltmeter and an ammeter. Table 3 sum-
marizes the energy consumption for each communication
standard in a J/bit. The energy consumption for communi-
cation is calculated by multiplication of the values in Table 3
and the size of the intermediate data.

6. Experimental Result

6.1 Distributed Models Using H.265/HEVC

Table 4 shows the raw and compressed data size when
HEVC is applied to each split boundary. raw is not applied
any compression. Thus, the compression ratio is 1.0. 8bit
is applied 8bit quantization for 32 bit data. Thus, the com-
pression ratio is 0.25. qpX indicates the compressed data
size when HEVC compression is applied with the Quantiza-
tion parameter (Qp) value is X. As qp value is increased, a

Table 4 Compression ratio

compression compression ratio
raw 1.000
8bit 0.250

hevc qp0 0.624
qp10 0.376
qp20 0.173
qp25 0.0982
qp30 0.0421
qp35 0.0148
qp40 0.00385
qp45 0.00201
qp50 0.00104

Fig. 4 Compressions and accuracy

higher compression ratio is realized.
Figure 4 shows the object recognition accuracy when

HEVC is applied and not applied to each split boundary.
The X-axis represents the compression method and Qps for
HEVC. Each line chart represents each model. This re-
sult clearly shows that the larger Qp significantly degraded
recognition accuracy. The horizontal red line shows the tar-
get accuracy of 69.7%.

In many models, the recognition accuracy is main-
tained up to Qp20, but the accuracy decreases sharply when
Qp is 35 or more. However, for example, when HEVC Qp40
is applied to the intermediate data of AlexNet, we found that
the recognition accuracy is still higher than 69.7%.

From these results, we found that the highest com-
pression while maintaining recognition accuracy is higher
than 69.7% is Qp30 for SqueezeNet, Qp35 for GoogLeNet,
VGG16, and ResNet18, Qp40 for AlexNet, MobileNet,
ResNet50, 101, and 152. With these compressions, the
amount of data becomes 4.21% (Qp30) to 0.2% (Qp40) of
original data. These compression methods are marked with
ovals in the figure. When comparing ResNet18, 50, 101,
and 152, the larger model achieved higher accuracy. Conse-
quently, when target accuracy is fixed, higher compression
can be applied for the larger model.

6.2 Energy Consumption for Inference, Compression and
Communication

Table 5 shows the processing time and the energy con-
sumption of GPU in the edge device and the server used
in AlexNet. Table 6 shows those of GPU in the edge device



SHINGAI et al.: CONSTRUCTION OF AN EFFICIENT DIVIDED/DISTRIBUTED NEURAL NETWORK MODEL USING EDGE COMPUTING
2077

Table 5 Inference processing time & energy consumption of the GPU
for AlexNet

split Time [ms/frame] Energy [mJ/frame]
boundary Edge Server Edge Server

server - 0.300 - 72.0
1 0.77 0.253 6.2 60.8
2 1.65 0.178 13.3 42.7
3 2.20 0.162 17.7 38.8
4 2.78 0.117 22.4 28.0
5 3.26 0.071 26.3 17.2

edge 4.29 - 34.6 -

Table 6 Inference processing time & energy consumption of GPU for
VGG16

split Time [ms/frame] Energy [mJ/frame]
boundary Edge Server Edge Server

server - 3.86 - 927
1 14.2 3.49 114 838
2 25.2 2.21 203 531
3 42.0 1.22 339 293
4 58.3 0.44 470 106
5 63.9 0.14 515 33

edge 65.5 - 528 -

Table 7 Processing time & energy consumption with compression/
decompression for AlexNet

split Time [ms/frame] Energy [mJ/frame]
boundary Comp Decomp Comp Decomp

input 1.40 1.53 1.34 1.53
1 1.63 1.07 1.57 1.07
2 1.64 0.71 1.57 0.71
3 2.18 0.99 2.10 0.99
4 1.89 0.85 1.82 0.85
5 1.63 0.28 1.56 0.28

