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An Efficient Learning Algorithm for Regular Pattern Languages
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SUMMARY A regular pattern is a string consisting of constant symbols
and distinct variable symbols. The language of a regular pattern is the set of
all constant strings obtained by replacing all variable symbols in the regular
pattern with non-empty strings. The present paper deals with the learning
problem of languages of regular patterns within Angluin’s query learning
model, which is an established mathematical model of learning via queries
in computational learning theory. The class of languages of regular patterns
was known to be identifiable from one positive example using a polynomial
number of membership queries, in the query learning model. In present
paper, we show that the class of languages of regular patterns is identifiable
from one positive example using a linear number of membership queries,
with respect to the length of the positive example.
key words: pattern language, membership query, query learning, compu-
tational learning theory

1. Introduction

A pattern, introduced by Angluin [3], is a string consisting
of constant symbols and variable symbols. A regular pat-
tern is a pattern in which each variable symbol occurs at
most once. The pattern language of a pattern π is the set
of all strings w consisting of constant symbols such that w
is obtained from π by replacing all variable symbols with
non-empty strings consisting of constant symbols. For ex-
ample, let π1 = xaybaz and π2 = xaybyz be two strings
consisting of constant symbols a, b and variable symbols
x, y, z. The string π1 is a regular pattern. The string π2 is
a pattern but not a regular pattern. For the regular pattern
π3 = axabacy, the string w1 = abbabacbacb is included
in the pattern language of π3, because w1 is obtained from
π3 by replacing variable symbols x and y with non-empty
strings bb and bacb, respectively.

In this paper, we deal with the learning problem of lan-
guages of regular patterns within Angluin’s query learning
model [1], which is an established mathematical model of
learning via queries in computational learning theory. In
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the query learning model, a learning algorithm collects in-
formation about a language to be learned, called a target
language, by accessing oracles that answer specific types of
queries. The query learning model is a mathematical model
of a data mining strategy using queries for large databases
(e.g., [2]). A query as to whether or not an example exists
in the database, which is called a membership query in the
query learning model, is frequently performed in data min-
ing using databases. Hence, to extract characteristic features
from large databases, data mining algorithms that identify
features using fewer membership queries are required. From
this motivation, in this paper, we consider a query learning
algorithm that uses a linear number of membership queries
with respect to the length of a given string, called a positive
example, contained in a target language.

As related work, there are many researches [1], [4]–
[6] about the learning problem of pattern languages in the
same query learning model. Angluin [1] showed that the
class of pattern languages is not identifiable using polyno-
mial numbers of membership queries and restricted equiva-
lence queries. Here, a restricted equivalence query is a call
to an oracle as to whether or not the pattern language derived
by a pattern given as input is equal to the target language.
Because of this result, Marron [4] presented the query learn-
ing setting in which the learner initially receives a positive
example of the target language before starting the process of
asking queries.

We discuss a previous work on the learnability of regu-
lar pattern languages from one positive example using mem-
bership queries. Let π∗ be a regular pattern that gener-
ates the target regular pattern language. Matsumoto and
Shinohara [5] presented a query learning algorithm for iden-
tifying π∗ from one positive example w using O(|w|2) mem-
bership queries, where |w| is the length of w. Their algo-
rithm is as follows. (1) By removing some constant sym-
bols from a given positive example w, a shortest positive
example w′ with |w′| = |π∗| is obtained using O(|w|2) mem-
bership queries. (2) The target regular pattern π∗ is identi-
fied by determining whether or not the i-th symbol of π∗ is a
constant symbol using a membership query for w′i for each
i (1 ≤ i ≤ |w′|), where w′i is a string obtained from w′ by
replacing the i-th symbol of w′ with another symbol.

Moreover, Matsumoto and Shinohara [5] reduced the
number of membership queries to be linear for a non-trivial

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



MATSUMOTO et al.: AN EFFICIENT LEARNING ALGORITHM FOR REGULAR PATTERN LANGUAGES USING ONE POSITIVE EXAMPLE
527

subclass of regular pattern languages. They introduced a
critical pattern, which is a special type of a regular pattern.
They showed that their learning algorithm obtains a shortest
positive example w′ of a regular pattern π∗ from a given pos-
itive example w using O(|w|) membership queries, when π∗
is not a critical pattern. They showed that a non-trivial sub-
class of regular pattern languages is identified from one pos-
itive example using a linear number of membership queries,
with respect to the length of the positive example. The non-
trivial subclass of regular pattern languages is a class of the
languages of regular patterns that are not critical patterns.

In this paper, we show that the full class of regular pat-
tern languages is identifiable from one positive example us-
ing a linear number of membership queries, with respect to
the length of the positive example. We present a query learn-
ing algorithm that is to identify a target regular pattern lan-
guage from a given positive example using a linear number
of membership queries. To identify a target regular pattern
π∗ from a given positive example w using O(|w|) membership
queries, we propose a concept, called the left non-redundant
positive example of π∗ at a position i (1 ≤ i ≤ |π∗|). For a tar-
get pattern π∗, the proposed algorithm determines whether
or not the i-th symbol of π∗ is a constant symbol using O(|w|)
membership queries by making a left non-redundant pos-
itive example of π∗ at i instead of making a shortest pos-
itive example of π∗ obtained by the previous algorithm in
[5]. By using our proposed algorithm, even if a target reg-
ular pattern π∗ is a critical pattern, we exactly identify π∗
from one positive example using a linear number of mem-
bership queries. That is, this result shows that a learnable
class is extended from the subclass of regular pattern lan-
guages in [5] to the full class of regular pattern languages
in the same query learning setting as in [5]. Matsumoto and
Shinohara [5] also considered the learnability of the class of
pattern languages generated by patterns such that each vari-
able symbol occurs at most k times in each pattern for a pos-
itive integer k. But in this paper we focus on the learnability
of the class of regular pattern languages.

As other related work, there are query learning algo-
rithms for identifying the classes of other languages, in-
cluding the regular languages [7], the erasing pattern lan-
guages [8], the languages derived from elementary formal
systems [9], [10], the tree languages derived from tree pat-
terns [11], the tree languages derived from primitive formal
ordered tree systems [12], and the sets of binary decision di-
agrams [13], [14].

This paper is the full version of the paper [15], with
complete definitions and proofs, discussions about the effi-
ciency of the proposed algorithm, and experimental results
of the proposed and previous algorithms.

This paper is organized as follows. In Sect. 2, we in-
troduce a regular pattern, its language and the query learn-
ing model of Angluin [1]. In Sect. 3, by presenting a query
learning algorithm, we show that the full class of regular
pattern languages is exactly learnable from only one posi-
tive example using a linear number of membership queries,
with respect to the length of the positive example. In Sect. 4,

we discuss the efficiency of the proposed algorithm by com-
paring with the previous algorithm in [5] with respect to the
number of membership queries. In Sect. 5, we conclude this
paper and discuss future work.

2. Preliminaries

In this section, we introduce a regular pattern and its lan-
guage. Then, we introduce the query learning model pro-
posed by Angluin [1].

