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Generalized Register Context-Free Grammars
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SUMMARY Register context-free grammars (RCFG) is an extension
of context-free grammars to handle data values in a restricted way. In
RCFG, a certain number of data values in registers are associated with each
nonterminal symbol and a production rule has the guard condition, which
checks the equality between the content of a register and an input data
value. This paper starts with RCFG and introduces register type, which is a
finite representation of a relation among the contents of registers. By using
register type, the paper provides a translation of RCFG to a normal form
and ε-removal from a given RCFG. We then define a generalized RCFG
(GRCFG) where an arbitrary binary relation can be specified in the guard
condition. Since the membership and emptiness problems are shown to be
undecidable in general, we extend register type for GRCFG and introduce
two properties of GRCFG, simulation and progress, which guarantee the
decidability of these problems. As a corollary, these problems are shown
to be EXPTIME-complete for GRCFG with a total order over a dense set.
key words: register context-free grammar, register type, computational
complexity, data word, data language

1. Introduction

This paper focuses on register context-free grammars (ab-
breviated as RCFG), which were introduced by Cheng and
Kaminsky in 1998 [5]. Recently, register automata (abbrevi-
ated as RA) [9] have been paid attention [10]–[12] as a core
computational model of query languages for structured doc-
uments with data values such as XPath. For example, XPath
can specify both a regular pattern of node labels (e.g., ele-
ment names) and a constraint on data values (e.g., attribute
values and PCDATA) in a tree representing an XML doc-
ument. While RA have a power sufficient for expressing
regular patterns on paths of a tree or a graph, it cannot rep-
resent tree patterns (or patterns over branching paths) that
can be represented by some query languages such as XPath.
Hence, a computational model that can represent both local
tree patterns and constraints on data values is expected.

RCFG [5] is defined as an extension of CFG in a similar
way to extending finite automata to RA. In a derivation of a
k-RCFG, k data values are associated with each occurrence
of a nonterminal symbol (called an assignment) and a pro-
duction rule can be applied only when the guard condition
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of the rule, which is a Boolean combination of the equality
check between an input data value and the data value in a
register, is satisfied. In [5], properties of RCFG were shown
including the decidability of the membership and empti-
ness problems, and the closure properties. In our previous
study [16], the membership problem for RCFG, ε-rule free
RCFG and growing RCFG are shown EXPTIME-complete,
PSPACE-complete and NP-complete, respectively, and the
emptiness problem for these classes are shown EXPTIME-
complete.

In this paper, we first show that ε-rules can be removed
from a given RCFG without changing the generated lan-
guage. To prove this property, we introduce a notion called
register type, which is the quotient of registers by the equiv-
alence classes induced by equality relation among the con-
tents of registers. Next, we move to the main topic of this
paper, a generalization of RCFG abbreviated as GRCFG.
As we mentioned, what an RCFG (and also an RA) can do
when applying a rule is the equality check between the con-
tent of a register and an input data value. Then, we come to
a natural question that what happens if we allow the check
of an arbitrary relation (such as the total order on numbers).
Generally, basic problems including membership and empti-
ness become undecidable even if the relations used in the
guard conditions are all decidable. Hence, we want to intro-
duce appropriate conditions for such extensions of RCFG
to keep the decidability and complexity of those problems
unchanged. For this aim, we extend the above mentioned
register type for an arbitrary relation and then we introduce
two properties, namely, simulation and progress. We then
provide an example of decidable relations that satisfy the
simulation property but do not satisfy the progress property,
and the membership and emptiness are still undecidable. We
show that the emptiness and membership become decidable
and ε-removal is possible for GRCFG that have both the
simulation and progress properties. As a corollary, we show
that those problems are decidable for GRCFG with a total
order on a dense set.

Related work Register automata (RA) was proposed in
[9] as finite-memory automata where they show that the
membership and emptiness problems are decidable, and
the class of languages recognized by RA are closed un-
der union, concatenation and Kleene-star. Later, the com-
putational complexity of the above two problems are ana-
lyzed in [6], [15]. In [5], register context-free grammars
(RCFG) as well as pushdown automata over an infinite al-
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phabet were introduced and the equivalence of the two mod-
els were shown. Also, the decidability of membership and
emptiness problems and the closure under union, concate-
nation, Kleene-star were shown in [5]. Extension of RA to
a totally ordered set was discussed in [1], [8], which is also
provided in RCFG in the last section of this paper.

There have been many studies on other extensions of
finite models to deal with data values in restricted ways.
Other automata for data words: As extensions of finite au-
tomata other than RA, data automata [4], pebble automata
(PA) [13] and nominal automata (NA) [3] are known. Libkin
and Vrgoč [12] argue that register automata (RA) is the only
model that has efficient data complexity for membership
among the above mentioned formalisms. Neven, et al. con-
sider variations of RA and PA, which are either one way
or two ways, deterministic, nondeterministic or alternating.
They show inclusion and separation relationships among
these automata, FO(∼, <) and EMSO(∼, <), and give the
answer to some open problems including the undecidabil-
ity of the universality problem for RA [14]. Nominal (G-
)automata (NA) is defined by a data set with symmetry and
finite supports, and properties of NA are investigated includ-
ing Myhill-Nerode theorem, closure and determinization in
[3]. (Usual) RA with equality and RA with total order can
be regarded as NA where the data sets have equality symme-
try and total order symmetry, respectively. In [3], nominal
CFG is also introduced but decidability of related problems
is not discussed. Finiteness of orbits and that of register
types in this paper may be related, but deeper observation is
left as future study. LTL with freeze quantifier: Linear tem-
poral logic (LTL) was extended to LTL↓ with freeze quanti-
fier [6], [7]. The relationship among subclasses of LTL↓ and
RA as well as the decidability and complexity of the satis-
fiability (nonemptiness) problems are investigated [6]. They
especially showed that the emptiness problem for (both non-
deterministic and deterministic) RA are PSPACE-complete.
Two-variable logics with data equality: It is known that two-
variable FO2(<,+1) where < is the ancestor-descendant re-
lation and +1 is the parent-child relation is decidable and
corresponds to Core XPath. The logic was extended to those
with data equality. It was shown in [2] that FO2(∼, <,+1)
with data equality ∼ is decidable on data words. Note that
FO2(∼, <,+1) is incomparable with LTL↓ of [6].

This paper is an extended version of [17] by adding
non-trivial formal proofs, revising some important concepts
including simulation and progress and showing some unde-
cidability results when these two properties do not hold.