Table 8 Processing time & energy consumption with compression/
decompression for VGG16

split Time [ms/frame] Energy [mJ/frame]
boundary Comp Decomp Comp Decomp

input 1.40 1.53 1.34 1.53
1 13.54 4.42 13.00 4.42
2 7.49 4.03 7.19 4.03
3 3.48 2.69 3.34 2.69
4 2.33 1.53 2.24 1.53
5 1.63 0.62 1.56 0.62

and the server used in VGG16. We chose 5 split boundaries
for both AlexNet and VGG16. server and edge of Tables 5
and 6 means that execute the entire process on the server
and on the edge device, respectively. We measured the en-
ergy consumption for the former and latter layers when ex-
ecuting at each split boundary. We also evaluated the other
seven models in the same manner.

After the former layers are over, the compression pro-
cess is applied to the intermediate data to reduce commu-
nication costs. Tables 7 and 8 show the results of process-
ing time and energy consumption when the compression is
applied to intermediate data for AlexNet and VGG16, re-
spectively. “Comp” and “Decomp” indicate compression
and decompression, respectively. In this experiment, HEVC

Fig. 5 FPS in distributed AlexNet

is used for compression/decompression. The energy con-
sumption of the 8-bit quantization process is so small that it
can be negligible. “input” of these tables is a case in which
HEVC is applied to input video data. We also evaluated the
other seven models in the same manner.

For edge, which executes the entire process on the
edge device, the output is object IDs, and the output size
is only a few bytes. Therefore, both the processing time and
the energy of compression/decompression and communica-
tion are negligibly short. In the overall evaluation shown
later, these six tables are used to estimate the total energy
consumption.

6.3 Results of Comprehensive Evaluation

Based on the results obtained in Sects. 6.1 and 6.2, we per-
formed a comprehensive evaluation. In Sect. 5.2, our re-
quirements are 30 FPS or higher for the processing speed
and 69.7%, which achieved XNOR-Nets, or higher for ob-
ject recognition accuracy. Wi-Fi, 3G and 5G communica-
tion standards were used in this experiment.

Figure 5 shows the FPS in distributed models of
AlexNet using TX2 (edge) and GTX1080 (server). The red
horizontal line in Fig. 5 represents the target value of 30 FPS
(=33.3ms/frame). From left to right, the results of the entire
process on the server, split boundaries, the entire process
on the edge device in AlexNet are shown. We compared
the communication speed by Wi-Fi, 3G, and 5G, with their
compression methods. raw represents the data of 32bit-float
type, 8bit represents unsigned 8-bit quantization. hevc rep-
resents HEVC. For HEVC, Qp is set to 40, as explained in
Sect. 6.1.

From the viewpoint of compression methods, 8bit al-
ways achieves higher FPS than raw, because the processing
time of 8bit quantization is negligibly short, and its impact
of accuracy degradation is very small as shown in Fig. 4.
hevc also always achieves higher FPS than raw because
hevc can drastically reduce data size, and its processing time
is short enough. From the viewpoint of communication stan-
dards, wifi always achieves higher FPS than 3G and 5G al-
ways achieve higher FPS than 3G.

In this result, any split boundary can satisfy 30 FPS
by applying 8-bit quantization or HEVC with Wi-Fi or 5G.



2078
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

In the 3G environment, without HEVC compression cannot
satisfy the requirements.

Figure 6 shows the total energy consumption, which
includes the inference process of the edge device and the
server, the compression/decompression process, and com-
munication in distributed models of AlexNet. In this result,
the conditions which cannot satisfy 30FPS are drawn with
hatched lines.

From the viewpoint of compression methods, similarly
to FPS, 8bit and hevc always achieve lower energy con-
sumption than raw. From the viewpoint of communication
standards, 5G always achieve lower energy consumption
than 3G and wifi always achieve lower energy consumption
than 5G.

We found that edge with wifi, which indicated with
a down arrow, can realize the lowest energy consumption
while satisfying both FPS and accuracy requirements.