2.1 Regular Pattern and Its Language

Let Σ be a nonempty finite set of constant symbols. Let X
be an infinite set of variable symbols such that Σ ∩ X = ∅
holds. Then, a string on Σ ∪ X is a sequence of symbols in
Σ∪X. Particularly, the string having no symbol is called the
empty string and is denoted by ε. We denote by (Σ ∪ X)∗
the set of all strings on Σ ∪ X and by (Σ ∪ X)+ the set of all
strings on Σ ∪ X except ε, i.e., (Σ ∪ X)+ = (Σ ∪ X)∗ \ {ε}.
A pattern on Σ ∪ X is a string in (Σ ∪ X)+. Note that the
empty string ε is not a pattern on Σ ∪ X. We denote by Σ+

the set of all strings on Σ except ε. A string in Σ+ is called
a constant string. Then, a pattern π on Σ ∪ X is said to be
regular if each variable symbol in X appears at most once in
π. The set of all regular patterns on Σ∪X is denoted byRP �
(Σ∪X)+. Hereafter, we omit Σ and X if they are obvious from
the context. A substitution θ is a mapping from (Σ ∪ X)+

to Σ+ such that (1) θ is a homomorphism with respect to
string concatenation, denoted by ‘·’, that is, for two patterns
π1, π2 ∈ (Σ∪ X)+, θ(π1 · π2) = θ(π1) · θ(π2) holds, and (2) for
each constant symbol a ∈ Σ, θ(a) = a holds. The notation
{x1 := w1, · · · , xn := wn} denotes a substitution that replaces
each variable symbol xi with a constant string wi for i with
1 ≤ i ≤ n, where x1, · · · , xn are mutually distinct variable
symbols. For a pattern π, θ(π) denotes the constant string
obtained from π by replacing variable symbols with constant
strings according to θ. For a pattern π, the pattern language
of π, denoted by L(π), is the set of all constant strings w in
Σ+ such that w is obtained from π by replacing all variable
symbols in π with constant strings, that is, L(π) = {w ∈ Σ+ |
w = θ(π) for some substitution θ}. We define RPL = {L(π) |
π ∈ RP}. A language in RPL is called a regular pattern
language.

Example 1: Let Σ = {a, b} and X = {x, y, z, . . .}. Let
π1 = abxby be a regular pattern on Σ ∪ X. Consider sub-
stitutions θ1 = {x := a, y := a}, θ2 = {x := a, y := aba} and
θ3 = {x := bbab, y := aab}. Then, we have θ1(π1) = ababa,
θ2(π1) = abababa, θ3(π1) = abbbabbaab, and L(π1) =
{ababa, ababb, abbba, abbbb, abaaba, ababba, . . .}.

Next, we prepare some notations on strings. For a
string w ∈ (Σ ∪ X)∗, the length of w, denoted by |w|, is
the number of symbols composing w, e.g., |ε| = 0 and
|abcxay| = 6. For a string w ∈ (Σ ∪ X)+ and a positive
integer i with 1 ≤ i ≤ |w|, we denote by w[i] the i-th symbol
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of w. For two positive integers i, j with 1 ≤ i ≤ j ≤ |w|, we
denote by w[i : j] the substring w[i]w[i + 1] · · ·w[ j]. Note
that w[i : i] = w[i]. Let w be a pattern on Σ ∪ X, a the
empty string ε or a symbol in Σ ∪ X and i a positive inte-
ger with 1 ≤ i ≤ |w|. Then, we denote by w.rep(i, a) the
pattern obtained from w by replacing the i-th symbol of w
with a. If a pattern π contains a variable symbol, we denote
by rmvs(π) the position of the rightmost variable symbol in
π, that is, rmvs(π) = max{i ∈ {1, . . . , |π|} | π[i] is a vari-
able symbol}. Otherwise, we define rmvs(π) = 0. Note that
0 ≤ rmvs(π) ≤ |π|.
Example 2: Let Σ = {a, b, c} and π2 = abcabc ∈ Σ+ be
a pattern. Then, we have π2[2] = b, π2[2 : 4] = bca,
π2.rep(2, a) = aacabc, and π2.rep(2, ε) = acabc.

Example 3: Let Σ = {a, b, c} and X = {x, y, z, . . .}. Let
π2 = abcabc, π3 = axyaxa, and π4 = axybaza be patterns
on Σ ∪ X. Then, we have rmvs(π2) = 0, rmvs(π3) = 5 and
rmvs(π4) = 6.

2.2 Learning Model

Let L be a class consisting of sets of constant strings such
that each set in L has its own representation of finite length.
Let R be the set of representations for all sets of constant
strings in L. For each representation r ∈ R, we denote by
L(r) the set of constant strings that is represented by r. For
example, for a set L of constant strings, a regular pattern π
is a representation of L if L = L(π) holds.

Let L∗ ∈ L be a learning target. A constant string
w ∈ Σ+ is said to be a positive example of L∗ if w ∈ L∗ holds.
In the query learning model presented by Angluin [1], learn-
ing algorithms can access oracles that will answer queries
about the target L∗. In this paper, we consider the mem-
bership query defined as follows. The input is a constant
string w ∈ Σ+. The output is “yes” if w ∈ L∗ holds and
“no” otherwise. We denote by MQ the oracle that answers
membership queries. For a constant string w ∈ Σ+, a nota-
tion MQ(w) denotes the answer of MQ for the membership
query in the case that the input of MQ is w.

Example 4: Let L(abxby) be a learning target. MQ(abaaba)
is “yes”, and MQ(abaaa) is “no”.

A learning algorithmA is said to exactly identify a tar-
get L∗ ∈ L if A outputs a representation r ∈ R satisfying
L(r) = L∗.

3. An Efficient Query Learning Algorithm for Regular
Pattern Languages

In this section, we present a learning algorithm Learn-
ingStringPattern (Algorithm 1) that exactly identifies any
target language in RPL. Let L∗ be a target in RPL and
π∗ a regular pattern in RP such that L∗ = L(π∗) holds. We
show in Theorem 1 that Algorithm LearningStringPattern

Algorithm 1 LearningStringPattern
Input: A constant string w in L(π∗)
Output: A pattern π with L(π) = L(π∗)
1: i := 1, k := 0, vSet := ∅;
2: while i ≤ |w| do
3: w := ShrinkString(w, i, k);
4: k := IdentifyVariable(w, i, k);
5: if k � 0 and k � vSet then
6: vSet := vSet ∪ {k};
7: end if
8: i := i + 1;
9: end while

10: π := w;
11: for all i ∈ vSet do
12: Let x be a new variable symbol that does not appear in π.

13: π := π.rep(i, x);
14: end for
15: output π;

outputs a regular pattern π ∈ RP with L(π) = L(π∗) from
one positive example w using O(|w|) membership queries,
where |Σ| ≥ 2.

In the case of |Σ| = 1, we can easily show that there
exists a learning algorithm that exactly identifies any target
language in RPL from one positive example using a linear
number of membership queries. The learning algorithm is as
follows. Suppose that Σ = {a}. Let w be a constant string on
Σ. We can see that MQ(w) is “yes” if and only if w ∈ L(π∗)
and |w| ≥ |π∗|. If a constant string w is given as a positive
example of L∗, by asking |w|−|π∗|+1 membership queries for
aa · · · a of length k downwardly from k = |w|−1 to |π∗|−1, we
obtain the shortest positive example aa · · · a of length |π∗|. If
the answer of the first membership query of them is “no”,
because the constant string w is already the shortest positive
example, we ask the next membership query for aa · · · a of
length |π∗| + 1. If the answer of the next membership query
is “no”, the target pattern π∗ is w itself. On the other hand,
if the answer of the next membership query is “yes”, for the
shortest positive example aa · · · a of length |π∗|, by replacing
the first symbol a with a variable symbol x ∈ X, we get the
regular pattern π = xa · · · a of length |π∗|. Because |Σ| = 1,
we easily see that L(π) = L(π∗) holds.

Hereafter, in the case of |Σ| ≥ 2, by presenting Algo-
rithm LearningStringPattern (Algorithm 1), we give the fol-
lowing theorem.

Theorem 1: Let L∗ be a target in RPL and π∗ a regular
pattern in RP such that L∗ = L(π∗) holds. Algorithm Learn-
ingStringPattern outputs a regular pattern π with L(π) =
L(π∗) from one positive example w using O(|w|) membership
queries, where |Σ| ≥ 2.

In order to prove this theorem, we give several defini-
tions and lemmas in the following subsections. Finally, we
give a proof of the theorem at the last of this section.