2. Register Context-Free Grammars

Let N0 = {0, 1, 2, . . .} be the set of natural numbers in-
cluding 0. We assume an infinite set D of data values as
well as a finite alphabet Σ. For a given k ∈ N0 specify-
ing the number of registers, a mapping θ : [k] → D is
called an assignment (of data values to k registers) where
[k] = {1, 2, . . . , k}. We assume that a data value ⊥ ∈ D is
designated as the initial value of a register. Let Θk denote

the collection of assignments to k registers. For θ, θ′ ∈ Θk,
we write θ′ = θ[i← d] if θ′(i) = d and θ′( j) = θ( j) for j � i.
Let Fk denote the set of guard expressions over k registers
defined by ψ := tt | x=i | ¬ψ | ψ∨ ψ where xi ∈ {x1, . . . , xk}.
Let ff, x�i , ψ1 ∧ ψ2 denote ¬tt,¬x=i ,¬(¬ψ1 ∨¬ψ2), respec-
tively. The description length of a guard expression ψ, de-
noted as ‖ψ‖, is defined as usual where ‖x=i ‖ = 1+ log k. For
θ ∈ Θk, d ∈ D and ψ ∈ Fk, the satisfaction relation θ, d |= ψ
is defined as θ, d |= x=i iff θ(i) = d and is recursively defined
for ¬ and ∨ in a usual way.

For a finite alphabet Σ and a set D of data values dis-
joint from Σ, a data word over Σ × D is a finite sequence of
elements of Σ×D and a data language over Σ×D is a subset
of (Σ × D)∗. |β| denotes the cardinality of β if β is a set and
the length of β if β is a finite sequence.

For k ∈ N0, a k-register context-free grammar (k-
RCFG) over Σ and D is a triple G = (V,R, S ) where

• V is a finite set of nonterminal symbols (abbreviated as
nonterminals) where V ∩ (Σ ∪ D) = ∅,

• R is a finite set of production rules (abbreviated as
rules) having either of the following forms: (A, ψ, i)→
α or (A, ψ) → α where A ∈ V , ψ ∈ Fk, i ∈ [k] and
α ∈ (V ∪ (Σ× [k]))∗; we call (A, ψ, i) (or (A, ψ)) the left-
hand side and α the right-hand side of the rule, and,

• S ∈ V is the start symbol.

A rule whose right-hand side is ε is an ε-rule. If R contains
no ε-rule, G is called ε-rule free. A k-RCFG G for some
k ∈ N0 is just called an RCFG.

In the following, we write (A, ψ, i)/(A, ψ) → α ∈ R
to represent (A, ψ, i) → α ∈ R or (A, ψ) → α ∈ R. The
description length of a k-RCFG G = (V,R, S ) is defined
as ‖G‖ = |V | + |R|max{(|α| + 1)(log |V | + log k) + ‖ψ‖ |
(A, ψ, i)/(A, ψ)→ α ∈ R}.

We define ⇒G as the smallest relation containing the
instantiations of rules in R and closed under the context as
follows. For A ∈ V , θ ∈ Θk and X ∈ ((V × Θk) ∪ (Σ × D))∗,
we say (A, θ) directly derives X, written as (A, θ) ⇒G X if
there exist d ∈ D (regarded as an input data value) and r =
(A, ψ, i) → c1 . . . cn ∈ R (resp. r = (A, ψ) → c1 . . . cn ∈ R)
such that

θ, d |= ψ, X = c′1 . . . c
′
n, θ′ = θ[i ← d] (resp.

θ′ = θ) where

c′j =
{

(B, θ′) if c j = B ∈ V ,
(b, θ′(l)) if c j = (b, l) ∈ Σ × [k].

For X,Y ∈ ((V × Θk) ∪ (Σ × D))∗, we also write X ⇒G Y
if there are X1, X2, X3 ∈ ((V × Θk) ∪ (Σ × D))∗ such that
X = X1(A, θ)X2, Y = X1X3X2 and (A, θ) ⇒G X3. If we want
to emphasize the applied rule r and the input data value d,
we write X ⇒d

G,r Y .

Let
∗⇒G and

+⇒G be the reflexive transitive closure and
the transitive closure of⇒G, respectively, called the deriva-
tion relation of zero or more steps (resp. the derivation rela-

tion of one or more steps). We abbreviate⇒G,
∗⇒G and

+⇒G
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as⇒,
∗⇒ and

+⇒ if G is clear from the context.
We denote by θ⊥ the assignment that assigns the initial

value ⊥ to every register. We let L(G) = {w | (S , θ⊥)
+⇒ w ∈

(Σ × D)∗}. L(G) is called the data language generated by G.

(S , θ⊥)
+⇒ w is called a derivation of w in G. RCFGs G1 and

G2 are equivalent if L(G1) = L(G2).

Example 2.1: For Σ = {a, b}, let G = ({S , A},R, S ) be a 2-
RCFG where R = {(S , tt, 1) → (a, 1)A(a, 1), (A, x�1 , 2) →
(b, 2)A(b, 2), (A, x=1 ) → (a, 1)}. Then, L(G) =

{(a, d0)(b, d1) . . . (b, dn)(a, d0)(b, dn) . . . (b, d1)(a, d0) | n ≥
0, di � d0 for i ∈ [n]}.
Theorem 2.1: For an arbitrary k-RCFG G = (V,R, S ), we
can construct an equivalent (k + 1)-RCFG G′ = (V ′,R′, S ′)
such that R′ has no rule of the form (A, ψ)→ α.

Proof We construct G′ by using the (k + 1)th register as
dummy:

• V ′ = V , S ′ = S ,

• R′ = {(A, ψ, i) → α | (A, ψ, i) → α ∈ R or ((A, ψ) →
α ∈ R ∧ i = k + 1)}.

3. Register Type, Normal Forms and ε-Rule Removal

3.1 Register Type

In this subsection, we will define register type, which is
useful in expressing equalities among the contents of regis-
ters, transforming a given RCFG into a certain normal form
and proving some important properties of RCFG. The idea
is simple; instead of remembering concrete data values in
registers, it suffices to remember the induced equivalence
classes of the indices of registers as long as the equalities
among data values in the registers are concerned.

Definition 3.1: A decomposition of [k] into disjoint non-
empty subsets is called a register type of k-RCFG. Let Γk

denote the collection of all register types of k-RCFG. For
a register type γ ∈ Γk, let γ[i] (i ∈ [k]) denote the subset
containing i. �

For example, γ1 = {{1, 2}, {3, 5}, {4}} is a register type of 5-
RCFG and γ1[1] = {1, 2}, γ1[5] = {3, 5}. For an assignment
θ ∈ Θk and a register type γ ∈ Γk, we define the typing
relation as:

θ |= γ :⇐⇒ ∀i, j.(θ(i) = θ( j)⇐⇒ γ[i] = γ[ j]).