Through these results, we found that there is a trade-
off between FPS and energy for wifi and 5G. We also found
that 8bit is suitable for small data, and hevc is suitable for
large data. Therefore, we conclude that raw and 3G have
no advantage at all, and both raw and 3G are excluded from
further evaluation.

Figure 7 shows the energy consumption of all nine
models using TX2 (edge) and GTX1080 (server). In this
result, the conditions which cannot satisfy the 30FPS are
omitted. The down allows indicate the best conditions in
each model. In addition to AlexNet, edge with 8bit and wifi
achieved the lowest energy consumption for GoogLeNet,
MobileNet, SqueezeNet, ResNet18, and ResNet50. For
VGG16, ResNet101, and ResNet152, edge cannot satisfy

Fig. 6 Energy consumption in distributed AlexNet

Fig. 7 Energy consumption in distributed models with TX2 (edge) and GTX1080 (server)

the FPS condition. Since the energy efficiency of Jetson
TX2 is better than GTX1080, it is better to process as much
as layers on edge. Therefore, the latest possible split bound-
ary (2 for VGG16, 3 for ResNet101 and 152) can realize
the lowest energy consumption. At these boundaries, the
amount of the feature data is large. Thus, HEVC compres-
sion must be required to satisfy the FPS requirement. After
compression, wifi is better than 5G to minimize energy con-
sumption.

When comparing the best of all combination and the
best of edge or server, the distributed models successfully
reduce the energy consumption up to 19.9% (VGG16), and
4.6% on average.

Figure 8 shows the energy consumption of all nine
models using Jetson Nano (edge) and GTX1080 (server).
Similar to the result with TX2, in addition to AlexNet, edge
with 8bit and wifi achieved the lowest energy consumption
for GoogLeNet, MobileNet, SqueezeNet, and ResNet18.
For VGG16, ResNet50, 101, and 152, edge cannot satisfy
the FPS requirement. Since the computational performance
of Nano is smaller than that of TX2, Nano can compute
fewer layers than TX2. As a result, the amount of the feature
data becomes larger, as shown in Fig. 2. Therefore, the lat-
est possible split boundary (1 for VGG16, 2 for ResNet50,
101, and 152) consume more energy than server, and server
can realize the lowest energy consumption. At server, the
amount of communication is the same as the input video.
Thus, HEVC compression can successfully minimize the
data size and minimize the energy consumption of commu-
nication. After compression, wifi is better than 5G to min-
imize energy consumption. In this evaluation, either of the
best of edge or server is the best.

In addition to two real environments, to confirm the
generality of our model, we also evaluate with an imagi-
nary edge device, whose performance and power consump-
tion is a quarter of Jetson TX2 and named TX2/4. Fig-
ure 9 shows the energy consumption of all nine models us-
ing TX2/4 (edge) and GTX1080 (server). Due to its lim-
ited performance, only AlexNet can satisfy the FPS require-
ment by edge with 8bit and wifi and achieved the lowest en-
ergy consumption. For VGG16, only server can satisfy the
FPS requirement, and hevc and wifi achieved the lowest en-
ergy consumption. For other models, there are complicated
trade-offs related to compression and communication meth-



SHINGAI et al.: CONSTRUCTION OF AN EFFICIENT DIVIDED/DISTRIBUTED NEURAL NETWORK MODEL USING EDGE COMPUTING
2079

Fig. 8 Energy consumption in distributed models with Nano (edge) and GTX1080 (server)

Fig. 9 Energy consumption in distributed models with TX2/4 (edge) and GTX1080 (server)

ods. For SqueezeNet, split boundary 5 is the best. The fea-
ture data should be compressed by hevc and communicated
with wifi to minimize energy consumption. For GoogLeNet,
MobileNet, and ResNet18, split boundary 4, 5, and 4 are the
best, respectively. The feature data should be quantized by
8bit and communicated with wifi to minimize energy con-
sumption. For ResNet50, 101, and 152, similar to the re-
sult with Nano, processed by server with hevc and wifi is
the best combination to minimize the energy consumption
while satisfying both FPS and accuracy requirements.