3.1 Left Non-Redundant Positive Example

The next concept plays an important role in Lemmas 1–3.
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Fig. 1 The constant string abababbbba is a left non-redundant positive
example of L(π4) at 5.

Fig. 2 The constant string abababbbba is not a left non-redundant posi-
tive example of L(π4) at 6.

Left Non-Redundant Positive Example: Let π be a regular
pattern, w a positive example of L(π), and i a positive integer
with 1 ≤ i ≤ |π|. We say that w is a left non-redundant
positive example of L(π) at i if there is no positive integer
j with i < j ≤ |w| such that for some substitution ϕ, both
w = ϕ(π) and w[1 : j] = ϕ(π[1 : i]) hold. We denote by
Llnr(π, i) the set of all left non-redundant positive examples
of L(π) at i.

We explain the meaning of a left non-redundant pos-
itive example of L(π) at i. Let w be a left non-redundant
positive example of L(π) at i. For any substitution θ with
w = θ(π), w[1 : i] = θ(π[1 : i]) holds and each variable
symbol in the left side of π[i] is replaced with a constant
symbol. Moreover, for any k (1 ≤ k ≤ i), the constant string
obtained from w by removing the constant symbol at k is
not a positive example of π. In this sense, we say that w is a
non-redundant positive example of L(π) at i.

Example 5: Let π4 = axybaza be a regular pattern. The
constant string abababbbba is a left non-redundant positive
example of L(π4) at 5 (Fig. 1). The reason is as follows. If
abababbbba = θ(π4), then θ is a substitution such that by
applying it to π4, x and y are replaced with b and a respec-
tively. For each k = 1, 2, 3, 4, 5, abababbbba.rep(k, ε) is not
a positive example of L(π4). And there is no positive integer
j with 5 < j ≤ 10 = |abababbbba| such that for some sub-
stitution ϕ, both abababbbba = ϕ(π4) and abababbbba[1 :
j] = ϕ(π4[1 : 5]) = ϕ(axyba) hold. However, the con-
stant string abababbbba is a not left non-redundant positive
example of L(π4) at 6 (Fig. 2), since there exist an integer
j = 9 and a substitution θ = {x := b, y := a, z := bbbb}
such that abababbbba[1 : j] = abababbbb = θ(π4[1 : 6]) =
θ(axybaz) and abababbbba = θ(π4) hold.

3.2 Outline of Algorithm LearningStringPattern

Let π∗ be a target regular pattern. Algorithm Learn-
ingStringPattern (Algorithm 1) calls two procedures
ShrinkString (Procedure 2) and IdentifyVariable (Proce-
dure 3) at lines 3 and 4, respectively. We regard Llnr(π∗, 0)

Procedure 2 ShrinkString
Input: A constant string w in L(π∗), a positive integer i and a nonnegative

integer k
Output: A constant string w in L(π∗)
1: if MQ(w.rep(i, ε)) = “yes” then
2: w := w.rep(i, ε);
3: while MQ(w.rep(i, ε)) = “yes” do
4: w := w.rep(i, ε);
5: end while
6: if k > 0 then
7: while MQ(w.rep(k, ε)) = “yes” do
8: w := w.rep(k, ε);
9: end while

10: end if
11: end if
12: output w;

Procedure 3 IdentifyVariable
Input: A constant string w in L(π∗), a positive integer i and a nonnegative

integer k
Output: a nonnegative integer k = rmvs(π∗[1 : i])
1: Let a be a constant symbol in Σ \ {w[i]};
2: if MQ(w.rep(i, a)) = “yes” then
3: w′ := w.rep(i, a);
4: /* If k = 0, then MQ(w′.rep(k, ε)) is not called. */
5: if k = 0 or MQ(w′.rep(k, ε)) = “no” then
6: k := i;
7: end if

8: end if
9: output k;

as L(π∗). For a positive integer i (1 ≤ i ≤ |π∗|), given a
positive example w in Llnr(π∗, i−1), Procedure ShrinkString
makes a next positive example in Llnr(π∗, i) from w, and then
Procedure IdentifyVariable decides whether or not the i-th
symbol of the new positive example corresponds to a vari-
able symbol. Finally, we obtain a shortest positive example
w in Llnr(π∗, |π∗|) and all indexes of variable symbols in w as
a set vSet.

One of the ideas of our algorithm is the following
proposition, whose proof is obvious.

Proposition 1: Let π∗ = s1x1s2x2 · · · snxnsn+1 be a regular
pattern in RPwhere s1, s2, . . . , sn+1 ∈ Σ∗, and x1, . . . , xn ∈ X
for some integer n. Let w be a constant string in Llnr(π∗, i−1)
for a positive integer i (1 ≤ i ≤ |π∗|), and x1, . . . , xr (0 ≤ r ≤
n) the variable symbols appearing in π∗[1 : i−1]. For conve-
nience, we regard π∗[i : 0] as ε. Because w ∈ Llnr(π∗, i − 1)
holds, any substitution θ with θ(π∗) = w contains {x1 :=
a1, . . . , xr−1 := ar−1, xr := ar, xr+1 := s′r+1, . . . , xn := s′n} as a
subset, where a1, . . . , ar ∈ Σ and s′r+1, . . . , s

′
n ∈ Σ+. Then the

next two statements hold.

1. If w.rep(i, ε) ∈ L(π∗) holds, then there exist n − r + 1
constant strings s′′r , s′′r+1, . . . , s

′′
n such that for the substi-

tution θ′ = {x1 := a1, . . . , xr−1 := ar−1, xr := s′′r , xr+1 :=
s′′r+1, . . . , xn := s′′n }, θ′(π∗) = w.rep(i, ε) holds (Fig. 3).

2. If w.rep(i, a) ∈ L(π∗) holds for a constant symbol
a ∈ Σ \ {w[i]}, then there exist n − r + 1 constant
strings s′′r , s′′r+1, . . . , s

′′
n such that for the substitution
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Fig. 3 Proposition 1 (1). Let π∗ = s1 x1 s2 x2 · · · sn xn sn+1. Let r be the number of variables in π∗[1 :
i − 1], u a prefix of sr+1, and k the position of the rightmost variable symbol in π∗[1 : i], that is,
k = rmvs(π∗[1 : i]) and xr = π∗[k]. We assume that w ∈ Llnr(π∗, i − 1) (depicted in the 2nd line) and
w.rep(i, ε) ∈ L(π∗), i.e., there exists a substitution ϕ = {x1 := v1, . . . , xn := vn} (v1, . . . , vn ∈ Σ+) such
that ϕ(π∗) = w.rep(i, ε) holds (as depicted in the 3rd line). Then, there exists a substitution θ′ = {x1 :=
a1, . . . , xr−1 := ar−1, xr := s′′r , xr+1 := s′′r+1, . . . , xn := s′′n } such that θ′(π∗) = w.rep(i, ε) holds, where
a1, . . . , ar−1 ∈ Σ and s′′r , . . . , s′′n ∈ Σ+ (depicted in the bottom line).

Fig. 4 Proposition 1 (2). Similarly to Proposition 1 (1) (Fig. 3), if w ∈ Llnr(π∗, i) and w.rep(i, a) ∈
L(π∗) hold, then there exists a substitution θ′ = {x1 := a1, . . . , xr−1 := ar−1, xr := s′′r } ∪ ψ such that
θ′(π∗) = w.rep(i, a) holds, where ψ is a substitution for xr+1, . . . , xn.

θ′ = {x1 := a1, . . . , xr−1 := ar−1, xr := s′′r , xr+1 :=
s′′r+1, . . . , xn := s′′n }, θ′(π∗) = w.rep(i, a) holds (Fig. 4).