For example, θ1 ∈ Θ5 such that θ1(1) = θ1(2) = 8, θ1(3) =
θ1(5) = 10, θ1(4) = 5 satisfies θ1 |= γ1. By definition, for
each θ ∈ Θk, there is exactly one γ ∈ Γk such that θ |= γ. In
this case, we say that the type of θ is γ.

3.2 Normal Forms for Guard Expressions

By using register types, we show that a given RCFG can be
transformed into an equivalent RCFG G′ such that for any

rule r = (A, ψ, i)/(A, ψ) → α, there must exist an input data
value d for any (A, θ) that enables r to be applied to (A, θ),
that is, the guard ψ never blocks any (A, θ) and only specifies
the equality or inequality among an input data value d and
the current contents of the registers. This transformation is
the key of the ε-rule removal shown in the next subsection.

First, it is easy to transform a given k-RCFG into an
equivalent k-RCFG where the guard expression ψ of every
rule has the following form:

ψ = (x=i1 ∧ . . . ∧ x=im ) ∧ (x�j1 ∧ . . . ∧ x�jn ). (1)

The above guard can be obtained by the following equiva-
lence transformations:

1. Transform the guard expression of every rule to an
equivalent disjunctive normal form.

2. Replace a rule (A, ψ1 ∨ ψ2, i) → α into (A, ψ1, i) → α
and (A, ψ2, i)→ α.

For a guard expression ψ in (1), we let ψ= = {i1, . . . , im} and
ψ� = { j1, . . . , jn}. For γ ∈ Γk and ψ ∈ Fk in the form of (1),
we define

γ |= ψ :⇐⇒
∧
i∈ψ=

(
∧
j∈ψ=

γ[i] = γ[ j] ∧
∧
j∈ψ�

γ[i] � γ[ j]).

Note that ψ= = ∅ implies γ |= ψ for any γ. It is easy to see
that the following property holds, which means that for an
assignment θ that conforms to γ, there is a data value d that
satisfies ψ if and only if γ |= ψ.

θ |= γ ⇒ (γ |= ψ⇐⇒ ∃d. θ, d |= ψ). (2)

Lemma 3.1: For an arbitrary k-RCFG G, we can construct
a k-RCFG G′ such that L(G′) = L(G) and the guard ex-
pression of every rule in G′ is one of the following k + 1
expressions: x=1 , x

=
2 , . . . , x

=
k , x�1 ∧ · · · ∧ x�k .

Proof Let ϕ j = x=j for j ∈ [k] and ϕ∗ = x�1 ∧ . . . ∧ x�k .
Obviously, the following property holds:

For any θ, d, and ψ, θ, d |= ψ iff θ, d |= ψ ∧ ϕ j
for some j ∈ [k] ∪ {∗}. (3)

For an assignment θ whose type is γ, consider an up-
dated assignment θ[i ← d] obtained by a single derivation
step. Then one of the following possibilities must hold:

(i) d = θ( j) for some j ∈ [k] (i.e. θ, d |= ϕ j).

(ii) d � θ( j) for any j ∈ [k] (i.e. θ, d |= ϕ∗).
In case (i), the type of θ[i← d] is uniquely determined by γ,
i, and j and regardless of θ. Similarly, the type of θ[i ← d]
in case (ii) is uniquely determined by γ and i. We denote
the type of θ[i ← d] in cases (i) and (ii) by after(γ, i, j)
and after(γ, i, ∗), respectively. These register types can be
specifically described as follows:

• For j ∈ [k], after(γ, i, j) = γ′ where γ′[i] = γ′[ j] =
γ[ j] ∪ {i} and γ′[ j′] = γ[ j′] \ {i} for ∀ j′ ∈ [k] \ γ′[i].
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• after(γ, i, ∗) = γ′ where γ′[i] = {i} and γ′[ j′] = γ[ j′] \
{i} for ∀ j′ ∈ [k] \ γ′[i].
We construct k-RCFG G′ = (V ′, S ′,R′) from G =

(V, S ,R) where V ′ = V × Γk, S ′ = (S , {[k]}), and R′ is
the smallest set that satisfies the following inference rules,
where αaug(γ′) is the sequence obtained from α by replacing
every occurrence of every nonterminal A in V with (A, γ′);
that is, (X1 . . . Xn)aug(γ′) = X′1 . . . X

′
n where X′	 = (X	, γ

′) if
X	 ∈ V and X′	 = X	 otherwise for every 	 ∈ [n]. In the
following rules, ϕ j is the expression defined in the begin-
ning of the proof of this lemma. We assume that the guard
expression of every rule of G has the form of (1).

(A, ψ, i)→ α ∈ R
j ∈ [k] ∪ {∗} γ |= ψ ∧ ϕ j γ′ = after(γ, i, j)
((A, γ), ϕ j, i)→ αaug(γ′) ∈ R′

(A, ψ)→ α ∈ R γ |= ψ
((A, γ), ϕ1)→ αaug(γ) ∈ R′

Note that ϕ1 in the second inference rule is used as an equiv-
alent of tt, because for any assignment θ, there must be a
data value d (= θ(1)) that satisfies ϕ1, and d is not stored in
a register when that rule is applied.

We can show the following properties, which establish
the lemma.

• For every ((A, γ), θ) appearing in a derivation in G′
starting from (S ′, θ⊥), it holds that θ |= γ. This can
be proved by induction on the length of the derivation.

• For a derivation of a data word w in G, if we replace ev-
ery occurrence of (A, θ) ∈ V ×Θk with ((A, γ), θ) where
γ is the type of θ, then we obtain a derivation of w in
G′. This can be proved as follows: For each derivation
step of G where a rule (A, ψ, i)→ α is applied to (A, θ)
with an input data value d (i.e. θ, d |= ψ), there must
exist some ϕ j ( j ∈ [k] ∪ {∗}) such that θ, d |= ψ ∧ ϕ j

by property (3). By property (2), γ |= ψ ∧ ϕ j holds,
and thus G′ has the rule ((A, γ), ϕ j, i) → αaug(γ′). This
rule allows the simulating derivation step in G′ applied
to ((A, γ), θ) using the same input data value d, which
yields the same updated assignment θ[i ← d] as the
derivation step in G.

