
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020
549

LETTER Special Section on Foundations of Computer Science —Frontiers of Theory of Computation and Algorithm—

A Heuristic Proof Procedure for First-Order Logic

Keehang KWON†a), Member

SUMMARY Inspired by the efficient proof procedures discussed in
Computability logic [3], [5], [6], we describe a heuristic proof procedure
for first-order logic. This is a variant of Gentzen sequent system [2] and
has the following features: (a) it views sequents as games between the ma-
chine and the environment, and (b) it views proofs as a winning strategy
of the machine. From this game-based viewpoint, a poweful heuristic can
be extracted and a fair degree of determinism in proof search can be ob-
tained. This article proposes a new deductive system LKg with respect to
first-order logic and proves its soundness and completeness.
key words: proof procedures, heuristics, game semantics, classical logic

1. Introduction

The Gentzen sequent system LK plays a key role in mod-
ern theorem proving. Unfortunately, the LK system and its
variants based on focused proof [1] (as well as resolution
and tableux (see [7] for discussions)) are typically based on
blind search and, therefore, does not provide the best strat-
egy if we want a short proof.

In this paper, inspired by the seminal work of [3], we
present a variant of LK, called LKg (g for game), which
yields a proof in normal form with the following features:

• All the quantifier inferences are processed first. This is
achieved via deep inference.
• If there are several quantifiers to resolve in the sequent,

we apply to sequents a technique called stability anal-
ysis, a powerful heuristic technique which greatly cuts
down the search space for finding a proof.
• A quantifier is processed only when it needs to be pro-

cessed. In other words, our terminating condition (our
axiom) is much better than the traditional proof proce-
dures including [1].

In essence, LKg is a game-viewed proof which captures
game-playing nature in proof search. It views

1. sequents as games between the machine and the envi-
ronment,

2. proofs as a winning strategy of the machine, and
3. ∀xF as the env’s move and ∃xF as the machine’s move.

At each stage, we construct a proof by the following
rules:

Manuscript received April 26, 2019.
Manuscript revised August 12, 2019.
Manuscript publicized November 21, 2019.
†The author is with Department of Computer Eng., DongA

University, Korea.
a) E-mail: khkwon@dau.ac.kr

DOI: 10.1587/transinf.2019FCL0003

1. If the sequent is stable, then it means that the machine
is the current winner. In this case, it requests the user
to make a move.

2. If the sequent is instable, then it means that the envi-
ronment is the current winner. In this case, the machine
makes a move.

In this way, a fair (probably maximum) degree of de-
terminism can be obtained from the LKg proof system.

In this paper we present the proof procedure for first-
order classical logic. The remainder of this paper is struc-
tured as follows. We describe LKg in the next section. In
Sect. 3, we present some examples of derivations. In Sect. 4,
we prove the soundness and completeness of LKg. Section 5
concludes the paper.

2. The Logic LKg

The formulas are the standard first-order classical formulas,
with the features that (a) �, ⊥ are added, and (b) ¬ is only
allowed to be applied to atomic formulas. Thus we assume
that formulas are in negation normal form.

The deductive system LKg below axiomatizes the set
of valid formulas. LKg is a one-sided sequent calculus sys-
tem, where a sequent is a multiset of formulas. Our presen-
tation closely follows the one in [3].

First, we need to define some terminology.

1. A surface occurrence of a subformula is an occur-
rence that is not in the scope of any quantifiers (∀
and/or ∃).

2. A sequent is propositional iff all of its formulas are so.
3. The propositionalization ‖F‖ of a formula F is the

result of replacing in F all ∃-subformulas by ⊥, and
all ∀-subformulas by �. The propositionalization
‖F1, . . . , Fn‖ of a sequent F1, . . . , Fn is the proposi-
tional formula ‖F1‖ ∨ . . . ∨ ‖Fn‖.

4. A sequent is said to be stable iff its propositionalization
is classically valid; otherwise it is unstable.

5. The notation F[E] repesents a formula F together with
some surface occurrence of a subformula E.

The rules of LKg
LKg has the five rules listed below, with the following

additional conditions:

1. X:stable means that X must meet the condition that it is
stable. Similarly for X:unstable.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



550
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

2. Γ is a multiset of formulas and F is a formula.
3. In ∃-Choose, t is a closed term, and H(t) is the result

of replacing by t all free occurrences of x in H(x).
4. The ‘Succ’ rule reads as follows: A stable sequent X

containing no surface occurrence of ∀xH(x) is deriv-
able.

5. The ‘Fail’ rule reads: An unstable sequent X containing
no surface occurrence of ∃xH(x) is not derivable.

Fail

⊥
(no surf ∃xH(x) in X)

X:unstable

∃-Choose

Γ, F[H(t)]

Γ, F[∃xH(x)]:unstable

Replicate

Γ, F[∃xH(x)]:unstable

Γ, F[∃xH(x)], F[∃xH(x)]

Succ

�
(no surface ∀xH(x) in X)

X:stable

∀-Choose

Γ, F[H(α)]
(α is a new constant)

Γ, F[∀xH(x)]: stable

In the above, the “Replicate” rule is an optimized ver-
sion of what is known as Contraction, where contraction oc-
curs only when there is a surface occurrence of ∃xH(x).