When comparing the best of all combination and the
best of edge or server, the distributed models successfully
reduce the energy consumption up to 48.6% (MobileNet),
and 15.3% on average.

Table 9 shows breakdowns of energy consumption of
selected models and conditions using TX2/4 (edge) and
GTX1080 (server). In this table, the values within paren-
theses indicate that conditions do not meet the FPS require-
ment. 0.00 and blanks indicate smaller than 0.005 and not
applicable, respectively.

This result also clearly shows that AlexNet can satisfy
the FPS requirement by edge with 8bit and wifi and achieved
the lowest energy consumption. For GoogLeNet, in edge,
the computation time of the edge device cannot satisfy the

FPS requirement. Thus, split boundary 4 with 8bit and wifi
is the best. For SqueezeNet, in addition to the computation
time of the edge device, some of the communication times
cannot meet the FPS requirement. Thus, split boundary 5
with hevc and wifi is the best.

When comparing GoogLeNet and SqueezeNet, there is
a trade-off between 8bit and hevc. It comes from a trade-
off between compression time and communication time. In
general, for small data, the compression time of hevc be-
comes larger than the reduction of the communication time,
and 8bit is beneficial, and vice versa.

For VGG16, any edge cannot satisfy the FPS require-
ment. Thus, server is the only choice. Since the input data is
large, hevc is beneficial. Finally, server with hevc and wifi
is the best combination to minimize the energy consumption
while satisfying both FPS and accuracy requirements.

In summary, when edge can satisfy the FPS require-
ment, edge is the first choice. When the whole compu-
tation is done on edge, the output, which includes classi-
fication results, is very small. Thus, no compression is re-
quired and transmit by the most energy efficient method wifi.
When edge cannot satisfy the FPS requirement, both server
and the distributed architecture should be considered. If the
data size of the split boundary is smaller than that of input,



2080
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 9 Breakdown of energy consumption [mJ/frame]

model split compress computation compression communication total energy
boundary method edge server comp decomp wifi 5G wifi 5G

(†, ‡) (†, ‡) (†, ‡) (†, ‡) (†) (‡) (sum of †) (sum of ‡)
Alex server 8bit 72.01 6.38 80.68 78.40 152.70
Net hevc 72.01 1.34 1.53 0.02 0.31 74.92 75.20

5 8bit 26.25 17.21 0.39 4.93 43.87 48.42
hevc 26.25 17.21 1.56 0.28 0.00 0.01 45.33 45.35

edge 8bit 34.59 0.00 0.00 34.60 34.60

GoogLe server 8bit 266.80 6.38 80.68 273.18 347.48
Net hevc 266.80 1.34 1.53 0.09 1.20 269.76 270.87

4 8bit 58.12 129.80 4.34 54.89 192.26 242.81
hevc 58.12 129.80 2.41 1.95 0.06 0.81 192.35 193.10

edge 8bit (96.42) 0.00 0.00 (96.42) (96.42)

Squeeze server 8bit 156.70 6.38 80.68 163.08 237.38
Net hevc 156.70 1.34 1.53 0.27 3.39 159.84 162.96

5 8bit 55.16 78.86 (7.91) 100.03 (141.93) 234.05
hevc 55.16 78.86 3.59 2.09 0.33 4.21 140.03 143.91

6 8bit 62.69 79.48 (12.55) (158.62) (154.73) (300.80)
hevc 62.69 79.48 5.12 2.47 0.53 6.67 150.30 156.44

edge 8bit (85.75) 0.00 0.00 (85.75) (85.75)

VGG16 server 8bit 927.32 6.38 80.68 933.70 1008.00
hevc 927.32 1.34 1.53 0.09 1.20 930.28 931.39