• For a derivation of a data word w in G′, if we re-
place each ((A, γ), θ) with (A, θ), then we obtain a
derivation of w in G. This can be proved as fol-
lows: By the property before the previous one, θ |= γ
holds. Consider a derivation step of G′ where a rule
((A, γ), ϕ j, i) → αaug(γ′) is applied to ((A, γ), θ) with an
input data value d (i.e. θ, d |= ϕ j). Then G must have
a rule r = (A, ψ, i) → α and γ |= ψ ∧ ϕ j. By prop-
erty (2), there is some d′ such that θ, d′ |= ψ ∧ ϕ j. If
j ∈ [k], then d′ and d are the same (= θ( j)). If j = ∗,
then d must satisfy θ, d |= ψ ∧ ϕ∗ because ψ ∧ ϕ∗ must
be equivalent to ϕ∗ (if not, θ, d′ �|= ψ ∧ ϕ∗ for any d′).
Since θ, d |= ψ ∧ ϕ j implies θ, d |= ψ, we can apply r to
(A, θ) with the same input data value d.

3.3 ε-Rule Removal

Theorem 3.1: For an arbitrary k-RCFG G, we can con-
struct an ε-rule free k-RCFG G′ that satisfies L(G′) = L(G)\
{ε}.
Proof By Lemma 3.1, we can transform any k-RCFG G =
(V,R, S ) into another k-RCFG G′′ = (V ′′,R′′, S ′′) such that
L(G′′) = L(G) and the guard expression of every rule in G′′
is either x=1 , . . . , x

=
k , or x�1 ∧ . . . ∧ x�k . Because the guard

expressions of G′′ never block the application of each rule,
we can compute the set Nu of nullable nonterminals (i.e. the
set that consists of every nonterminal A such that (A, θ)⇒∗G′′
ε regardless of θ) in the same way as CFG; that is, we can
compute Nu as the smallest set that satisfies the following
conditions:

• If (A, ψ, i)/(A, ψ)→ ε ∈ R′′, then A ∈ Nu.

• If (A, ψ, i)/(A, ψ) → α ∈ R′′ and α consists of nonter-
minals in Nu, then A ∈ Nu.

And thus we can remove the ε-rules of G′′ also in the same
way as CFG; that is, for each (A, ψ, i)/(A, ψ) → α ∈ R′′
such that α � ε, we construct (A, ψ, i)/(A, ψ) → α′ where
α′ � ε and α′ is obtained from α by removing zero or more
occurrence of nonterminals in Nu. Let G′ = (V ′′,R′, S ′′) be
the resultant RCFG. We can show that for every A ∈ V ′′,
θ ∈ Θk, and a data word w, (A, θ) ⇒∗G′′ w and w � ε if
and only if (A, θ) ⇒∗G′ w, by induction on the length of the
derivation.

4. Generalized RCFG

4.1 Definitions

We define generalized register context-free grammar by al-
lowing an arbitrary binary relation on the set of data values.
Let Σ be a finite alphabet, D be a set of data values such
that Σ ∩ D = ∅ equipped with a finite set of binary relations
R. We call (D,R) a data structure. For k ∈ N0, a general-
ized k-register context-free grammar (k-GRCFG) is a triple
G = (V,R, S ) where V , R and S are the same as in k-RCFG
except that an atomic formula in a guard expression is x
�i
and x
�

−1

i (i ∈ [k], 
� ∈ R) and its semantics is defined by

θ, d |= x
�i iff θ(i) 
� d and θ, d |= x
�
−1

i iff d 
� θ(i)

for any θ ∈ Θk and d ∈ D. We sometimes write
k-GRCFG(R) to emphasize R and abbreviate it as k-
GRCFG(
�) whenR = {
�}. Notions and notations for RCFG
such as ε-rule, derivation relation⇒, the data language L(G)
generated by G are defined in the same way. We also write
k-GRCFG(=) to denote a (usual) k-RCFG.

Closure and non-closure properties of GRCFG de-
scribed in the following Theorem 4.1 can be proved in a sim-
ilar way to the case of the usual RCFG [5], [9]. In that theo-
rem, a homomorphism is a function h : (Σ×D)∗ → (Σ′×D′)∗
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where Σ,Σ′ are finite alphabets and D,D′ are infinite sets of
data values such that h(w1 · · ·wn) = h(w1) · · · h(wn) holds for
w1, . . . , wn ∈ (Σ×D)∗. Theorem 4.2 is an extension of 2.1 to
GRCFG and can be proved in the same way.

Theorem 4.1: The class of data languages generated by
k-GRCFG(R) is closed under union, concatenation and
Kleene-closure. It is not closed under intersection, comple-
ment, homomorphisms or inverse homomorphisms.

Theorem 4.2: For an arbitrary k-GRCFG G = (V,R, S ),
we can construct an equivalent (k + 1)-GRCFG G′ =
(V ′,R′, S ′) such that R′ has no rule of the form (A, ψ)→ α.

4.2 Simulation and Progress Properties

In Sect. 3, we showed that a given RCFG can be trans-
formed to an equivalent RCFG where the guard expression
of a production rule never blocks its application by asso-
ciating a register type with each nonterminal symbol. We
can extend register type to GRCFG in a natural way, but the
above transformation cannot guarantee the equivalence be-
cause the register type no longer has information enough to
represent the applicability of a rule in GRCFG.

Example 4.1: Consider the set of integers with the usual
strict total order Z = (Z, {<Z , >Z}) as a data structure. We
might extend register type of GRCFG(=) by introducing <Z

among the equivalence classes of [k]. For example, let ψ =
x<Z

1 ∧ x>Z

2 be a guard expression of 3-GRCFG({<Z , >Z}) and
consider assignments θ1, θ2 ∈ Θ3 such that θ1(1) = θ1(3) =
4, θ1(2) = 7 and θ2(1) = θ2(3) = 5, θ2(2) = 6. Also let γ be
the register type (informally) defined as γ = {{1, 3} <Z {2}}.
Both θ1 |= γ and θ2 |= γ hold. However, there is no d ∈ Z
such that θ2, d |= ψ while θ1, 5 |= ψ. �

Similarly, the membership and emptiness lose decidability
for GRCFG even if a binary relation appearing in a guard
expression is a decidable relation.

Theorem 4.3: There exists a data structure (D,R) such that
the membership and emptiness problems for 1-GRCFG(R)
are undecidable.

Proof We show a reduction from the Post’s correspon-
dence problem (PCP). Let {(u1, v1), . . . , (un, vn)} ⊆ Σ+ × Σ+
be an instance of PCP over an alphabet Σ. Then let D =
Σ∗ × Σ∗ and R = {
�i | i ∈ [n]} ∪ {EQ} where

(x1, x2) 
�i (y1, y2) ⇐⇒ x1ui = y1 ∧ x2vi = y2,

(x1, x2) EQ (y1, y2) ⇐⇒ x1 = x2.

We assume the initial register data value ⊥ = (ε, ε) ∈ D. We
construct 1-GRCFG(R) G = (V,R, S ) where R consists of

(S , x
�i

1 , 1) → A and (A, x
�i

1 , 1) → A for ∀i ∈ [n]
and (A, xEQ

1 )→ ε.

