
1794
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

PAPER Special Section on Formal Approaches

Model Checking of Automotive Control Software: An Industrial
Approach

Masahiro MATSUBARA†,††, Nonmember and Tatsuhiro TSUCHIYA††a), Member

SUMMARY In automotive control systems, the potential risks of soft-
ware defects have been increasing due to growing software complexity
driven by advances in electric-electronic control. Some kind of defects
such as race conditions can rarely be detected by testing or simulations
because these defects manifest themselves only in some rare executions.
Model checking, which employs an exhaustive state-space exploration, is
effective for detecting such defects. This paper reports our approach to
applying model checking techniques to real-world automotive control pro-
grams. It is impossible to directly model check such programs because of
their large size and high complexity; thus, it is necessary to derive, from the
program under verification, a model that is amenable to model checking.
Our approach uses the SPIN model checker as well as in-house tools that
facilitate this process. One of the key features implemented in these tools is
boundary-adjustable program slicing, which allows the user to specify and
extract part of the source code that is relevant to the verification problem
of interest. The conversion from extracted code into Promela, SPIN’s input
language, is performed using one of the tools in a semi-automatic manner.
This approach has been used for several years in practice and found to be
useful even when the code size of the software exceeds 400 KLOC.
key words: model checking, program slicing, automotive control systems,
SPIN model checker

1. Introduction

In automotive control systems, potential risks to system
safety have been increasing because programs are becoming
increasingly larger due to advances in electric and electronic
control, communication, diagnosis, and other functions. To
ensure safety, testing or simulations are commonly used for
defect identification. However, it is difficult to detect cor-
ner case defects using these ordinary techniques due to the
limitation of test coverage achieved by them. In particular,
race conditions caused by concurrent execution of hardware
devices or of software processes are very difficult to find.
In addition to these ordinary techniques, the development
of automotive control systems usually involves long-term
testing performed under an environment similar to the ac-
tual running environment. This is performed by means of
HILS (Hardware-In-the-Loop Simulation) or virtual simula-
tion, aiming to find corner cases. However, such long-term
testing still provides no guarantee of finding corner case de-

Manuscript received October 8, 2019.
Manuscript revised February 6, 2020.
Manuscript publicized March 30, 2020.
†The author is with Hitachi Automotive Systems, Ltd.,

Hitachinaka-shi, 312–8503 Japan.
††The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.

a) E-mail: t-tutiya@ist.osaka-u.ac.jp
DOI: 10.1587/transinf.2019FOP0002

fects. Although static analysis of source code is an effective
way to find errors [1], static analysis of concurrent software
is still a challenge in terms of precision and scalability [2].

To solve these shortcomings, we adopt an approach that
makes full use of model checking [3] in the development
cycle of automotive control software. Model checking is
a formal verification method which is based on mechani-
cal state exploration. An advantage of model checking over
static analysis is a richer set of properties that can be veri-
fied. Also, model checking has proved to be very useful in
discovering rare and subtle scenarios which otherwise could
not be detected in many areas including communication pro-
tocols and hardware designs. In the context of the develop-
ment of automotive control software, model checking could
be used for verification of control models or software speci-
fications; but in this paper, we focus on verification of source
code.

Applying model checking to automotive control soft-
ware programs is not an easy task. The most serious prob-
lem is state space explosion where an enormous number of
states lead to a shortage of memory or time [4]. Hence it is
necessary to construct a tractable input model of a model
checker from the software. However, a model at an ap-
propriate accuracy level is hard to construct either manually
or automatically because source code of automotive control
software is very complex.

Our approach addresses this difficulty by allowing the
verifier with design knowledge to intervene in adjustment
of the accuracy level, as well as to automate the rest part
for efficiency. The verifier makes the adjustment of the ac-
curacy level by specifying the part of the source code that
is extracted and model checked. In order to perform this
process in a flexible and efficient manner, a computer-aided
solution is needed that can help the verifier to recognize the
part of the source code that is relevant to the property to
be verified and to judge how completely the relevant part is
transformed into a model. A rule of thumb of this decision
is that the specified part of the code is large enough to con-
tain functionality that could not be tested by unit testing but
small enough to avoid state explosion. Since such a decision
is hard to be automated, manual intervention is essential.

To satisfy these requirements, we have developed a
tool that visualizes the structure of the code as a form of
a graph or tree and helps specify and extract relevant part
of the code using a code slicing technique, which we call
boundary-adjustable slicing. We have also developed a tool
that converts an extracted code into a model in Promela, the

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



MATSUBARA and TSUCHIYA: MODEL CHECKING OF AUTOMOTIVE CONTROL SOFTWARE: AN INDUSTRIAL APPROACH
1795

input language of the SPIN model checker [5]. The Promela
model obtained in this way can readily be verified using this
model checker.

In this paper, we describe our approach with an em-
phasis on these tools that we have developed. The rest of
the paper is structured as follows: Sect. 2 explains the pro-
posed approach and the tools used in the approach. Sec-
tion 3 shows a program slicing technique that is one of the
key technologies in our approach. Section 4 describes how
models of automotive control systems are constructed from
extracted code. Section 5 presents a typical use case of
our approach and summarizes some experiences cases. Sec-
tion 6 describes related work. Finally, Sect. 7 concludes the
paper.