1 8bit (114.34) 838.35 (34.04) (430.31) (986.73) (1383.00)
hevc (114.34) 838.35 13.00 4.42 0.51 6.39 (970.62) (976.50)

edge 8bit (527.83) 0.00 0.00 (527.83) (527.83)

the distributed architecture has an advantage of energy effi-
ciency. Otherwise, the decision should be made carefully. In
such a situation, the compression method is one of the im-
portant choices. Since there is a trade-off between compres-
sion energy and communication energy, the best method de-
pends on the data size. As a result, both of the split boundary
and the compression method should be considered simulta-
neously. From the viewpoint of communication standards,
in most cases of our evaluation, wifi is better than 5G be-
cause the difference in the communication speed is small,
but that of energy efficiency is large. If additional require-
ment, such as communication distance between the edge and
the server, is given, the best method may be changed.

7. Conclusion

In this paper, we proposed a divided/distributed neural net-
work models that increase the processing on the edge de-
vice, which realizes better energy efficiency, and reduces
the load on the server by dividing the neural network model
without excessive approximation such as binarization or
ternarization. By applying HEVC compression, the amount
of the input videos and any intermediate data has been dras-
tically reduced. In order to construct models with efficient
performance and energy, we evaluate the divided/distributed
model of AlexNet and the other eight models. In a com-
prehensive evaluation, we found that HEVC compression is
important when dividing the inference process between the
edge device and the server. From the perspective of FPS, ac-
curacy, and energy, we found that optimal configurations of
all of 9 models. For small models, such as AlexNet, process-
ing entire models in the edge is the best. On the other hand,

for huge models, such as VGG16, processing entire models
in the server is the best. For medium-size models, the dis-
tributed model is a good candidate. To explore many com-
binations of split points, compression methods, and com-
munication standards and find the best combination, we de-
velop an energy model. We confirmed that our model found
the most energy efficient configuration while satisfying FPS
and accuracy requirements, and the distributed models suc-
cessfully reduced the energy consumption up to 48.6%, and
6.6% on average.

Acknowledgments

Part of this research was supported by JSPS KAKENHI
JP17H00730.

References

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol.115, no.3,
pp.211–252, 2015.

[2] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems 25, pp.1097–1105, 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol.abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[4] F. Wortmann and K. Fluchter, “Internet of Things,” Business & In-
formation Systems Engineering, vol.57, no.3, pp.221–224, 2015.

[5] Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing-a key technology towards 5g,” ETSI White Paper,
vol.11, no.11, pp.1–16, 2015.

[6] “Fog computing and the internet of things: Extend the cloud to

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s12599-015-0383-3


SHINGAI et al.: CONSTRUCTION OF AN EFFICIENT DIVIDED/DISTRIBUTED NEURAL NETWORK MODEL USING EDGE COMPUTING
2081

where the things are,” http://www.cisco.com/c/dam/en us/solutions/
trends/iot/docs/computing-overview.pdf

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations,”
Advances in Neural Information Processing Systems 28, pp.3123–
3131, 2015.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural net-
works,” Computer Vision – ECCV 2016, vol.9908, pp.525–542,
2016.

[9] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016. [On-
line]. Available: https://arxiv.org/abs/1605.04711

[10] M.P. Heinrich, M. Blendowski, and O. Oktay, “TernaryNet: faster
deep model inference without GPUs for medical 3D segmentation
using sparse and binary convolutions,” International Journal of Com-
puter Assisted Radiology and Surgery, vol.13, no.9, pp.1311–1320,
2018.

[11] S. Teerapittayanon, B. McDanel, and H.T. Kung, “Branchynet:
Fast inference via early exiting from deep neural networks,” 2016
23rd International Conference on Pattern Recognition (ICPR),
pp.2464–2469, 2016.

[12] S. Teerapittayanon, B. McDanel, and H.T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” 2017
IEEE 37th International Conference on Distributed Computing Sys-
tems (ICDCS), pp.328–339, 2017.