We can easily show that ε ∈ L(G) (iff L(G) � ∅) iff the
instance {(u1, v1), . . . , (un, vn)} of PCP has a solution. �
In the rest of this paper, we assume R is a singleton R =

{
�} for simplicity. The properties we show below can be
extended in a general case that R has more than one binary
relation. We first extend a register type as a binary relation
γ : ([k] × [k])\{(i, i) | i ∈ [k]} → {tt, ff}†. We say that
the type of an assignment θ is γ (and write θ |= γ) iff for all
i, j ∈ [k] (i � j),

γ(i, j) = tt iff θ(i) 
� θ( j).

We write θ ∼
� θ′ if the types of assignments θ and θ′ are
the same. The collection of all register types of k-GRCFG
is denoted by Γk as before.

In Example 4.1, we see that a register type cannot al-
ways decide the applicability of a rule because there may ex-
ist γ ∈ Γk, ψ ∈ Fk such that ∃d. θ, d |= ψ and ∀d′. θ′, d′ �|= ψ
for some assignments θ, θ′ |= γ. We would like to avoid
the above case and also to uniquely determine the register-
type γ′ ∈ Γk after a rule application. For this purpose, we
introduce two predicates (Definition 4.1) to describe the de-
sirable property (Definition 4.2).

Definition 4.1: Let pr, npr : Γk × Fk × [k] × Γk → {tt, ff}
be the predicates defined as follows: For γ, γ′ ∈ Γk, i ∈ [k],
and ψ ∈ Fk,

pr(γ, ψ, i, γ′)=tt ⇐⇒ γ′ ∈ after(θ, ψ, i) for ∀θ |= γ,
npr(γ, ψ, i, γ′)=tt ⇐⇒ γ′ � after(θ, ψ, i) for ∀θ |= γ,

where after(θ, ψ, i) = {γ′ | ∃d. (θ, d |= ψ ∧ θ[i← d] |= γ′)}.
Definition 4.2 (simulation): We say that a data structure
(D,R) has the simulation property for k registers if the fol-
lowing condition is met:

For all γ, γ′ ∈ Γk, i ∈ [k], and ψ ∈ Fk, either
pr(γ, ψ, i, γ′) = tt or npr(γ, ψ, i, γ′) = tt holds.

�

Again, both pr and npr are undecidable in general be-
cause a binary relation appearing in ψmay be undecidable††.
Hence, we will introduce the assumption that both pr and
npr are decidable (in EXPTIME).

Definition 4.3 (progress): We say that a data structure
(D,R) has the progress property for k registers if the fol-
lowing condition is met:

For all γ, γ′ ∈ Γk, i ∈ [k], and ψ ∈ Fk, predicate pr
and npr are decidable in EXPTIME.

�

For a data structure D = (D,R), if D is understood, we say
that R (or even 
�, if R = {
�}) has the simulation or progress
property.

Finally, we define data type as an extension of regis-
ter type by adding the information on equality between data

†We exclude the diagonal elements {(i, i) | i ∈ [k]} from the
domain of a register type because the applicability of a rule does
not depend on whether θ(i) 
� θ(i).
††It is unknown whether pr and npr are decidable when we re-

strict a binary relation in ψ to be decidable.
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values in the registers and data values appearing in a given
data word w.

Definition 4.4 (data type): Let w be a data word and Dw be
the set of data values appearing in w; i.e. Dw = {di | i ∈
[n], w = (a1, d1) . . . (an, dn)}. Also let d� � D be a newly
introduced symbol. We use a function e : [k] → Dw ∪ {d�}
as a finite representation of an assignment. This function is
the same as a given assignment except that every data value
that does not appear in w is replaced with d�. We write θ |= e
iff for all i ∈ [k],

e(i) = θ(i) if θ(i) ∈ Dw and e(i) = d� otherwise.

The collection of all such functions e : [k] → Dw ∪ {d�} is
denoted by Ew,k. The data type of an assignment θ ∈ Θk for
a data word w is a pair (γ, e) ∈ Γk ×Ew,k. We write θ |= (γ, e)
iff θ |= γ and θ |= e. We define the simulation and progress
properties with data type in the same way as in the case of
register types.

5. Properties of GRCFG

5.1 ε-Rule Removal

Theorem 5.1: For an arbitrary GRCFG(
�) G such that 
�
has the simulation and progress properties, we can construct
an ε-rule free GRCFG(
�) G′′ that satisfies L(G′′) = L(G) \
{ε}.
Proof The theorem can be proved in a similar way to The-
orem 3.1 by using the simulation and progress properties.
Let G = (V,R, S ) be a k-GRCFG(
�). Without loss of gener-
ality, we assume that R has no rule of the form (A, ψ) → α
(by Theorem 4.2) and the guard expression of every rule in
R is a conjunction of literals (atomic formulas or their nega-
tions). We first construct k-GRCFG(
�) G′ = (V ′,R′, S ′)
from G where

• V ′ = V × Γk,

• R′ is the smallest set of rules satisfying the following
conditions. Define the subset of guard expressions Φ
as

Φ = {
∧
i∈[k]

ζi∧
∧
i∈[k]

ηi | ζi ∈ {x
�i ,¬x
�i }, ηi ∈ {x
�−1

i ,¬x
�
−1

i }}.

Let r = (A, ψ, i) → α ∈ R. Also let γ, γ′ ∈ Γk and
ϕ ∈ Φ. If pr(γ, ψ∧ϕ, i, γ′) = tt, which is decidable by
the progress property,

((A, γ), ψ ∧ ϕ, i)→ αaug(γ′) ∈ R′.

(See the proof of Lemma 3.1 for the definition of
αaug(γ′).) Note that γ′ is uniquely determined by γ, ψ∧ϕ
and i because γ specifies whether θ(i) 
� θ( j) holds or
not for each pair i, j ∈ [k] (i � j) and also ϕ specifies
whether θ(i) 
� d and d 
� θ(i) hold or not for each
i ∈ [k] and an input data value d.

• S ′ = (S , γ0) where θ⊥ |= γ0.

See the example of the construction in Example 5.1. We will
show L(G) = L(G′) by induction on the length of derivations
in G and G′, using the simulation property (to show L(G) ⊆
L(G′)).