A LKg-proof of a sequent X is a sequence X1, . . . , Xn

of sequents, with Xn = X, X1 = � such that, each Xi follows
by one of the rules of LKg from Xi−1.

3. Examples

Below we describe some examples.

Example 3.1: The formula ∀x∃y
(
p(x)→ p(y)

)
is provable

in LKg as follows:

1. p(α)→ p(α) Succ

2. ∃y
(
p(α)→ p(y)

)
∃-Choose

3. ∀x∃y
(
p(x)→ p(y)

)
∀-Choose

Example 3.2: The formula ∃y∀x
(
p(x)→ p(y)

)
is provable

in LKg as follows:

1.
(
p(α1)→ p(a)

)
,
(
p(α2)→ p(α1)

)
Succ

2.
(
p(α1)→ p(a)

)
,∀x
(
p(x)→ p(α1)

)
∀-Choose

3.
(
p(α1)→ p(a)

)
,∃y∀x

(
p(x)→ p(y)

)
∃-Choose

4. ∀x
(
p(x)→ p(a)

)
,∃y∀x

(
p(x)→ p(y)

)
∀-Choose

5. ∃y∀x
(
p(x)→ p(y)

)
,∃y∀x

(
p(x)→ p(y)

)
∃-Choose

6. ∃y∀x
(
p(x)→ p(y)

)
Replicate

On the other hand, the formula
(
∃xp(x)→∀yp(y)

)

which is invalid can be seen to be unprovable. This can
be derived only by two ∀-Choose rules and then the premise
should be of the form ¬p(α1), p(α2) for some new constants
α1, α2. The latter is not classically valid.

We conclude this section by discussing performance
aspects of LK and LKg. LK (and its variants) processes
∃,∀-quantifiers in an eagerly fashion, even when it is unnec-
essary. On the other hand, LKg processes these quantifiers
in a lazy fashion, only when it is absolutely necessary. It
can be expected then that LKg typically has shorter proofs
for validity (and invalidity if any) than LK.

As an example, consider the following:
p(a) ∧ ∀x1, . . . ,∀xnq(x1, . . . , xn).

LKg immediately declares that this formula is invalid, as it
is unstable and there is no surface occurrence of ∃xH(x).
In contrast, LK typically processes ∀x1, . . . ,∀xn, which is
redundant.

As a second example, consider the following:
((p→ q) ∧ (q→ r))→ (p→ (r ∨ ∃x1, . . . ,∃xns(x1))).

Again, LKg immediately declares that this formula is valid,
as it is stable and there is no surface occurrence of ∀xH(x).
In contrast, LK is likely to process ∃x1, . . . ,∃xn, which is
redundant.

4. The Soundness and Completeness of LKg

We now present the soundness and completeness of LKg.

Theorem 4.1: 1. If LKg terminates with success for X,
then X is valid.

2. If LKg terminates with failure for X, then X is invalid.
3. If LKg does not terminate for X, then X is invalid.

Proof. Consider an arbitrary sequent X.

Soundness: Induction on the length of derivatons.
Case 1: X is derived from Y by ∃-Choose. By the in-

duction hypothesis, Y is valid, which implies that X is valid.
Case 2: X is derived from Y by Replicate. By the in-

duction hypothesis, Y is valid. Then, it is easy to see that X
is valid.

Case 3: X is derived from Y by Succ.
In this case, we know that there is no surface occur-

rences of ∀xH(x) in X and ‖X‖ is classically valid. It is then
easy to see that, reversing the propositionalization of ‖X‖
(replacing ⊥ by any formula of the form F[∃xH(x)]) pre-
serves validity. For example, if X is p(a)→ p(a),∃xq(x),



LETTER
551

then ‖X‖ is valid and X is valid as well.
Case 4: X is derived from Y by ∀-Choose.
Thus, there is an occurrence of ∀xH(x) in X. The ma-

chine makes a move by picking up some fresh constant c
not occurring in X. Then, by the induction hypothesis, the
premise is valid. Now consider any interpretation I that
makes the premise true. Then it is easy to see that the con-
clusion is true in I. It is commonly known as “generalization
on constants”.

Completeness: Assume LKg terminates with failure.
We proceed by induction on the length of derivations.
If X is stable, then there should be a LKg-unprovable

sequent Y with the following condition.
Case 1: ∀-Choose: X has the form Γ, F[∀xG(x)], and Y

is Γ, F[G(α)], where α is a new constant not occurring in X.
In this case, Y is a LKg-unprovable sequent, for otherwise X
is LKg-provable. By the induction hypothesis, Y is not true
in some interpretation I. Then it is easy to see that X is not
true in I. Therefore X is not valid.

Next, we consider the cases when X is not stable. Then
there are three cases to consider.

Case 2.1: Fail: In this case, there is no surface occur-
rence of ∃xG(x) and the algorithm terminates with failure.
As X is not stable, ‖X‖ is not classically valid. If we reverse
the propositionalization of ‖X‖ by replacing � by any for-
mula with some surface occurrence of ∀G(x), we observe
that invalidity is preserved. Therefore, X is not valid.