In Fig. 3, let π∗ = s1x1s2x2 . . . snxnsn+1, r the number
of variable symbols in π∗[1 : i − 1], and k the position
of the rightmost variable symbol in π∗[1 : i], that is, k =
rmvs(π∗[1 : i]) and xr = π∗[k]. We describe the regular pat-
tern π∗, the constant string w, and the strings w.rep(i, ε) with
two possible substitutions. Since w.rep(i, ε) ∈ L(π∗) holds,
there exists a substitution ϕ such that ϕ(π∗) = w.rep(i, ε)
holds as shown at the third line in the figure. From the pre-
condition of Proposition 1 (1), since the constant string w
has the substitution θ such that θ(π∗) = w holds, we con-
struct the new substitution θ′ by combining θ and ϕ as shown
at the forth line.

We assume that w ∈ Llnr(π∗, i−1) holds. If w.rep(i, ε) �
L(π∗), then w ∈ Llnr(π∗, i) holds. Otherwise, that is,
w.rep(i, ε) ∈ L(π∗), w′ ∈ Llnr(π∗, i − 1) and |w′| < |w| hold,
where w′ is the constant string obtained from w.rep(i, ε)
by iteratively deleting the symbol at the position k of the
rightmost variable in π∗[1 : i] while the constant string
after the deletions is in L(π∗), that is, k = rmvs(π∗[1 :
i]), w′ = w.rep(i, ε). rep(k, ε). · · · .rep(k, ε)︸����������������������︷︷����������������������︸

� times (�≥0)

∈ L(π∗) and

w′.rep(k, ε) � L(π∗). By iteratively applying the above
process to a constant string in Llnr(π∗, i − 1), we finally
get the constant string in Llnr(π∗, i). For example, we con-
sider the case of π∗ = xabacy and w = aabacbacc ∈
Llnr(π∗, 4). Note that rmvs(xabacy[1 : 5]) = rmvs(xabac) =
1. Since w.rep(5, ε) = aababacc ∈ L(π∗), we have
w.rep(5, ε).rep(1, ε).rep(1, ε) = babacc ∈ Llnr(π∗, 5). By
modifying this iteration efficiently, we propose Procedure
ShrinkString for computing the constant string in Llnr(π∗, i).
We will give the correctness of the algorithm in Lemma 1.
As for Proposition 1 (2), we describe π∗, w, and w.rep(i, a)
with images of two possible substitutions in Fig. 4. Simi-
larly to Proposition 1 (1), we construct the new substitution
θ′ that satisfies the conclusion of Proposition 1 (2).

Another important idea of our algorithm is the follow-
ing proposition.

Proposition 2: We assume that w ∈ Llnr(π∗, i) and
w.rep(i, a) ∈ L(π∗) hold for a constant symbol a ∈ Σ \ {w[i]},
and that k is a positive integer with 1 ≤ k < i. Then, the
symbol π∗[i] is a variable symbol if and only if the constant
string w′ that is obtained from w.rep(i, a) by deleting the k-
th symbol of w.rep(i, a), i.e., w′ = (w.rep(i, a)).rep(k, ε), is
not a positive example of L(π∗).
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Fig. 5 The ‘only if ’ part of Proposition 2. We assume that w ∈ Llnr(π∗, i) and w.rep(i, a) ∈ L(π∗) hold
for a � a′ = w[i]. If π∗[i] ∈ X and (w.rep(i, a)).rep(k, ε) ∈ L(π∗) hold, a substitution like depicted in the
bottom line exists. It contradicts that w ∈ Llnr(π∗, i) holds.

Fig. 6 The ‘if ’ part of Proposition 2. We assume that w ∈ Llnr(π∗, i) and w.rep(i, a) ∈ L(π∗) hold.
If π∗[i] � X holds, because a is different from w[i], there exists a positive integer j (i < j) such that
the pattern π∗[i : |π∗|] matches (w.rep(i, a))[ j : |w|]. From Proposition 1 (2), we can represent the
substitution like the bottom line. Therefore, (w.rep(i, a)).rep(k, ε) ∈ L(π∗) holds.

We describe the ‘only if ’ part and the ‘if ’ part in Fig. 5
and Fig. 6, respectively. When the symbol π∗[i] is a variable
symbol, i.e., π∗[i] = xr+1, if w′ ∈ L(π∗) holds, there exists a
positive integer j (i < j) such that the pattern π∗[i + 1 : |π∗|]
matches w[ j + 1 : |w|]. It contradicts that w is a left non-
redundant positive example of L(π∗) at i (Fig. 5). When
π∗[i] is not a variable symbol, since a is different from w[i],
there exists a positive integer j (i < j) such that the pat-
tern π∗[i : |π∗|] matches (w.rep(i, a))[ j : |w|]. Therefore
w′ ∈ L(π∗) (Fig. 6). The exact proof of the proposition is
given as a part of Lemma 2 together with the correctness of
Procedure IdentifyVariable (Procedure 3).

3.3 Correctness of Algorithm LearningStringPattern

In this section, we show that our learning algorithm ex-
actly identifies the target pattern by using a linear number
of membership queries.

Lemma 1: Let L∗ be a target in RPL and π∗ a regular
pattern in RP such that L∗ = L(π∗) holds. Let w be a con-
stant string in L(π∗), i a positive integer with 2 ≤ i < |π∗|,
k = rmvs(π∗[1 : i − 1]) the nonnegative integer, and s the

output of Procedure ShrinkString for inputs w, i, and k. If
w is a left non-redundant positive example of L(π∗) at i − 1,
then the constant string s is a left non-redundant positive
example of L(π∗) at i.

Proof. The constant string w is a left non-redundant positive
example of L(π∗) at i − 1, i.e., there is no positive integer j
with i − 1 < j ≤ |w| such that for some substitution ϕ, both
w = ϕ(π) and w[1 : j] = ϕ(π[1 : i − 1]) hold. Thus, for any
substitution θ1 with w = θ1(π∗), w[1 : i−1] = θ1(π∗[1 : i−1])
holds.

Then, at line 1 of Procedure ShrinkString, if
MQ(w.rep(i, ε)) is “no”, for any substitution θ′ with w =
θ′(π∗), we have θ′(π∗[i]) = w[i] regardless of whether π∗[i]
is a variable symbol or not. Therefore, w is a left non-
redundant positive example of L(π∗) at i. Otherwise we con-
sider the following two cases:

1. In the case that π∗[i] is a variable symbol: Let w1 be the
constant string obtained from w after the while-loop of
lines 3–5. It is clear that w[1 : i − 1] = w1[1 : i − 1]
holds. Then, MQ(w1.rep(i, ε)) is “no”.
We will prove that there is no positive integer j with
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Fig. 7 A running example of Procedure ShrinkString when the constant string w = abbabacbacb,
i = 2, and k = 0 are given as inputs. The procedure outputs the constant string ababacbacb.

Fig. 8 A running example of Procedure ShrinkString when the constant string w = ababacbacb,
i = 6, and k = 2 are given as inputs. The procedure outputs the constant string ababacb.

i < j ≤ |w1| such that for some substitution θ, both
w1 = θ(π∗) and w1[1 : j] = θ(π∗[1 : i]) hold. Suppose
that there exist a positive integer j (i < j ≤ |w1|) and a
substitution ϕ1 such that w1 = ϕ1(π∗) and w1[1 : j] =
ϕ1(π∗[1 : i]) hold. Since π∗[i] is a variable symbol,
from the substitutions θ1 and ϕ1, we define a new sub-
stitution ψ1 for π∗ = π∗[1 : i − 1] · π∗[i] · π∗[i + 1 : |π∗|]
in the following way:

ψ1(π∗[1 : i − 1]) := θ1(π∗[1 : i − 1])

= w[1 : i − 1]

= w1[1 : i − 1],

ψ1(π∗[i]) := w1[i : j],

ψ1(π∗[i + 1 : |π∗|]) := ϕ1(π∗[i + 1 : |π∗|])
= w1[ j + 1 : |w1|].