First we show that L(G′) ⊆ L(G). Assume w ∈ L(G′).
Then, there exists a derivation ((S , γ0), θ⊥)

∗⇒G′ w. We have

to show (S , θ⊥)
∗⇒G w. For this purpose, we will show

by induction on the length of the derivation in G′ a little

more general property that if ((S , γ0), θ⊥)
∗⇒G′ Y ′1 . . . Y

′
m

(Y ′j ∈ ((V × Γk) × Θk) ∪ (Σ × D) for each j ∈ [m]), then

(S , θ⊥)
∗⇒G Y1 . . . Ym where Yj = (Bj, θ j) and θ j |= γ j if

Y ′j = ((Bj, γ j), θ j) and Yj = Y ′j otherwise. We call the former
derivation t′.
(Basis) If the length of t′ is zero, the claim holds because
θ⊥ |= γ0.
(Induction) Assume that the length of t′ is greater than zero
and the last step in t′ is Y ′1 . . . Y

′
p−1((A, γ), θ)Y ′q+1 . . . Y

′
m ⇒G′

Y ′1 . . .Y
′
m with ((A, γ), θ)⇒d

G′,r′ Y ′p . . . Y ′q for some 1 ≤ p, q ≤
m. Since r′ ∈ R′, by the construction of R′, there are
r = (A, ψ, i) → α ∈ R, ϕ ∈ Φ and γ′ ∈ Γk such that
r′ is constructed from r, γ, γ′ and ϕ. We assume that the
form of r is (A, ψ, i) → α. By the induction hypothesis,

(S , θ⊥)
∗⇒G Y1 . . . Yp−1(A, θ)Yq+1 . . .Ym where Yj = (Bj, θ j)

and θ j |= γ j if Y ′j = ((Bj, γ j), θ j) and Yj = Y ′j otherwise
for 1 ≤ j < p or q < j ≤ n, and also θ |= γ. Since
the left-hand side of r′ is ((A, γ), ψ ∧ ϕ, i) and r′ is applied
to ((A, γ), θ) with the input data d, we have θ, d |= ψ ∧ ϕ.
Hence θ, d |= ψ holds obviously and thus r is applicable to
(A, θ) also. Let (A, θ) ⇒d

G,r α′, then we obtain a desired

derivation (S , θ⊥)
∗⇒G Y1 . . . Yp−1(A, θ)Yq+1 . . . Ym ⇒d

G,r
Y1 . . .Yp−1α

′Yq+1 . . .Ym.
Next we show that L(G) ⊆ L(G′). Assume w ∈ L(G).

Then, there exists a derivation S
∗⇒G w. We have to

show ((S , γ0), θ⊥)
∗⇒G′ w. We will show by induction

on the length of the derivation in G that if (S , θ⊥)
∗⇒G

Y1 . . .Ym (Yj ∈ (V × Θk) ∪ (Σ × D) for each j ∈ [m]) then

((S , γ0), θ⊥)
∗⇒G′ Y ′1 . . .Y

′
m where Y ′j = ((Bj, γ j), θ j) for γ j

such that θ j |= γ j if Yj = (Bj, θ j) and Y ′j = Yj otherwise. We
call the former derivation t.
(Basis) If the length of t is zero, the claim holds because
θ⊥ |= γ0.
(Induction) Assume that the length of t is greater than zero
and the last step in t is Y1 . . . Yp−1(A, θ)Yq+1 . . .Ym ⇒G

Y1 . . .Ym with (A, θ) ⇒d
G,r Yp . . . Yq for some 1 ≤

p, q ≤ m. By the induction hypothesis, ((S , γ0), θ⊥)
∗⇒G′

Y ′1 . . .Y
′
p−1((A, γ), θ)Y ′q+1 . . . Y

′
m where Y ′j = ((Bj, γ j), θ j) for

γ j such that θ j |= γ j if Yj = (Bj, θ j) and and Y ′j = Yj oth-
erwise for 1 ≤ j < p or q < j ≤ n, and also θ |= γ. We
assume that the form of r applied to (A, θ) is (A, ψ, i) → α.
This means that θ, d |= ψ, and because of the definition of
Φ, there must be a unique ϕ ∈ Φ such that θ, d |= ψ ∧ ϕ.
Hence, γ′ ∈ after(θ, ψ ∧ ϕ, i) for the type γ′ of θ[i ← d].
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By the simulation property, we have pr(γ, ψ∧ ϕ, i, γ′) = tt.
Therefore, the rule r′ = ((A, γ), ψ ∧ ϕ, i)→ αaug(γ′) has been
constructed. The rest of the proof is similar to the converse
direction.

We can construct an equivalent ε-rule free k-
GRCFG(
�) G′′ from G′ in a similar way to Theorem 3.1
(because every application of a rule in G′ is never blocked
by the guard condition and we can compute the set Nu of
nullable nonterminals like Theorem 3.1).

Example 5.1: Let k = 2 and consider a rule r =

(A, ψ, 1) → α where ψ = x
�1 ∧ x
�
−1

2 . The possible register
types are γ1 = (δ12∧δ21), γ2 = (δ12∧¬δ21), γ3 = (¬δ12∧δ21)
and γ4 = (¬δ12 ∧ ¬δ21) where δ12 = (θ(1) 
� θ(2)) and
δ21 = (θ(2) 
� θ(1))†. After the elimination of the unsat-
isfiable ones and Boolean simplification, we can assume
that Φ = {ϕ1, ϕ2, ϕ3, ϕ4} where ϕ1 = x
�

−1

1 ∧ x
�2 , ϕ2 =

x
�
−1

1 ∧ ¬x
�2 , ϕ3 = ¬x
�
−1

1 ∧ x
�2 and ϕ4 = ¬x
�
−1

1 ∧ ¬x
�2 . If
pr(γ, ψ ∧ ϕi, 1, γ′) = tt, the possible register type γ′ is
γ1, γ2, γ1, γ2 for ϕ1, ϕ2, ϕ3, ϕ4, respectively. In this example,
the type γ′ is determined depending only on ϕ j and indepen-
dent of γ because k = 2 and an input data value is loaded to
the first register when r is applied.

5.2 Emptiness and Membership

Theorem 5.2: The emptiness problem for GRCFG(
�)
such that 
� has the simulation and progress properties, is
EXPTIME-complete.

Proof Let G = (V,R, S ) be an arbitrary k-GRCFG(
�) that
has no rule of the form (A, ψ) → α and G′ = (V ′,R′, S ′) be
the k-GRCFG(
�) constructed from G in the proof of Theo-
rem 5.1. As shown in that proof, L(G′) = L(G). We con-
struct CFG G′′ = (V ′,R′′, S ′) from G′ where

R′′ = {(A, γ) → X1 . . . Xn | ((A, γ), ψ, i) →
X′1 . . . X

′
n ∈ R′ for some ψ and i, and Xj = X′j if

X′j ∈ V ′ and Xj = a if X′j � V ′ for each j ∈ [n]}.
As we will show below, L(G′) = ∅ ⇔ L(G′′) = ∅ because a
rule application is never blocked in G′.