2. Methodology and Tools

2.1 Characteristics of Automotive Control Software

Figure 1 shows a typical structure of an automotive con-
trol system. The system connects several Electronic Control
Units (ECUs) with a LAN. Software runs on the ECUs while
controlling the sensors and actuators connected to them.
Automotive control software has many distinctive traits as
listed below.

• ECUs are equipped with CPUs (central processing
units) and ASICs (application-specific integrated cir-
cuits). CPUs are often multi-core. Software runs in
parallel on CPUs and ASICs.
• Automotive control software constitutes a concurrent

system with hard real-time cyclic tasks and interrup-
tions. Task invocations and interruptions occur by ex-
citation from peripherals (e.g. timer) of a microcon-
troller.
• Modular software components and legacy complex de-

vice drivers are placed on a hierarchical architecture.
They are tightly connected aiming at high performance
and less resource consumption. As a result, the effects
of a failure can easily propagate to other parts of the
system and lead to malfunctions.

Because of these characteristics, even carefully de-

Fig. 1 Typical structure of automotive control system

signed automotive control software code cannot be perfectly
free from defects, especially concurrency defects such as
race condition. Therefore, programs should be verified at
the source code or binary code level. Simulations, such as
HILS, are effective at finding concurrency defects, but only
to some extent, because the execution timing of tasks, in-
terruptions, or hardware has an enormous number of com-
binations and simulations can exercise only a small fraction
of them. Furthermore, single automotive control software
runs on many cars for a long time. This means that a defect
that has negligible occurrence probability in isolation might
cause a significant safety problem. Such defects are often
triggered by particular input combinations or execution tim-
ing of concurrent processes. Model checking is a viable so-
lution to solve these problems, as it can verify all possible
behaviors of the software under test. We target model check-
ing of source code rather than binary code, because concur-
rency defects can be found in source code. The verification
method must be able to handle the following characteristics
of source code of automotive control software.

• Source code is usually written in the C language, be-
cause of its high processing speed and capability of
controlling low-level I/O operations.
• Global variables are shared among tasks and interrup-

tions. Race conditions between them must be avoided
carefully by using buffers, mutex, or task prioritization.
• Programs are large in size and have high complexity.

One controller in a powertrain system or chassis con-
trol system often consists of more than 100k lines of
code.

However, the verification method is not required to handle
all characteristics of the C language. For example, dynamic
process creation and dynamic memory allocation are out of
the scope because they are seldom used in automotive con-
trol software. Pointer variables need to be considered but
pointed addresses can be statically analyzed since no dy-
namic memory allocation is used.

2.2 Model Construction Procedure with the Tool Chain

Generally, the process of applying model checking to a real-
world problem consists of two phases: constructing a model
of (part of) the system to be verified and executing a model
checker against the model obtained in the first phase. To
deal with automotive control software which has the above
characteristic, we base our methodology on SPIN, one of
the best known model checkers. The input model of SPIN
is specified in the Promela language. We think that the
choice of SPIN is natural and appropriate, because Promela
has C-like syntax and provides built-in support for model-
ing of concurrent processes. In addition, SPIN has proved
to be very powerful in model checking nontrivial models
that arise from real-world problems. Recent examples in-
clude [6]–[8].

In spite of the high verification performance of SPIN,
it is far from practical to model check the entire automo-



1796
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Fig. 2 Model structure. The model consists of a software model that represents an extracted code and
an environment model that simulates the input to the software part

Fig. 3 Tool functions for software model generation

tive control program at once. It is thus required to extract
the part of the source code that is relevant to the problem in
hand and then describe the extracted part in Promela. It is
also necessary to model the environment that interacts the
system or the extracted part of the code. Hence, concep-
tually, we treat a Promela model that represents the system
under verification as a combination of a software model and
an environment model as shown in Fig. 2.

The software model represents the software behavior
based on the extracted code. The environment model sim-
ulates the input of software model including invocation of
tasks or interruptions, or reaction to the output of the soft-
ware model.

It would be tedious and error-prone to manually con-
struct the software model by examining the program code.
To facilitate this process, we developed using the Java lan-
guage a tool for computer-aided model construction. This
tool has two core functions. The first one is program slic-
ing, which is a function that extracts part of source code that
is relevant to specified variables that are used in a property
or an assertion. The second function is model conversion
which translates the extracted C source code into Promela.
Figure 3 outlines the process for software model generation
in our methodology.

In the course of our attempt to apply model checking to
real-world problems, we found that simply using code slic-
ing was not very useful, because the extracted part could be
too large to be converted into a model amenable to model
checking. To address this problem, we developed a program
slicer that implements what we call boundary-adjustable
program slicing. In boundary-adjustable program slicing,

the user can set and adjust the boundary on the program to
which slicing is performed. The boundary is adjustable in an
interactive and iterative manner. How boundary-adjustable
program slicing is implemented in our tool will be described
in Sect. 3.

Our tool also supports semi-automatic conversion from
the extracted code to Promela. The conversion process uses
Abstract Syntax Tree (AST) as intermediate representation
between the C language and Promela. The code is parsed
into AST and then converted to Promela. The model con-
struction process, including code conversion and integration
with the environment model, will be described in Sect. 4.