Then, since ψ1(π∗) = w1 and |w1[i : j]| > 1 hold,
MQ(w1.rep(i, ε)) must be “yes” at line 3 of Procedure
ShrinkString. This is a contradiction. Thus w1 is a left
non-redundant positive example of L(π∗) at i.
We will prove that s = w1 holds. If k = 0, then
s = w1 obviously. Thus s is a left non-redundant pos-
itive example of L(π∗) at i. We consider the case of
k > 0, i.e., a variable symbol appears in π∗[1 : i − 1].
Note that 0 < k < i. Suppose that s � w1 holds.
We note that from Proposition 1 (1), it is sufficient
to consider the variable symbol π∗[k] only. By the
while-loop of lines 7–9, MQ(w1.rep(k, ε)) is “yes”. Let
w′1 = w1.rep(k, ε). Since w′1 ∈ L(π∗) holds, there exist
a positive integer � (i ≤ �) and a substitution ϕ′1 such
that w′1[� + 1 : |w′1|] = ϕ′1(π∗[i + 1 : |π∗|]) holds. Since
w′1[� + 1 : |w′1|] = w1[� + 2 : |w1|] holds, ϕ′1(π∗[i + 1 :
|π∗|]) = w1[� + 2 : |w1|] holds. Then we define a new
substitution ψ′1 for π∗ = π∗[1 : i−1]·π∗[i]·π∗[i+1 : |π∗|]
in the following way:

ψ′1(π∗[1 : i − 1]) := θ1(π∗[1 : i − 1])

= w1[1 : i − 1],

ψ′1(π∗[i]) := w1[i : � + 1],

ψ′1(π∗[i + 1 : |π∗|]) := ϕ′1(π∗[i + 1 : |π∗|])
= w1[� + 2 : |w1|].

Since ψ′1(π∗) = w1 and |w1[i : � + 1]| > 1 hold,
MQ(w1.rep(i, ε)) must be “yes”. This is a contradic-
tion. Thus s = w1 holds. Therefore s is a left non-

redundant positive example of L(π∗) at i.

2. In the case that π∗[i] is a constant symbol: If k = 0, ob-
viously w is a left non-redundant positive example of
L(π∗) at i, because π∗[1 : i] consists of constant sym-
bols. We consider the case of k > 0. Let w2 be the con-
stant string obtained after the while-loop of lines 7–9.
It is clear that w[1 : k−1] = w1[1 : k−1] = w2[1 : k−1]
hold. Then, MQ(w2.rep(k, ε)) is “no”.
We will prove that w2 is a left non-redundant positive
example of L(π∗) at i. Suppose that there exist a pos-
itive integer j (i < j ≤ |w2|) and a substitution ϕ2

such that w2 = ϕ2(π∗) and w2[1 : j] = ϕ2(π∗[1 : i])
hold. Since π∗[k + 1 : i] consists of constant symbols,
w2[k + j − i + 1 : j] = ϕ2(π∗[k + 1 : i]) holds. From the
substitutions θ1 and ϕ2, we define a new substitution
ψ2 for π∗ = π∗[1 : k − 1] · π∗[k] · π∗[k + 1 : |π∗|] in the
following way:

ψ2(π∗[1 : k − 1]) := θ1(π∗[1 : k − 1])

= w2[1 : k − 1],

ψ2(π∗[k]) := w2[k : k + j − i],

ψ2(π∗[k + 1 : |π∗|]) := ϕ2(π∗[k + 1 : |π∗|])
= w2[k + j − i + 1 : |w2|].

Since |w2[k : k + j − i]| > 1 holds, MQ(w2.rep(k, ε))
must be “yes”. This is a contradiction. Therefore w2

is a left non-redundant positive example of L(π∗) at i.
Since s = w2 holds, s is a left non-redundant positive
example of L(π∗) at i.

From the above, the constant string s is a left non-redundant
positive example of L(π∗) at i. �

Example 6: Let π∗ = axabacy and i = 2. Then, we have
rmvs(π∗[1 : 1]) = 0. The constant string abbabacbacb is
a left non-redundant positive example of L(π∗) at 1. When
Procedure ShrinkString takes w = abbabacbacb, i = 2, and
k = 0 as inputs, it outputs the constant string ababacbacb
(Fig. 7). The constant string ababacbacb is a left non-
redundant positive example of L(π∗) at 2.

Next, in case i = 6, we have rmvs(π∗[1 : 5]) = 2.
The constant string ababacbacb is a left non-redundant pos-
itive example of L(π∗) at 5. When the procedure takes
w = ababacbacb, i = 6, and k = 2 as inputs, it outputs
the constant string ababacb (Fig. 8). The constant string
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Fig. 9 A running example of Procedure IdentifyVariable when the constant string w = ababacbacb,
i = 2, and k = 0 are given as inputs. The procedure outputs a positive integer 2.

Fig. 10 A running example of Procedure IdentifyVariable when the constant string w = ababacbacb,
i = 7, and k = 2 are given as inputs. The procedure outputs a positive integer 7.

ababacb is a left non-redundant positive example of L(π∗)
at 6.

Lemma 2: Let L∗ be a target in RPL and π∗ a regular pat-
tern in RP such that L∗ = L(π∗) holds. Let w be a con-
stant string in L(π∗), i a positive integer with 2 ≤ i < |π∗|,
and k = rmvs(π∗[1 : i − 1]) the nonnegative integer. If w
is a left non-redundant positive example of L(π∗) at i, then
Procedure IdentifyVariable for inputs w, i, and k correctly
computes the value of rmvs(π∗[1 : i]).

Proof. The constant string w is a left non-redundant positive
example of L(π∗) at i, i.e., there is no positive integer j with
i < j ≤ |w| such that for some substitution θ, both w =
θ(π∗) and w[1 : j] = θ(π∗[1 : i]) hold. Note that for any
substitution θ1 with w = θ1(π∗), w[1 : i] = θ1(π∗[1 : i])
holds. Then, we consider the following two cases:

1. In the case that π∗[i] is a variable symbol: From the
substitution θ1, MQ(w.rep(i, a)) is “yes”, where a ∈
Σ \ {w[i]}. Let w1 be the constant string obtained from
w at line 3 of Procedure IdentifyVariable. It is clear
that w[1 : i − 1] = w1[1 : i − 1] holds. If k = 0 holds,
i.e., rmvs(π∗[1 : i − 1]) = 0, obviously k is updated
to be i. Otherwise k > 0 holds, i.e., rmvs(π∗[1 : i −
1]) > 0. Suppose that MQ(w1.rep(k, ε)) is “yes” at
line 5 of IdentifyVariable. Since w1.rep(k, ε) ∈ L(π∗)
holds (as depicted in the fifth line of Fig. 5), there exist
a positive integer j (i < j) and a substitution ϕ1 such
that w1[1 : j] = ϕ1(π∗[1 : i]) and w1 = ϕ1(π∗) hold.
Since w[1 : i − 1] = w1[1 : i − 1] and w[ j + 1 : |w|] =
w1[ j + 1 : |w1|] hold, we define a substitution ψ1 for
π∗ = π∗[1 : i− 1] · π∗[i] · π∗[i+ 1 : |π∗|] in the following
way (as depicted in the bottom line of Fig. 5):

ψ1(π∗[1 : i − 1]) := θ1(π∗[1 : i − 1])

= w[1 : i − 1],

ψ1(π∗[i]) := w[i : j],

ψ1(π∗[i + 1 : |π∗|]) := ϕ1(π∗[i + 1 : |π∗|])
= w[ j + 1 : |w|].

This contradicts that w is a left non-redundant positive
example of L(π∗) at i. Therefore MQ(w1.rep(k, ε)) is
“no” at line 5 of IdentifyVariable, and then k is updated
to be i.