Assume L(G′′) � ∅. Then, there exists a deriva-

tion S ′
∗⇒G′′ w for some w ∈ a∗. It suffices to show

(S ′, θ⊥)
∗⇒G′ w

′ for some w′ ∈ (Σ × D)∗. For this purpose,
we will show by induction on the length of the derivation in

G′′ that if t = S ′
∗⇒G′′ Y1 . . . Ym (Yj ∈ V ′ or Yj = a for each

j ∈ [m]), then (S ′, θ⊥)
∗⇒G′ Y ′1 . . . Y

′
m where Y ′j = (Yj, θ j) for

some θ j ∈ Θk such that θ j |= γ j if Yj = (Bj, γ j) ∈ V ′ and
Y ′j ∈ (Σ × D) if Yj = a.
(Basis) If the length of t is zero, the claim trivially holds.
(Induction) Assume that the length of t is greater than zero
and the last step in t is Y1 . . . Yp−1(A, γ)Yq+1 . . .Ym ⇒G′′,r
Y1 . . .Ym with (A, γ) ⇒G′′,r Yp . . . Yq for some 1 ≤ p, q ≤

†For readability, we denote a register type as a Boolean for-
mula on a register assignment θ. For example, γ2(1, 2) = tt and
γ2(2, 1) = ff if we follow the notation defined in Sect. 4.2.

m. Since r ∈ R′′, by the construction of R′, there are
r′ ∈ R′ and γ′ ∈ Γk such that r′ = ((A, γ), ψ, i) →
αaug(γ′) ∈ R′, pr(γ, ψ, i, γ′) = tt, and r is constructed
from r′. We assume that the form of r′ is ((A, γ), ψ, i) →
Y ′p . . .Y ′q. By the induction hypothesis, (S ′, θ⊥)

∗⇒G′

Y ′1 . . .Y
′
p−1((A, γ), θ)Y ′q+1 . . . Y

′
m for some θ |= γ and Y ′j =

(Yj, θ j) and θ j |= γ j if Yj = (Bj, γ j) ∈ V ′ and Y ′j ∈ (Σ × D) if
Yj = a for 1 ≤ j < p or q < j ≤ n. Since pr(γ, ψ, i, γ′) = tt,
the rule r′ can be applied at ((A, γ), θ) in the above derivation
in G′. Hence, L(G′) � ∅.

The converse direction L(G′) � ∅ ⇒ L(G′′) � ∅ can be
proved in a similar way.

‖G′‖ is single exponential to ‖G‖ because |V ′| = |V | ×
|Γk | (by the definition of Γk : ([k] × [k])\{(i, i) | i ∈ [k]} →
{tt, ff}, |Γk | ≤ 2k2

) and |R′| ≤ |R|×|Γk |2×|Φ| (Φ is defined in
the proof of Theorem 5.1 and |Φ| = 22k). In addition, ‖G′′‖
is obviously linear to ‖G′‖. Therefore, ‖G′′‖ is single expo-
nential to ‖G‖. Because the emptiness problem for CFG is
decidable in linear time, the emptiness problem for GRCFG
is decidable in deterministic time exponential to k.

The lower bound can be obtained from EXPTIME-
completeness of the emptiness problem for k-GRCFG(=)
[16].

Theorem 5.3: The membership problem for GRCFG(
�)
such that 
� has the the simulation and progress properties
with data type, is EXPTIME-complete.

Proof sketch This theorem can be proved in a similar way
to Theorem 5.2 as follows. From a given k-GRCFG(
�) G =
(V,R, S ) and a data word w, we construct k-GRCFG(
�) G′ =
(V ′,R′, S ′) in a similar way to Theorem 5.1, by using the
set of data types Γk × Ew,k instead of Γk (Therefore, V ′ =
V × Γk × Ew,k). We construct CFG G′′ = (V ′,R′′, S ′) (over a
finite alphabet Σ × (Dw ∪ {d�})) from G′ where

R′′ = {(A, (γ, e)) → X1 . . . Xn | ((A, (γ, e)), ψ, i) →
X′1 . . . X

′
n ∈ R′ for some ψ and i, and Xj = X′j if

X′j ∈ V ′ and Xj = (a, e(h)) if X′j = (a, h) ∈ (Σ×[k])
for each j ∈ [n]}.

Similar to the proof of Theorem 5.2, each derivation S ′
∗⇒G′′

Y1 . . .Ym in G′′ has a corresponding derivation (S ′, θ⊥)
∗⇒G′

Y ′1 . . .Y
′
m in G′. Moreover, if Yj is a terminal (a, d) ∈ Σ ×

(Dw ∪ {d�}), then Y ′j equals (a, d) if d ∈ Dw and Y ′j = (a, d′)
for some d′ � Dw if d = d�. Therefore, we can prove w ∈
L(G′)⇔ w ∈ L(G′′) in a similar way to Theorem 5.2. �

If we drop the progress property, the membership and empti-
ness are not always decidable as shown in the next theorem.

Theorem 5.4: There exists a data structure (D,R) that has
the simulation property but does not have the progress prop-
erty, and the membership and emptiness problems for 2-
GRCFG(R) are undecidable.

Proof We use a reduction from the inclusion problem for
CFG. Let D = Σ∗, and consider two CFG A and B over Σ
and R = {
�} such that
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d1 
� d2 ⇐⇒ d2 ∈ L(A) \ L(B).

As defined in Example 5.1, there are four possible register
types γ1, γ2, γ3, γ4 for k = 2 and a single binary relation 
�.
For convenience, we give the definition of γ3 and γ4 again.

• γ3 = (¬(θ(1) 
� θ(2)) ∧ θ(2) 
� θ(1))

• γ4 = (¬(θ(1) 
� θ(2)) ∧ ¬(θ(2) 
� θ(1)))

For the binary relation 
� defined above, (θ(1) 
� θ(2)) iff
(θ(2) ∈ L(A)\L(B)) and (θ(2) 
� θ(1)) iff (θ(1) ∈ L(A)\L(B)).

We can prove that 
� has the simulation property but
does not have the progress property for two registers.