3. Boundary-Adjustable Program Slicing

3.1 Program Slicing Overview

Program slicing [9] is the technique to extract parts of a pro-
gram that (potentially) affect the values computed at some
point of interest. Slicing is used for many purposes, in-
cluding debugging, regression testing, and software main-
tenance [10], [11]. In our context, slicing is used to extract
a part of program code that is relevant to the verification
property of interest, aiming to obtain a model of reasonable
size.

Slicing is very useful to reduce the size of the code to
be verified. However, the size of extracted code is still often
too large to be model checked, especially when the input
program is large, like automotive control systems. Some
study reported that the average size of sliced code was 30%
of the input program on average [12]. We take an approach,



MATSUBARA and TSUCHIYA: MODEL CHECKING OF AUTOMOTIVE CONTROL SOFTWARE: AN INDUSTRIAL APPROACH
1797

Fig. 4 tSDG (above) vs. Variable Dependence Graph (bottom)

we named boundary-adjustable program slicing, to address
this problem. This approach allows the user to set and adjust
boundaries to which program slicing is executed.

Program slicing often operates on a graph representa-
tion of the target program to track control and data flows. In
our method, Variable Dependence Graphs (VDGs) are used
for this purpose.

3.2 Variable Dependence Graph (VDG)

In order to analyze concurrent programs, it is required
to track interference dependence [13], in addition to con-
trol and data dependence. Interference dependence is
data dependence that occurs between different threads.
Graph representations that can model these dependencies in-
clude threaded Program Dependence Graphs (tPDGs) [13],
threaded System Dependence Graphs (tSDGs) [14], and
threaded Interprocedural Program Dependence Graphs
(tIPDGs) [15].

These graph representations are useful for automat-
ically analyzing programs but take almost no considera-
tions about the easiness of manually operating on the graph.
Hence we developed a new graph representation which we
call Variable Dependence Graph (VDG).

VDGs are different from these existing graph represen-
tations which are basically extensions of well-known Pro-
gram Dependence Graphs (PDGs) [16], [17]. A VDG is a
directed graph G = (V, E) such that: a node n in V is either of
variable, constant, or control statement (e.g. “if”, “while”),
whereas data dependence exists from s (either variable or
constant) to t (variable), or control dependency exists from
s (control statement) to t (variable or constant) if an edge
(s, t) exists in E. When a node s represents a variable or
a constant in a condition expression of a control statement,

control dependency also exists from s (variable or constant)
to t (control statement). Other control dependence that ex-
ists in other graphs like tSDG is omitted. Another type of in-
terdependencies, called interference dependencies, are also
indicated by edges.

Each node in a VDG is associated with its position (file,
line, and column) as well as its calling context. Calling con-
text enables precise dependence analysis, thus reducing un-
necessary code [18]. Therefore, a variable occurring in the
same position but with different calling contexts is expressed
as different nodes. In contrast to a VDG, a statement with
different calling contexts is represented by one node in a
tPDG or tSDG; thus one has to consult another complemen-
tary graph to distinguish different calling contexts. Figure 4
shows examples of tSDG and VDG for the same program.
In the VDG, x in statement 12 is duplicated to two nodes,
one corresponding to the call to g from statement 3 and the
other corresponding to the call to g from statement 4.

Interference dependencies of global variables shared
between different tasks or interruptions are found between
two nodes in a VDG such that a variable is referred at one
node and is assigned a new value at another node in a differ-
ent thread. In the VDG of Fig. 4, this kind of dependencies
are depicted by dashed lines; the two nodes for variable y at
line 12, each corresponding to one of the two calls to func-
tion g, have interference dependencies from line 22 in the
interruption (lines 20-23).

In VDGs a node for a pointer variable is associated with
the pointed variable that is equivalent to the address resulted
from a point-to analysis. Interference dependence from a
pointer variable to the pointed variable is also expressed in
VDGs.

In our tool, VDGs are constructed by analyzing pro-
grams as follows. Dependence within each task is analyzed



1798
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

first, and then interference dependence is analyzed using
the approach proposed by Krinke [15]. Krinke’s algorithm
is suited for slicing concurrent programs that use shared
global variables and do not create new process in run time.
Point-to analysis is carried out for each thread, by following
the data dependence in a thread. To simplify the analysis
task, the results of point-to analysis are not shared among
threads. From our experiences this suffices because we have
never encountered programs where different threads set the
value (address) of a pointer. When priorities are given to
the threads of the programs, interference dependencies are
generated comparing the priorities of the threads. Depen-
dencies within data members of C unions are also retrieved.
Dependencies in a cyclic task are analyzed as if the code
constituted a body of a big loop. The analysis is skipped for
a control flow when a recursion is detected.

To achieve high performance, we adopt parallelization
using multiple cores of a CPU in two places. First, parsing
is performed in parallel for each file. Second, dependence
analysis is carried out in parallel for each thread.