2. In the case that π∗[i] is a constant symbol: If k = 0,
i.e., rmvs(π∗[1 : i − 1]) = 0, then MQ(w.rep(i, a))
is “no”, and then k is not updated. We assume that
MQ(w.rep(i, a)) is “yes”, where a ∈ Σ \ {w[i]}. Let

w2 be the constant string obtained from w at line 3
of Procedure IdentifyVariable. Since a � w[i] holds,
we have a � π∗[i]. Therefore, there exist a posi-
tive integer j (i < j) and a substitution ϕ2 such that
w2[1 : j] = ϕ2(π∗[1 : i]) and w2 = ϕ2(π∗) hold. Since
π∗[i] = w[i] � a = w2[i] holds, by using θ1 and ϕ2, we
construct a substitution ψ2 such that w2[1 : k − 1] =
ψ2(π∗[1 : k − 1]), w2[k : k + j − i] = ψ2(π∗[k]) and
w2 = ψ2(π∗) hold (as depicted in the bottom line of
Fig. 6). Thus MQ(w2.rep(k, ε)) is “yes” at line 5 of
IdentifyVariable. Therefore k is not updated.

From the above, if π∗[i] is a variable symbol, then k is
updated. Otherwise, k is not updated. Thus, Procedure
IdentifyVariable correctly computes the value of
rmvs(π∗[1 : i]). �

Example 7: Let π∗ = axabacy and i = 2. Then, we have
rmvs(π∗[1 : 1]) = 0. The constant string ababacbacb is
a left non-redundant positive example of L(π∗) at 2. When
Procedure IdentifyVariable takes w = ababacbacb, i = 2,
and k = 0 as inputs, it outputs a positive integer 2 (Fig. 9). It
is clear that rmvs(π∗[1 : 2]) = rmvs(ax) = 2.

Next, in the case of i = 7, we have rmvs(π∗[1 : 6]) = 2.
The constant string ababacb is a left non-redundant pos-
itive example of L(π∗) at 7. When the procedure takes
w = ababacb, i = 7, and k = 2 as inputs, it outputs a pos-
itive integer 7 (Fig. 10). It is clear that rmvs(π∗[1 : 7]) =
rmvs(axabacy) = 7.

Lemma 3: Let L∗ be a target in RPL and π∗ a regular
pattern in RP such that L∗ = L(π∗) holds. Let wi and ki

(1 ≤ i ≤ |π∗|) be the constant string w and nonnegative inte-
ger k after the i-th while-loop of lines 2–9 finishes in Algo-
rithm LearningStringPattern. For any positive integer i with
1 ≤ i ≤ |π∗|, the constant string wi is a left non-redundant
positive example of L(π∗) at i and ki = rmvs(π∗[1 : i]) holds.

Proof. The proof is by the induction on the number of iter-
ations i ≥ 1 of the while-loop of lines 2–9.

We consider the case of i = 1. The constant string w1

is the output of Procedure ShrinkString for inputs w, i =
1, and k = 0. The nonnegative integer k1 is the output of
Procedure IdentifyVariable for inputs w1, i = 1, and k = 0.
Thus obviously w1 is a left non-redundant positive example
of L(π∗) at 1 and k1 = rmvs(π∗[1 : 1]) holds.

We assume that for any i (2 ≤ i < |π∗|), the statement
holds after the (i − 1)-th while-loop. By the inductive hy-
pothesis, wi−1 is a left non-redundant positive example of
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Table 1 A running example of Algorithm LearningStringPattern identifying L(axabacy) when the
positive example w0 = abbabacbacb is given as input.

i Procedure output vSet

1
ShrinkString(abbabacbacb, 1, 0) w1 = abbabacbacb ∅
IdentifyVariable(abbabacbacb, 1, 0) k1 = 0 ∅

2
ShrinkString(abbabacbacb, 2, 0) w2 = ababacbacb ∅ (Fig. 7)

IdentifyVariable(ababacbacb, 2, 0) k2 = 2 {2} (Fig. 9)

3
ShrinkString(ababacbacb, 3, 2) w3 = ababacbacb {2}
IdentifyVariable(ababacbacb, 3, 2) k3 = 2 {2}

4
ShrinkString(ababacbacb, 4, 2) w4 = ababacbacb {2}
IdentifyVariable(ababacbacb, 4, 2) k4 = 2 {2}

5
ShrinkString(ababacbacb, 5, 2) w5 = ababacbacb {2}
IdentifyVariable(ababacbacb, 5, 2) k5 = 2 {2}

6
ShrinkString(ababacbacb, 6, 2) w6 = ababacb {2} (Fig. 8)

IdentifyVariable(ababacb, 6, 2) k6 = 2 {2}
7

ShrinkString(ababacb, 7, 2) w7 = ababacb {2}
IdentifyVariable(ababacb, 7, 2) k7 = 7 {2, 7} (Fig. 10)

vSet = {2, 7} a new variable symbol pattern

2 x1 ax1abacb = ababacb.rep(2, x1)

7 x2 ax1abacx2 = ax1abacb.rep(7, x2)

The regular pattern ax1abacx2 is output by Algorithm LearningStringPattern.

L(π∗) at i − 1 and ki−1 = rmvs(π∗[1 : i − 1]) holds. Then
from Lemma 1, wi is a left non-redundant positive example
of L(π∗) at i. Since wi is a left non-redundant positive ex-
ample of L(π∗) at i and ki−1 = rmvs(π∗[1 : i − 1]) holds,
from Lemma 2, ki = rmvs(π∗[1 : i]) holds. Thus, for any i
(2 ≤ i < |π∗|), the statement holds after the i-th while-loop.

In particular, for i = |π∗| − 1, wi is a left non-redundant
positive example of L(π∗) at i and ki = rmvs(π∗[1 : i]) holds.
For i = |π∗|, we show that the statement holds. In the case
that π∗[|π∗|] is a variable symbol, obviously |w|π∗|| = |π∗| and
w|π∗| ∈ L(π∗) hold. Thus w|π∗| is a left non-redundant positive
example of L(π∗) at |π∗|. Since |w|π∗|| = |π∗| and w|π∗| ∈ L(π∗)
hold, we have |π∗| = rmvs(π∗). In the case that π∗[|π∗|] is
a constant symbol, in a similar way, we show that w|π∗| is
a left non-redundant positive example of L(π∗) at |π∗| and
k|π∗| = rmvs(π∗) holds.

Therefore we conclude that the statement holds for all
i (1 ≤ i ≤ |π∗|). �

Example 8: In Table 1, when the constant string w =
abbabacbacb is given to Algorithm LearningStringPattern
as a positive example, we write constant strings w1, . . . , w7

output by Procedure ShrinkString and nonnegative integers
k1, . . . , k7 output by Procedure IdentifyVariable. At last, the
constant string ababacb is obtained after the loop of lines 2–
9 of Algorithm LearningStringPattern.

From Lemmas 1, 2 and 3, we prove Theorem 1 as fol-
lows.

Proof of Theorem 1. From Lemma 3, the while-loop of
lines 2–9 in Algrithm LearningStringPattern is repeated at
|π∗| times, and |w|π∗|| = |π∗| holds, where w|π∗| is the constant
string after the |π∗|-th while-loop of lines 2–9 finishes in Al-
gorithm LearningStringPattern. From Lemmas 2 and 3, the
set vSet in Algorithm LearningStringPattern equals the set

{i ∈ {1, . . . , |π∗|} | π∗[i] ∈ X} of positive integers. Thus Algo-
rithm LearningStringPattern outputs a regular pattern πwith
L(π) = L(π∗).