(The simulation property) For given ψ ∈ F2, γ′ ∈ Γ2, i ∈
[2], θ ∈ Θ2, and d ∈ D, the condition θ, d |= ψ ∧ θ[i ←
d] |= γ′ can be transformed into a Boolean combination of
the following atomic propositions:

θ(1) ∈ L(A) \ L(B), (4)

θ(2) ∈ L(A) \ L(B), (5)

d ∈ L(A) \ L(B). (6)

(Note that the atomic propositions of F2 are x
�1 , x
�2 , x
�
−1

1 ,
x
�
−1

2 , and for example, (θ, d |= x
�1 ) iff (d ∈ L(A) \ L(B)) and
(θ, d |= x
�

−1

1 ) iff (θ(1) ∈ L(A) \ L(B)).)
Whether the propositions (4) and (5) hold is determined

uniquely by the type γ of θ (because γ uniquely determines
whether θ(2) 
� θ(1) and θ(1) 
� θ(2) hold). Therefore,
whether ∃d. θ, d |= ψ ∧ θ[i ← d] |= γ′ holds or not is deter-
mined independent of a choice of θ of type γ, and thus the
simulation property holds.

(Absence of the progress property) We can show that
pr(γ4, x
�1 , 1, γ3) for the above-mentioned γ4 and γ3 is un-
decidable by a reduction from the inclusion problem L(A) ⊆
L(B) for CFG A and B. We first decide whether L(B) = ∅.
If L(B) = ∅, then L(A) ⊆ L(B) iff L(A) = ∅, which is
also decidable. Assume that L(B) � ∅. We can prove
L(A) � L(B) ⇔ pr(γ4, x
�1 , 1, γ3) = tt in the following
steps:

L(A) � L(B)⇔ ∃d. d ∈ L(A) \ L(B)

⇔ ∀θ |= γ4.∃d. θ, d |= x
�1 ∧ θ[1← d] |= γ3

⇔ pr(γ4, x

�
1 , 1, γ3) = tt.

L(A) � L(B) ⇔ ∃d. d ∈ L(A) \ L(B) is obviously satisfied,
and ∀θ |= γ4.∃d. θ, d |= x
�1 ∧ θ[1← d] |= γ3

⇔ pr(γ4, x
�1 , 1, γ3) = tt is obtained by the definition of
pr. We prove the middle step ∃d. d ∈ L(A) \ L(B) ⇔ ∀θ |=
γ4.∃d. θ, d |= x
�1 ∧ θ[1← d] |= γ3 as follows.

• (⇒): Let θ be an arbitrary assignment that satisfies θ |=
γ4. Note that θ(2) � L(A) \ L(B) by the definition of
γ4. By the assumption, there is a data value d ∈ L(A) \
L(B). This d satisfies θ, d |= x
�1 . Moreover, this d also
satisfies θ[1 ← d] |= γ3 because θ[1 ← d](1) = d ∈
L(A) \ L(B) and θ[1← d](2) = θ(2) � L(A) \ L(B).

• (⇐): Because L(B) � ∅, there exists some d′ ∈ L(B).

Let θ be the assignment defined as θ(1) = θ(2) = d′,
which satisfies θ |= γ4. By the assumption, there exists
d such that θ, d |= x
�1 , and this implies that d ∈ L(A) \
L(B).

We construct 2-GRCFG(
�) G = (V,R, S ) such that R =
{(S , x
�1 ) → ε}. We can easily show that ε ∈ L(G) (iff
L(G) � ∅) iff L(A) � L(B).

5.3 GRCFG with a Total Order on a Dense Set

Lemma 5.1: Every GRCFG(<Q) has the simulation and
progress properties where <Q is the strict total order on the
set Q of all rational numbers. Similarly, it has the simulation
and progress properties with data type.

Proof We abbreviate <Q as <. Let G = (V,R, S ) be a k-
GRCFG(<), θ ∈ Θk, γ ∈ Γk and r = (A, ψ, i)→ α ∈ R where
ψ is the conjunction of literals (of the form x<i or ¬x<j ). (The
case r = (A, ψ) → α ∈ R can be treated in a similar way.)
Assume that θ |= γ. The rule r can be applied to (A, θ) iff
there is d ∈ Q such that θ, d |= ψ. The condition θ, d |= ψ as
well as the assumption θ |= γ can be represented as a set of
inequations on d, θ(1), . . . , θ(k). Whether this set of inequa-
tions has a contradiction does not depend on the concrete
values θ(1), . . . , θ(k), and if it does not have a contradiction,
then there must exist d ∈ Q that satisfies it because Q is
dense. Moreover, whether θ[i ← d] |= γ′ holds for a given
γ′, which can also be represented as the consistency of a
set of inequations on d, θ(1), . . . , θ(k), does not depend on
θ. Hence, for all θ |= γ, whether there exists d such that
θ, d |= ψ and θ[i← d] |= γ′ can be decided uniquely, and the
simulation property holds.

Similarly, for deciding pr(γ, ψ, i, γ′) = tt, it suffices to
represent the condition

θ |= γ ∧ θ, d |= ψ ∧ θ[i← d] |= γ′

as a set of inequations on d, θ(1), . . . , θ(k) as above and solve
it.

We can show the simulation and progress properties
with data type in a similar way.

Example 5.2: Consider a 2-GRCFG(<) (V,R, S ) and a rule
(A, ψ, 1) → B ∈ R where ψ = x<1 ∧ ¬x<2 . We see that θ, d |=
ψ ⇔ θ(1) < d ≤ θ(2). Because k = 2 and < is a total order
on Q, there are three possible register types γ1 = (θ(1) <
θ(2)), γ2 = (θ(2) < θ(1)) and γ3 = (θ(1) = θ(2)). As easily
known, (i) there is d ∈ Q such that θ, d |= ψ and θ |= γ if and
only if γ = γ1, and (ii) if γ = γ1 then such d ∈ Q satisfies
either (ii-a) d < θ(2), θ[1 ← d] |= γ1 or (ii-b) d = θ(2),
θ[1← d] |= γ3.

Corollary 5.1: For a given GRCFG(<Q) G, we can con-
struct an ε-rule free GRCFG(<Q) G′ that satisfies L(G′) =
L(G) \ {ε}. The emptiness and membership problems are
both EXPTIME-complete for GRCFG(<Q).

Proof By Lemma 5.1 and Theorems 5.1, 5.2 and 5.3.
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6. Conclusion

We have introduced register type to RCFG and shown an
equivalence transformation to RCFG that never blocks a rule
application by associating a register type with each nonter-
minal symbol. Then we have defined generalized RCFG
(GRCFG) that can use an arbitrary relation in the guard ex-
pression. Using the technique of register type and making
two reasonable assumptions, the simulation and progress
properties, the decidability of emptiness and membership
for GRCFG and a transformation to an ε-free GRCFG have
been provided.

Nominal CFG [3] with equality symmetry, total order
symmetry and integer symmetry correspond to GRCFG(=),
GRCFG(<Q) (Sect. 5.3) and GRCFG(<Z) (Example 4.1), re-
spectively. Investigating the relation between nominal CFG
and GRCFG in depth is future work.
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