The parallelization provides some speedup; but in order
to handle large programs in automotive domain, we needed
more powerful techniques. To this end, we developed a
VDG construction program by extensively using hashes, in-
stead of standard graph manipulations. This approach can
reduce a large amount of time in practice, because using a
hash, operations on graphs that would take quadratic time
or more in theory can often be performed in a constant time.
However, this comes with the cost that backward slices can-
not be extracted during constructing a VDG (or other pro-
gram graph representations). Also, extracting full back-
ward slices (which are Variable Dependence Trees (VDTs)
(Sect. 3.3) in our case) from the VDG obtained may require
a very large amount of time when the slices are large and
especially have a large number of branches. Boundary-
adjustable program slicing solves this problem by allow-
ing the user to set boundaries near the variable used as the
slicing criterion. This can delay the process of extracting
large VDTs until it is actually needed. In fact, as stated in
Sect. 2.2, large slices are not very useful for model check-
ing purposes; therefore, this time-consuming process usu-
ally never takes place.

Using these techniques as well as many other optimiza-
tions, the tool is currently capable of dealing with programs
over 400kLLOC (Logical Lines of Code) on a common PC.
To our knowledge, there are no other program slicing tools
that can handle programs of this size.

3.3 Variable Dependence Tree (VDT) and Boundary-
adjustable Program Slicing

Boundary-adjustable program slicing operates on a Vari-
able Dependence Tree (VDT), an alternative representation
of (part of) a VDG G = (V, E). A VDT is a rooted tree
T = (V ′, E′), where V ′ is the set of nodes and E′ is the set of
directed edges. Each node in V ′ corresponds to a node in E,
while each edge in E′ corresponds to an edge in V . The root

Fig. 5 Conversion from VDG to VDT

node represents the variable that serves as the slicing crite-
rion. Typically, the variable is the one involved in a property
or assertion that needs to be verified. There are two types of
VDTs: goal VDT and start VDT. In a goal VDT, the root
node has incoming edges from its child node, and the child
nodes have incoming edges from their child nodes, and so
on. In a start VDT, on the other hand, each node has outgo-
ing edges to its child node. The program slice obtained from
a start VDT is a forward slice, which contains those that are
affected by the criterion. A goal VDT, on the other hand,
yields a backward slice, which contains the statements that
can have some effect on the slicing criterion. In the follow-
ing of this section, we limit our description to goal VDTs
for presentation simplicity.

To convert a VDG into a VDT, two types of nodes are
introduced. One is duplicated nodes and the other is loop
nodes. A duplicated node appears as a leaf of a VDT to
show that a node with the same position and same calling
context has already appeared elsewhere in the tree. A loop
node also appears as a leaf of the tree to indicate that a node
with the same position and same calling context has already
appeared as its ancestor. Examples of goal VDTs with a
duplicated node or loop node are shown in Fig. 5. Node b
at line 10 in the above VDG of this figure is separated into
two nodes in the VDT, one of which is a duplicated node.
Node x at line 22 in the bottom VDG is divided into two
nodes in the VDT on the right. One of the two nodes is a
loop node, indicating a cyclic dependence. Figure 6 shows a
screen shot of the tool (above) and how a VDT is displayed
in the tool (bottom).

Our tool performs dependence analysis in two stages,
that is, during the construction of a VDG and during the
extraction of VDTs. A VDG is constructed only once for
a given program, whereas VDTs are extracted every time
when a variable is selected as the slicing criterion (i.e. the
root node) by the user. Once a variable is selected, the VDG
is traversed to find the nodes that match the variable. The
nodes thus found serve as the root nodes of VDTs. VDTs
are constructed by extracting the descendant nodes of these
root nodes.

The purpose of using VDTs is to implement boundary
adjustable slicing; that is, to allow the user to interactively



MATSUBARA and TSUCHIYA: MODEL CHECKING OF AUTOMOTIVE CONTROL SOFTWARE: AN INDUSTRIAL APPROACH
1799

Fig. 7 Limited extraction and re-extraction of VDT

Fig. 6 Screen shot of the tool. The whole window of the tool (above)
and a VDT (bottom)

adjust the part of code to be verified. Since the VDTs repre-
sent the designated part of the programs, the construction of
VDTs from a VDG should accept user’s control. To this end
the tool constructs each VDT in two steps. In the first step,
descendant nodes are extracted by automatically traversing
the edges in the VDG. (It should be noted that descendant
nodes in a goal VDT are ancestor nodes in the corresponding
VDG.) The traversal tracks back if it visits a node belong-
ing to a function different from the slicing criterion variable.
Once the descendant nodes are extracted within the C func-
tion where the slicing criterion variable is located, the con-
trol is handed over the user. In the second step, the user re-

peats extending the VDT by adding a descendant node until
the VDT contains all nodes of interest. The user is also al-
lowed to remove VDT nodes to shrink the VDT and program
slices obtained from it. The user can perform both addition
and removal of nodes interactively through the tool’s inter-
face, as shown in Fig. 7. Boundary adjustment is achieved
with such gradual addition and removal of nodes.

A program slice is constructed based on a VDT. A
statement remains in a program slice if it has at least one
corresponding node in the VDT. Control structures that sur-
round the remaining statements, e.g. functions or other con-
trol constructs, are also preserved in the slice. As stated
above, a goal VDT and start VDT produce a backward slice
and forward slice, respectively. In most of the cases we have
experiences, backward slicing was used for model checking.