At the i-th while-loop of lines 2–9, let ni be the num-
ber of constant symbols removed in Procedure ShrinkString.
Then, the procedure uses ni + 2 membership queries. At
the i-th iteration, Procedure IdentifyVariable uses at most
two membership queries. The while-loop of lines 2–9 to-

tally uses at most
|π∗|∑
i=1

(ni + 4) membership queries. Since

|π∗|∑
i=1

ni ≤ |w| and |π∗| ≤ |w| hold,

|π∗|∑
i=1

(ni + 4) ≤ 4 · |π∗| +
|π∗|∑
i=1

ni ≤ 4 · |w| + |w| = 5 · |w|.

Thus, Algorithm LearningStringPattern uses O(|w|) mem-
bership queries. �

4. Discussion

In this section, we discuss the efficiency of the proposed
query learning algorithm LearningStringPattern and its ap-
plications.

4.1 Efficiency of Algorithm LearningStringPattern

We discuss the efficiency of LearningStringPattern by com-
paring with the previous query learning algorithm, which is
presented in [5] and denoted by prevAlgorithm.

We briefly explain prevAlgorithm that exactly iden-
tifies a target regular pattern language from one positive
example w using O(|w|2) membership queries. Algorithm
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Fig. 11 A running example of Procedure Shrink that is called by prevAlgorithm when the string
w = abbabacbacb is given as input. Procedure Shrink uses 11 (= |w|) membership queries and outputs
the string abababacb, which is not a shortest positive example of π∗, where π∗ = axabacy.

prevAlgorithm consists of the following two phases, called
a shrinking phase and an identifying phase. In the shrinking
phase, Algorithm prevAlgorithm makes a shortest positive
example w′ using Procedure Shrink. Procedure Shrink re-
peatedly removes w[i] for all i (1 ≤ i ≤ |w|) if w.rep(i, ε) is
a positive example. Procedure Shrink uses |w| membership
queries. However, Procedure Shrink does not always out-
put a shortest positive example. Therefore, in the shrinking
phase, Algorithm prevAlgorithm makes a shortest positive
example w′ using O(|w|2) membership queries. Then, for the
shortest positive example w′, in the identifying phase, Algo-
rithm prevAlgorithm identifies the positions at which vari-
able symbols occur in the pattern that generates the target
language using |w′| membership queries. Thus, for a posi-
tive example w, Algorithm prevAlgorithm identifies the tar-
get pattern language using O(|w|2) membership queries.

Matsumoto and Shinohara [5] introduced a critical reg-
ular pattern, which is a regular pattern having a constant
symbol p such that there exists a constant string w satisfying
the following conditions. (1) p is a prefix of w. (2) p does
not appear in w[2 : |w|]. (3) p appears in a constant string
obtained by removing appropriate strings from w[2 : |w|].
For a positive example w of a critical pattern π∗ as input,
Procedure Shrink does not always output a shortest positive
example of π∗.

Example 9: Since there exist the constant strings p =
abac and w = abacbac satisfying the above three condi-
tions, the pattern π∗ = axabacy is a critical regular pat-
tern. For the critical regular pattern π∗ and a positive ex-
ample w = abbabacbacb, Fig. 11 shows a running example
of Procedure Shrink. Procedure Shrink outputs the string
abababacb, which is not a shortest positive example. Algo-
rithm prevAlgorithm calls Procedure Shrink once to check
whether or not w′ is a shortest positive example. Then,
prevAlgorithm calls Procedure Shrink three times to make
w′ = ababacb, which is a shortest positive example, from w.

If a target regular pattern is critical, to make a short-
est positive example in Procedure Shrink of Algorithm
prevAlgorithm, the given positive example needs to be re-
peatedly shrunk several times. On the other hand, Algorithm
LearningStringPattern makes a shortest positive example by
repeatedly shrinking a non-redundant positive example at

the index i obtained from a given positive example w while
shifting i from 1 to |w|. Hence, even if a target regular pat-
tern is critical, LearningStringPattern makes a shortest pos-
itive example in O(|w|) time. That is, LearningStringPattern
exactly identifies any target regular pattern language more
efficiently than Algorithm prevAlgorithm.

We implemented both algorithms LearningStringPat-
tern and prevAlgorithm in Python and compared the num-
bers of membership queries of both algorithms. Experi-
mental results show that the number of membership queries
used in LearningStringPattern is nearly equal to that of
prevAlgorithm except for critical regular pattern. Let π1∗
be the critical regular pattern xabacyabacbacdadz. Ta-
ble 2 (resp. Fig. 12) shows a running example of Learn-
ingStringPattern (resp. prevAlgorithm) that identifies the
target regular pattern language L(π1∗) when the positive ex-
ample eabaceabacbacdadbacbacdade ∈ L(π1∗) is given as
input.

LearningStringPattern used 46 membership queries,
but prevAlgorithm used 104 membership queries. The
reason why the number of membership queries used in
prevAlgorithm is larger than that of LearningStringPattern
is that prevAlgorithm calls Procedure Shrink four times
to obtain a shortest positive example. Moreover, let π2∗ be
the critical regular pattern x1abacx2abacbacdadx3abac f ab
acbacdadbacbacdadeaex4 and w the positive example f ab
ac f abacbacdadbacbacdad f abac f abacbacdadbac f bacdad
eaebac f abacbacdadbacbacdadeae f ∈ L(π2∗). Algorithm
prevAlgorithm used 348 membership queries to exactly
identify the target regular pattern language L(π2∗), when
w is given as input (see Fig. 13). On the other hand,
LearningStringPattern used 130 membership queries to ex-
actly identify L(π2∗) when w is given as input. These ex-
perimental results indicate that, as the number of member-
ship queries increases to obtain a shortest positive exam-
ple, the difference in the number of membership queries be-
tween LearningStringPattern and prevAlgorithm increases.
Hence, it is shown that LearningStringPattern exactly iden-
tifies more efficiently than Algorithm prevAlgorithm.

4.2 Practical Applications of Learning Regular Pattern
Languages

Regular patterns are widely used as knowledge representa-
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Table 2 A running example of Algorithm LearningStringPattern identifying L(xabacyabacbacdadz)
when the positive example eabaceabacbacdadbacbacdade is given as input.

i k Variables Procedure w MQ Count

1 0 {} ShrinkString eabaceabacbacdadbacbacdade.rep(1, ε) = abaceabacbacdadbacbacdade no 1
IdentifyVariable eabaceabacbacdadbacbacdade.rep(1, a) = aabaceabacbacdadbacbacdade yes 2

2 1 {1} ShrinkString eabaceabacbacdadbacbacdade.rep(2, ε) = ebaceabacbacdadbacbacdade no 3
IdentifyVariable eabaceabacbacdadbacbacdade.rep(2, b) = ebbaceabacbacdadbacbacdade no 4

3 1 {1} ShrinkString eabaceabacbacdadbacbacdade.rep(3, ε) = eaaceabacbacdadbacbacdade no 5
IdentifyVariable eabaceabacbacdadbacbacdade.rep(3, a) = eaaaceabacbacdadbacbacdade no 6

4 1 {1} ShrinkString eabaceabacbacdadbacbacdade.rep(4, ε) = eabceabacbacdadbacbacdade no 7
IdentifyVariable eabaceabacbacdadbacbacdade.rep(4, b) = eabbceabacbacdadbacbacdade no 8

5 1 {1} ShrinkString eabaceabacbacdadbacbacdade.rep(5, ε) = eabaeabacbacdadbacbacdade no 9
IdentifyVariable eabaceabacbacdadbacbacdade.rep(5, a) = eabaaeabacbacdadbacbacdade no 10
ShrinkString eabaceabacbacdadbacbacdade.rep(6, ε) = eabacabacbacdadbacbacdade no 11

6 1 {1}
IdentifyVariable

eabaceabacbacdadbacbacdade.rep(6, a) = eabacaabacbacdadbacbacdade yes 12
eabacaabacbacdadbacbacdade.rep(1, ε) = abacaabacbacdadbacbacdade no 13