[13] “JETSON TX2 high performance AI at the edge.” [Online]. Avail-
able: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-tx2/

[14] “JETSON NANO the power of modern AI to millions of devices.”
[Online]. Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-nano/

[15] P. Liang, E. Blasch, and H. Ling, “Encoding color information for
visual tracking: Algorithms and benchmark,” IEEE Trans. Image
Process., vol.24, no.12, pp.5630–5644, 2015.

[16] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A bench-
mark,” 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pp.2411–2418, 2013.

[17] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell., vol.37, no.9, pp.1834–1848,
2015.

[18] J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K.
Soong, and J.C. Zhang, “What will 5G be?” IEEE J. Sel. Areas
Commun., vol.32, no.6, pp.1065–1082, 2014.

[19] T. Mitani, H. Fukuoka, Y. Hiraga, T. Nakada, and Y. Nakashima,
“Compression and aggregation for optimizing information transmis-
sion in distributed CNN,” 2017 Fifth International Symposium on
Computing and Networking (CANDAR), pp.112–118, 2017.

[20] G.J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol.22, no.12, pp.1649–1668, 2012.

[21] “Caffe model zoo.” [Online]. Available: http://caffe.berkeleyvision.
org/model zoo.html

[22] “NVENC.” [Online]. Available: https://developer.nvidia.com/nvidia-
video-codec-sdk

[23] A. Striegel, S. Liu, X. Hu, and L. Meng, “LTE and WiFi: Experi-
ences with quality and consumption,” Procedia Computer Science,
vol.34, pp.418–425, 2014.

Ryuta Shingai received his M.E. de-
gree from Graduate School of Information Sci-
ence, Nara Institute of Science and Technology,
Japan. His research interests include video com-
pression, machine learning, deistributed com-
puting, processor architecture.

Yuria Hiraga received his M.E. degree from
Graduate School of Information Science, Nara
Institute of Science and Technology, Japan. His
research interests include machine learning and
processor architecture.

Hisakazu Fukuoka received his M.E. de-
gree from Graduate School of Information Sci-
ence, Nara Institute of Science and Technology,
Japan. His research interests include machine
learning and processor architecture.

Takamasa Mitani received his B.S. and
M.S. from Tokai University in 2005 and 2008
respectively. He has been a cumputer enginner
in Pixela corporation since 2008 and Ph.D. can-
didate in Graduate School of Information Sci-
ence, Nara Institute of Science and Technology
since 2015. His research interests include dis-
tributed computing, video compression and pro-
gramming methods.

Takashi Nakada received his M.E. and
Ph.D. degrees from Toyohashi University of
Technology in 2004 and 2007 respectively. He
has been an Associate Professor at the Nara In-
stitute of Science and Technology since 2016.
His research interests includes Normally-Off
Computing, system architecture and related sim-
ulation technologies. He is a member of IEEE,
ACM and IPSJ.

http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1007/s11548-018-1797-4
http://dx.doi.org/10.1109/icpr.2016.7900006
http://dx.doi.org/10.1109/icdcs.2017.226
http://dx.doi.org/10.1109/tip.2015.2482905
http://dx.doi.org/10.1109/cvpr.2013.312
http://dx.doi.org/10.1109/tpami.2014.2388226
http://dx.doi.org/10.1109/jsac.2014.2328098
http://dx.doi.org/10.1109/candar.2017.13
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1016/j.procs.2014.07.048


2082
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Yasuhiko Nakashima received the B.E.,
M.E., and Ph.D. degrees in Computer Engineer-
ing from Kyoto University in 1986, 1988, and
1998, respectively. He was a computer architect
in the Computer and System Architecture De-
partment, FUJITSU Limited from 1988 to 1999.
From 1999 to 2005, he was an associate profes-
sor in the Graduate School of Economics, Kyoto
University. Since 2006, he has been a professor
in the Graduate School of Information Science,
Nara Institute of Science and Technology. His

research interests include processor architecture, emulation, CMOS cir-
cuitdesign, and evolutionary computation. He is a member of IEEE CS,
ACM,and IPSJ.