A root node of a VDT is selected based on the property
to be verified. When only a single variable (say v) occurs in
the LTL formula or assertion, the node that corresponds to
v becomes the root of a goal tree. If multiple variables are
involved, a node corresponding to one of these variables is
selected as the root so that the remaining variables can occur
somewhere in the tree paths. Boundaries need to be set so
that the variables holding output values can be included in
the extracted code. For start trees, a variable representing
output is selected as the root and boundaries are set outside
the variables involved in the property to be verified.

The reason we use VDGs and VDTs, instead of other
graph representations, such as tSDG, is that we think
VDG/VDT are suitable for software designers or verifiers
to track and comprehend the dependencies in the program
from the variables’ point of view. The visualization pro-
vided by VDGs/VDTs focuses the dependencies between
variables by removing other information, such as operators
that are contained in the statements corresponding to their
nodes. However, the user might need to see the whole state-
ments. To deal with such cases, the tool provides a feature
that allows the user to designate a node and view the full
statement corresponding to the node.

4. Constructing Promela Models

4.1 SPIN Model Checker and Promela Language

Model checking automatically determines whether given
properties are satisfied by the system under verification. The
system is usually modeled as a finite state machine. Model



1800
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Fig. 8 Conversion steps from C to Promela

checkers perform verification by exhaustively searching the
state space of the state machine model. In our approach we
use SPIN, one of the best known model checkers. SPIN
takes as input a program written in Promela (Process Meta
Language). In Promela, the behavior of the given system is
represented as one or more concurrent processes. The se-
mantics of Promela assumes that the Promela processes run
concurrently in an interleaving manner; that is, exactly one
single atomic step of a Promela process is executed at a time.

A Promela process is composed of data objects, non-
deterministic constructs, and communication primitives.
Processes can communicate via synchronous and asyn-
chronous message passing with buffered channels or shared
memory. Properties to be verified are specified by asser-
tions, Linear Temporal Logic (LTL) formulas, or special fi-
nite state automata called never claims. LTL formulas and
never claims can express general safety and liveness prop-
erties. SPIN performs on-the-fly verification and employs
many useful state search and compression techniques.

4.2 Software Model

Once a program slice has been extracted using the method
described in Sect. 3, a software model is then constructed
by converting the C code extracted by program slicing into
Promela. This converting process results in a single or
multiple Promela processes. A typical case where multi-
ple Promela processes are obtained is when the extracted C
code contains calls to functions that are invoked as individ-
ual tasks. However, Promela lacks some basic constructs
or variable types in C; thus some techniques are needed as
follows.

• C functions are converted to inline macros of Promela.
• All C local variables are converted into global variables

in Promela, Promela supports local variables, though.
The reason for this is that global Promela variables pro-
vide better expressiveness and flexibility, because the
scope of a local variable in Promela is the complete
body of a process declaration. Global Promela vari-
ables representing C local variables in functions are
replicated and renamed for each call.
• Accesses to the locations specified by pointers of the

C program are converted into operations on global
Promela variables.
• Nested assignments or function calls are divided into

multiple statements.

These conversions are performed by following the con-
trol flow semantics of C, thus preserving the behavior of the
extracted code in terms of control flow. We do not consider

variables of float or double type, since most of the C pro-
grams in our traditional product domain contain no variables
of these types. This is because these C programs use integer
variables to manipulate real numbers to avoid unexpected
floating-point errors.

The conversion process runs in three steps, as shown
in Fig. 8. A given C program is first parsed into an Abstract
Syntax Tree (AST). Then the AST is translated into an inter-
mediate expression of the C language and then into Promela.
The intermediate C expression is a simplified AST, where
elements that are not relevant to the C-Promela conversion
are removed and some C statements are simplified so that
they can be directly converted in Promela. For example, C
statement x = (a = b + c) * d; is represented as a =
b + c; x = a * b; in the intermediate expression.

These three steps of conversion are almost fully auto-
mated, except the third step where manual intervention may
be needed in some cases. A typical example of such a case is
the conversion of operations on a pointer variable into those
on global Promela variables. During traversing the C in-
termediate expression, the tool issues warnings when it en-
counters elements that require manual handlings.

Even after a Promela program has been obtained, fur-
ther manual modifications can be useful in some cases. For
example, if the state space of the model turns out to be too
large to model check, simple optimizations, such as constant
propagation or similar techniques, may help solve the prob-
lem to some extent.

4.3 Environment Model

The outside environment that interact with the software
model needs to be abstracted and modeled as either 1) indi-
vidual Promela processes or 2) Promela code fragments that
are inserted into Promela processes of the software model,
or both. We refer to this overall Promela code that models
the outside environment as the environment model. Unlike
the software model, the environment model is constructed
manually.

Figure 9 illustrates the boundary between the software
model and the environment model. A boundary on the VDT
becomes the boundary between the two models. In the fig-
ure, a boundary is placed between line 3 and line 4 in the C
program. As a result, variable z at line 3 is not included in
the extracted code and thus should be treated in the environ-
ment model.