7 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(7, ε) = eabacebacbacdadbacbacdade no 14
IdentifyVariable eabaceabacbacdadbacbacdade.rep(7, b) = eabacebbacbacdadbacbacdade no 15

8 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(8, ε) = eabaceaacbacdadbacbacdade no 16
IdentifyVariable eabaceabacbacdadbacbacdade.rep(8, a) = eabaceaaacbacdadbacbacdade no 17

9 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(9, ε) = eabaceabcbacdadbacbacdade no 18
IdentifyVariable eabaceabacbacdadbacbacdade.rep(9, b) = eabaceabbcbacdadbacbacdade no 19

10 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(10, ε) = eabaceababacdadbacbacdade no 20
IdentifyVariable eabaceabacbacdadbacbacdade.rep(10, a) = eabaceabaabacdadbacbacdade no 21

11 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(11, ε) = eabaceabacacdadbacbacdade no 22
IdentifyVariable eabaceabacbacdadbacbacdade.rep(11, a) = eabaceabacaacdadbacbacdade no 23

12 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(12, ε) = eabaceabacbcdadbacbacdade no 24
IdentifyVariable eabaceabacbacdadbacbacdade.rep(12, b) = eabaceabacbbcdadbacbacdade no 25

13 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(13, ε) = eabaceabacbadadbacbacdade no 26
IdentifyVariable eabaceabacbacdadbacbacdade.rep(13, a) = eabaceabacbaadadbacbacdade no 27

14 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(14, ε) = eabaceabacbacadbacbacdade no 28
IdentifyVariable eabaceabacbacdadbacbacdade.rep(14, a) = eabaceabacbacaadbacbacdade no 29

15 6 {1, 6} ShrinkString eabaceabacbacdadbacbacdade.rep(15, ε) = eabaceabacbacddbacbacdade no 30
IdentifyVariable eabaceabacbacdadbacbacdade.rep(15, b) = eabaceabacbacdbdbacbacdade no 31

eabaceabacbacdadbacbacdade.rep(16, ε) = eabaceabacbacdabacbacdade yes 32
eabaceabacbacdabacbacdade.rep(16, ε) = eabaceabacbacdaacbacdade no 33
eabaceabacbacdabacbacdade.rep(6, ε) = eabacabacbacdabacbacdade yes 34
eabacabacbacdabacbacdade.rep(6, ε) = eabacbacbacdabacbacdade yes 35
eabacbacbacdabacbacdade.rep(6, ε) = eabacacbacdabacbacdade yes 36

16 6 {1, 6} ShrinkString eabacacbacdabacbacdade.rep(6, ε) = eabaccbacdabacbacdade yes 37
eabaccbacdabacbacdade.rep(6, ε) = eabacbacdabacbacdade yes 38
eabacbacdabacbacdade.rep(6, ε) = eabacacdabacbacdade yes 39
eabacacdabacbacdade.rep(6, ε) = eabaccdabacbacdade yes 40
eabaccdabacbacdade.rep(6, ε) = eabacdabacbacdade yes 41
eabacdabacbacdade.rep(6, ε) = eabacabacbacdade no 42

IdentifyVariable eabacdabacbacdade.rep(16, a) = eabacdabacbacdaae no 43
ShrinkString eabacdabacbacdade.rep(17, ε) = eabacdabacbacdad no 44

17 6 {1, 6}
IdentifyVariable

eabacdabacbacdade.rep(17, a) = eabacdabacbacdada yes 45
eabacdabacbacdade.rep(6, ε) = eabacabacbacdade no 46

{1, 6, 17} x1abacx2abacbacdadx3

Fig. 12 A running example of Algorithm PrevAlgorithm identifying L(xabacyabacbacdadz) when

the positive example eabaceabacbacdadbacbacdade is given as input. The notation
∗
=⇒ shows the flow

of some positive examples made in this algorithm. Constant strings in bold face are constant strings
appearing in the regular pattern.

tions in various fields. For example, a set of regular pat-
terns in k-mmg [16] and a decision tree on regular patterns
in machine learning systems BONSAI [17] and BONSAI

Garden [18] were used as knowledge representations ac-
quired from Protein Information Resource (PIR) [20] and
NIH genetic sequence database GenBank [19]. Moreover, a
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Fig. 13 A running example of Algorithm PrevAlgorithm identifying
L(x1abacx2abacbacdadx3abacfabacbacdadbacbacdadeaex4) when the positive example
f abacf abacbacdadbacbacdadf abacfabacbacdadbacbacdadeaebacfabacbacdadbacbacdadeaef
is given as input.

phrase-based pattern [21], which is formulated by a regular
pattern, was proposed for text categorization and sentiment
analysis.

Active learning, which is a framework introduced by
Angluin [7], applies to interactive data mining tools [22]–
[24], quantum algorithms [25]–[27] and so on. Angluin
showed that the class of regular languages, each of which
is characterized by the set of strings accepted by a deter-
ministic finite automaton, is learned from a Minimally Ad-
equate Teacher (MAT) answering membership and equiva-
lence queries. For a membership query with respect to a
string w, the teacher answers “yes” if w is the target lan-
guage, but “no” if not. For an equivalence query with re-
spect to a candidate language L, the teacher answers “yes”
if L equals the target Language L∗, but provides a counterex-
ample, which is a string w∗ from the symmetric difference of
L∗ and L, i.e., w∗ ∈ (L \ L∗) ∪ (L∗ \ L), if not. Active au-
tomata learning [7] can be considered to be a key technology
for dealing with black-box systems, which can be observed
externally but no or little knowledge about the internal work-
ings of which is available. In active automata learning, ob-
servations for block-box systems can be realized by mem-
bership queries and equivalence queries. For the above con-
sidered application contexts, membership queries may often
be realized via testing in practice, but equivalence queries
are usually unrealistic. Therefore, we use only membership
queries to identify a target language. Since it is known [4]
that a target language cannot be identify by only member-
ship queries, we adopt one positive example and member-
ship query in the scenario to identify a target language. In
active learning systems, minimizing the number of required
membership queries is the key to learning efficiency. Since
a regular pattern language is a regular language, our re-
sults may make many practical applications based on ac-
tive automata learning more efficient. The class of pattern
languages and that of regular languages are incomparable,
because a pattern language generated by a pattern having
variable symbols occurred twice or more is not a regular
language. Therefore, if our result can be expanded to pat-
tern languages, an efficient active learning system that learns
more expressive knowledge may be designed.

5. Conclusion

In this paper, by providing a query learning algorithm for
regular pattern languages, we have proved that the class
of regular pattern languages is exactly learnable from only
one positive example using a linear number of membership
queries. This result shows that the number of membership
queries is reduced to be linear with respect to the length of
the positive example. We implemented the proposed algo-
rithm and evaluated its efficiency.

We introduced a term tree pattern, which is a rooted
ordered tree pattern that consists of ordered tree structures
with edge labels and structured variables with labels, in
[28]. Moreover, we introduced a primitive formal ordered
tree system (pFOTS) as a formal system defining ordered
tree languages [12]. For a pFOTS program Γ as background
knowledge, we showed in [12] that the class of tree lan-
guages derived using Γ and one primitive graph rewriting
rule is exactly learnable from one positive example using
a polynomial number of membership queries. As future
work, we will consider query learning algorithms for ex-
actly identifying the class of tree languages generated by
term tree patterns and the class of tree languages generated
by from pFOTSs as background knowledge and primitive
graph rewriting rules, from one positive example using a lin-
ear number of membership queries with respect to the num-
ber of edges of the positive example. As applications of the
proposed algorithm, we are planning to design efficient in-
teractive data mining tools acquiring knowledge that can be
modeled using regular patterns from real-world databases.
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