Case 2.2: ∃-Choose: In this case, X has the form
Γ, F[∃xG(x)], and Y(t) is Γ, F[G(t)], where t is a closed
term. In this case, Y(t) is a LKg-unprovable sequent for
any t, for otherwise X is LKg-provable. By the induction
hypothesis, none of Y(t) is valid and thus none of Y(t) is not
true in some interpretation I. Then it is easy to see that X is
not true in I. Therefore X is not valid.

Case 2.3: Replicate: In this case, X has the form
Γ, F[∃xG(x)], and Y is Γ, F[∃xG(x)], F[∃xG(x)]. In this
case, Y is a LKg-unprovable sequent, for otherwise X is
LKg-provable. By the induction hypothesis, Y is not valid
and is not true in some interpretation I. Then it is easy to
see that X is not true in I. Therefore X is not valid.

Now assume LKg is not terminating, because Replicate
occurs infinitely many times. We prove this by contradition.

Assume that X is valid but unprovable. Let Z be an in-
finite multiset of propositional formulas obtained by apply-
ing infinite numbers of Replicate, together with ∃-Choose
and ∀-Choose rules. Then it is easy to see that Z remains
still valid but unprovable. By the compactness theorem on
propositional logic, there is a finite subset Z′ of Z, which is
a valid sequent. Then there must be a step t in the procedure
such that, after t, Z′ is derived. Then it is easy to see that Z′
remains LKg-unprovable. However, as Z′ is valid, it must
be provable by Succ. This is a contradiction and, therefore,
X is not valid.

5. Some Optimizations

Although LKg performs well for valid sequents, it performs
poorly for invalid sequents. For example, it does not even
terminate for the invalid sequent p(a), p(b) ∧ ∃xq(x).

For this reason, what we need is a good heuristic for de-
termining, in a simple yet effective way, whether a sequent is
invalid. In this section, we employ a simple heuristic called
maximum propositionalization which replaces in a sequent
X all ∃-subformulas by �. If X′ is obtained from X by max-
imum propositionalization, then it is easy to observe that if
X′ is invalid, then X is invalid as well.

The deductive system LKg′ uses this heuristic. First,
we need to define some terminology.

1. The max-propositionalization ‖F‖max of a formula F
is the result of replacing in F all ∃-subformulas by �,
and all ∀-subformulas by �. This process naturally ex-
tends to sequents.

2. The min-propositionalization ‖F‖min of a formula F is
the result of replacing in F all ∃-subformulas by⊥, and
all ∀-subformulas by ⊥. This process naturally extends
to sequents.

3. A sequent is said to be max-p-invalid iff its max-
propositionalization is classically invalid. A sequent is
said to be min-p-valid iff its min-propositionalization
is classically valid.

The rules of LKg′
Below, X:stable means that X is stable but not min-p-

valid. stable. Similarly X:unstable means that X is unstable
but not min-p-valid.

Fail

⊥
X: max-p-invalid

∃-Choose

Γ, F[H(t)]

Γ, F[∃xH(x)]:unstable

Replicate

Γ, F[∃xH(x)]:unstable

Γ, F[∃xH(x)], F[∃xH(x)]

Succ

�
X: min-p-valid



552
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

∀-Choose

Γ, F[H(α)]
(α is a new constant)

Γ, F[∀xH(x)]: stable

The heuristic employed in LKg′ is quite simple and
needs to be improved. For example, it does not apply well
to the invalid sequent p(a),∃xp(x). It would be nice to im-
prove our heuristic so that it can apply to a wider class of
invalid sequents.

Acknowledgments

This work was supported by Dong-A University Research
Fund.

References

[1] J.-M. Andreoli, “Logic programming with focusing proofs in linear
logic,” Journal of Logic and Computation, vol.2, no.3, pp.297–347,
1992.

[2] G. Gentzen, “Investigations into Logical Deduction,” The Collected
Papers of Gerhard Gentzen, pp.68–131, 1969.

[3] G. Japaridze, “Introduction to computability logic,” Annals of Pure
and Applied Logic, vol.123, no.1-3, pp.1–99, 2003.

[4] G. Japaridze, “From truth to computability I,” Theoretical Computer
Science, vol.357, no.1-3, pp.100–135, 2006.

[5] G. Japaridze, “Computability logic: A formal theory of interaction,”
ed. D. Goldin, S. Smolka, and P. Wegner, Interactive Computation:
The New Paradigm, pp.183–223, Springer, 2006.

[6] G. Japaridze, “In the beginning was game semantics,” ed. O. Majer,
A.-V. Pietarinen, and T. Tulenheimo, Games: Unifying Logic, Lan-
guage, and Philosophy, pp.249–350, Springer, 2009.

[7] S. Reeves and M. Clarke, Logic for Computer Science, Addison Wes-
ley, 1990.

http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1016/s0168-0072(03)00023-x
http://dx.doi.org/10.1016/j.tcs.2006.03.014