One of the main roles of the environment model is to
feed input values to variables of the software model, such as
variable z in Fig. 9. The ranges of input values fed by the



MATSUBARA and TSUCHIYA: MODEL CHECKING OF AUTOMOTIVE CONTROL SOFTWARE: AN INDUSTRIAL APPROACH
1801

Fig. 10 Extracted C code, software model, environment model, and resulting Promela program

Fig. 9 Relation of environment model and boundary on VDT

environment model need to subsume the input value ranges
of the program under verification because otherwise possi-
ble behaviors of the program could be missed in the final
model. By providing such input values by the environment
model, we can over-approximate the behaviors of the pro-
gram. The nondeterministic construct of Promela can be
nicely used for this purpose. The following Promela code is
an example of a macro that can be used to select one of the
actual parameters non-deterministically and assign it to the
variable designated by the first parameter.

#define ndval(var, vl0, vl1, vl2) \

if :: var = vl0 :: var = vl1 :: var = vl2 fi

Now suppose that the C code shown in Fig. 10 (a) has

been obtained using boundary-adjustable program slicing.
The Promela model obtained from this code looks like as
shown in Fig. 10 (b). Variable strk takes brake pedal stroke
amount as input. Also variable err is used as a flag that
signifies the occurrence of an error.

Its environment model shown in Fig. 10 (c) provides
values chosen non-deterministically to these variables. The
whole Promela process is obtained by combining these mod-
els, as shown in Fig. 10 (d).

A technique that we found to be useful is to provide
input values that are outside the specification range; this al-
lows us to observe the robustness of the software to unex-
pected input or hardware malfunctions.

Sometimes, hardware components, such as peripherals
of a micro controller or ASICs, need to be represented in
the environment model. A typical case is when one needs
to verify the correctness of the internal state of a hardware
component that is controlled by the software. Such a hard-
ware component can be modeled as, for example, an indi-
vidual Promela process where input and output between the
hardware and software are represented in the form of reads
and writes of Promela global variables.

Finally, we create a single Promela program by com-
bining the software and environment models. In doing so,
we need to model the scheduling policy of tasks, because,
as stated in Sect. 2, a program is executed on a Real-Time



1802
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Operation System (RTOS) in the form of a set of cyclic
tasks and/or interruptions. In practice, the well-known rate-
monotonic scheduling algorithm is usually used. SPIN of
version 6.2 or later implements the task scheduling algo-
rithm [19]. This feature allows the user to assign scheduling
priorities to Promela processes and to invoke the processes
periodically as if they were periodic real-time tasks. When
the extracted code runs in parallel on different cores of a
CPU, the priorities of Promela processes are set to the same
value in order to represent the physical concurrency.

5. Practical Considerations

5.1 Typical Scenario

Here we describe a typical scenario of using the presented
approach based on our real-world experience: specifically,
the experience of verifying diagnosis software for a power
supply IC. The software remotely monitors the power sup-
ply IC through a serial communication link. In the testing
phase of the whole system, we encountered a possible error
of the IC; that is, the software signaled an error. However,
no fault was found in the post-analysis and no error could be
reproduced either.

In such a case, model checking can be useful to in-
vestigate the possible fault. Using our approach, a Promela
model is built as follows.

1. Select the variable that represents the diagnosis result
as the root of a VDT.

2. Perform dependence analysis to obtain a program slice
in the form of a VDT.

3. Set the boundary on the VDT such that the code part
used for communication between the IC is excluded.
This greatly reduces the code size extracted and, in
turn, the resulting software model, as the complex pro-
cessing of the serial communication driver is discarded.

4. Construct manually an environment model to express
the behavior of the IC.

In our real-world case, model checking revealed a sub-
tle situation where a mismatch of status recognition could
occur. Specifically, it was found that the error can happen if
the following two events happen almost simultaneously: 1)
the IC changes its state and 2) the diagnosis software enters
the sleep mode and returns to the normal mode immediately.

This result was obtained by verifying the program
against the property that the error flag never turns on as a
result of diagnosis, which is a property that is supposed to
hold in error-free runs. The property can be represented as
LTL formula [](!p) where p expresses that the value of
the error flag variable is true. Table 1 shows the sizes of the
source code, software model, and environment model.

Table 1 Sizes of source code and Promela models

Total size of source code Approx. 130 kLLOC
Size of software model 600 LOC
Size of environment model 150 LOC

5.2 Division of a VDT

In practice, a cause of malfunction is not always found
within the initial VDT. In that case, a VDT should be en-
larged to include more code into the software model. How-
ever, this may lead to state explosion. A divide-and-conquer
strategy can be helpful to solve this situation. That is, a
VDT is divided into several subtrees such that a variable
that is designated as a boundary of one subtree is selected as
the root of another subtree. We call the subtrees of a VDT
sub-VDTs.

A major problem arising when using this strategy is
how to divide the VDT into sub-trees. Basically, the de-
pendency of different subtrees should be minimized so as to
allow the verifiers to verify each subtree in as much isola-
tion as possible. Also doing so requires feedbacks from the
software designers. To support the dividing process, we use
a notation which we call a function dependence tree (FDT)
(Fig. 11). Each of the non-root nodes in an FDT corresponds
to a sub-tree of the VDT. The root node of an FDT repre-
sents the variable under verification, which corresponds to
the root node of the VDT. A non-root node is labeled with
the name of its representative function and the name of the
task or the interrupt service routine that the function belongs
to, whereas an edge is labeled with a variable that is used to
interact the codes represented by the two end nodes of the
edge. FDTs help both software designers and verifiers to
understand the planned division of a VDT and facilitate dis-
cussion among them.

5.3 Experienced Cases

The model checking approach has been successfully applied
to many automotive control software products since 2012,
after a few years of basic studies. Table 2 summarizes some
experienced cases. In this table, the row named Existing
defect indicates whether or not the existence of a defect
was known before verification. Completion of verification
means that model checking was successful in finding an er-
ror or was able to fully explore the state space of the ob-
tained model. The row named Number of divisions shows
the number of sub-VDTs obtained by dividing the extracted
code to form an FDT (see Sect. 5.2). The functionalities
provided by our automotive software products are basically
categorized into four types: initialization/finalization (of a

Fig. 11 Function Dependence Tree (FDT)



MATSUBARA and TSUCHIYA: MODEL CHECKING OF AUTOMOTIVE CONTROL SOFTWARE: AN INDUSTRIAL APPROACH
1803

Table 2 Size of source codes and models

case 1 case 2 case 3 case 4 case 5
Total size of source code [kLLOC] 129.8 256.3 287.2 411.9 411.9
Extracted code size [kLLOC] 0.92 3.10 24.0 6.79 12.94
Existing defect Yes No No Yes Yes
Completion Yes No (time limitations) No (out of memory) Yes Yes
Number of divisions 1 1 1 11 7
Detection of errors Yes No No Yes Yes
Functionality Diagnosis Control Control Finalization Diagnosis

Table 3 Statics on verification of large models

states transitions time [s] memory
Part of Case 4 1.04 × 107 5.72 × 107 544 6.8 [GB]
Part of Case 5 1.34 × 109 2.86 × 109 38300∗ 116 [MB]∗

∗ MA (Minimized Automaton) option enabled

task), communication, diagnosis, and control (of actuators).
From the table, it can be seen that the verification was

completed for source codes whose size exceeded 100 kL-
LOC. Cases 4 and 5 dealt with the largest code; but for
these cases the whole state space could be explored, since
the extracted code was successfully divided into several sub-
VDTs. This was possible because the functional logics for
the diagnosis and finalization functions were well-separated
from each other. For example, in the finalization function of
case 4, system shut down occurs due to various factors and
different factors are dealt with by different logics.

For Cases 1, 4, and 5, the existence of a defect had al-
ready been known. In all these cases, model checking was
successfully completed, partly because SPIN stops imme-
diately when it detects a fault. Interestingly, the detected
fault for Case 1 turned out not to be an actual one: Further
examination revealed that the real fault existed in another
part of the software that had not been extracted. In contrast,
verification was not completed for Cases 2 and 3. It was im-
possible to conclude from this result that the extracted codes
were defect-free; but the fact that no errors were found un-
til exhausting memory or time provided some confidence in
the absence of them. Table 3 shows the statics on model
checking of some of the largest models arising in the five
cases.

In our several year’s experience, most of the root causes
of errors we found stemmed from either concurrency (type I)
or complex logics of programs (type II). The example de-
scribed in Sect. 5.1 belongs to Type I. The defects found in
Cases 4 and 5 were also of this type. In our experience,
hardware models that interact with the input or output of
the software model were almost always necessary to detect
faults of Type I. A lesson learned from modeling hardware
is that this process, in effect, works as code review because
constructing a hardware model enforces verifiers to better
understand the specifications of the hardware and to make
sure that the way the software uses the hardware conforms to
the specifications. Conversely, Type II faults are not directly
related to concurrency and thus can be detected using a soft-
ware model consisting of a single process. A usual belief is
that the main role of traditional model checkers (e.g., SPIN)
is to verify concurrent systems and not sequential programs.

From our experience, however, our approach based on SPIN
usually works well for detecting non-concurrency faults.

Most of the LTL formulas used to represent properties
were in the following forms: []p, [](!p) (as in Sect. 5.1),
and [](p -> <>q). The former two forms represent invari-
ants. We used these forms to describe properties that should
hold between control commands and system output, for ex-
ample. Assertions can also be used instead of these LTL for-
mulas if the program statements at which safety conditions
are supposed to hold are clear. The last form, stating that if p
holds, then q will eventually hold, was used to represent the
property that an event leads to a specific state, for example,
a wake-up event leads to a state change of the system.

6. Related Work

Program slicing has been used to obtain from program codes
to models that are tractable by model checking. It has been
reported that model reduction with program slicing has a
factor of four improvements for non-trivial model checking
and that it is orthogonal to other reduction measures [20].
For example, a tool called Bandera [21] uses program slicing
to model check Java programs. This slicing mechanism is
used in JPF2 [22], which is also a model checker for Java. To
our knowledge, there is no other tool that integrates model
checking and program slicing that allows the user to make a
boundary-adjustment to the code to be extracted.

The problem of extracting Promela models from C pro-
grams is addressed by some studies. Modex/Feaver [23] is
a verification tool for C programs. The tool slices source
code based on control flow and converts the extracted code
to Promela. POM/MC [24] is another tool that can be used
to extract Promela models from C codes. This tool performs
the conversion from C to Promela in multiple steps where
the program under verification is expressed in different inter-
mediate representations. The authors of [24] claim that the
multi-step approach provides better flexibility and extensi-
bility to the conversion process. Our tool also uses multiple
steps to construct models from programs and thus inherits
this desirable property.

Program slicing has a large body of studies. Our slic-
ing tool adopts or extends some of the previous techniques to
implement necessary features. There are basically two algo-
rithms for precise slicing for concurrent programs [25], [26],
which are that of Krinke [15] and that of Nanda [27]. Our
tool employs the former one. The boundary-adjustment fea-
ture implemented by our tool can be regarded as general-
ization of some previous techniques for controlling the ex-



1804
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

tracted part of programs [28]–[30]. Distance-limited slic-
ing concisely visualizes dependency by allowing the user to
designate a distance from a state of interest in a dependence
graph to limit graph elements to be extracted [28]. In our
tool, the boundary effectively defines this distance. Barrier
slicing obtains small slices by prohibiting slice computation
from traversing nodes or edges in the dependence graph that
are declared to be a “barrier” [29]. In our tool, the bound-
ary works just as a set of barriers. In [30], a technique that
allows the user to gradually expand the extracted depen-
dency graph is proposed for the purposes of feature loca-
tion and partial comprehension of a system. The boundary-
adjustment slicing naturally implements this feature.

To obtain performance sufficient for industry use, we
have made a large number of small optimizations to the
tool’s program. Currently there seems to be no other pro-
gram slicing tools that can handle a concurrent program
whose size is over 200k LOC.

Our approach combines program slicing and SPIN, a
model checker that uses well-understood and time-proven
algorithms. CEGAR is a different approach to model check
large-sized source code [31]. CEGAR refers to a class of
techniques that automatically iterate refinement of a model
from abstract to concrete level, when a counterexample
is detected and it is a false positive. BLAST [32] and
SLAM [33] are examples of the CEGAR-based tools for
model checking of programs. Unlike these modern tools,
our approach requires some manual intervention. How-
ever, our experiences show that industrial problems can be
successfully handled using traditional well-established tech-
niques, namely, program slicing and classical model check-
ing.

7. Conclusion

In automotive control systems, the potential risks of soft-
ware defects have been increasing because of increasing
software complexity. To detect defects that are difficult to
find with usual tests or simulations, a practical model check-
ing approach was described in the paper. In this approach,
software models are generated from source code using the
boundary-adjustable program slicing technique. Modeling
techniques for hardware components that interact with soft-
ware were also presented. We have been applying the pro-
posed approach to several real-world problems with auto-
motive control software for years and found that the ap-
proach is useful for industrial use.

References

[1] D. Engler and M. Musuvathi, “Static Analysis versus Software
Model Checking for Bug Finding,” Verification, Model Checking,
and Abstract Interpretation, ed. B. Steffen and G. Levi, Berlin,
Heidelberg, vol.2937, pp.191–210, Springer Berlin Heidelberg,
2004.

[2] A. Miné, “Static Analysis of Embedded Real-Time Concurrent Soft-
ware with Dynamic Priorities,” Electronic Notes in Theoretical
Computer Science, vol.331, pp.3–39, March 2017.

[3] E.M. Clarke, O. Grumberg, D. Kroening, D.A. Peled, and H. Veith,
Model checking, MIT Press, 2018.

[4] M. Mansouri-Samani, P.C. Mehlitz, C.S. Pasareanu, J.J. Penix, G.P.
Brat, L.Z. Markosian, O. O’Malley, T.T. Pressburger, and W.C.
Visser, “Program Model Checking: A Practitioner’s Guide,” 2008.

[5] G.J. Holzmann, The SPIN Model Checker - primer and reference
manual, Addison-Wesley, 2004.

[6] Z. Chen, Y. Gu, Z. Huang, J. Zheng, C. Liu, and Z. Liu, “Model
checking aircraft controller software: A case study,” Software -
Practice and Experience, vol.45, no.7, pp.989–1017, 2015.

[7] T. Ovatman, A. Aral, D. Polat, and A.O. Ünver, “An overview of
model checking practices on verification of PLC software,” Software
and Systems Modeling, vol.15, no.4, pp.937–960, 2016.

[8] S.T. Hamman, K.M. Hopkinson, and J.E. Fadul, “A Model Check-
ing Approach to Testing the Reliability of Smart Grid Protec-
tion Systems,” IEEE Transactions on Power Delivery, vol.32, no.6,
pp.2408–2415, 2017.

[9] M. Weiser, “Program Slicing,” Proceedings of the International Con-
ference on Software Engineering (ICSE ’81), pp.439–449, 1981.

[10] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey
of program slicing,” ACM SIGSOFT Software Engineering Notes,
vol.30, no.2, pp.1–36, 2005.

[11] J. Silva, “A Vocabulary of Program Slicing-based Techniques,”
ACM Comput. Surv., vol.44, no.3, pp.12:1–12:41, 2012.

[12] D. Binkley, N. Gold, and M. Harman, “An empirical study of static
program slice size,” ACM Transactions on Software Engineering
and Methodology, vol.16, no.2, pp.1–32, 2007.

[13] J. Krinke, “Static slicing of threaded programs,” 1998 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pp.35–42, 1998.

[14] D. Hisley, M.J. Bridges, and L.L. Pollock, “Static Interprocedu-
ral Slicing of Shared Memory Parallel Programs,” Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications - Volume 2, PDPTA ’02, pp.658–664,
CSREA Press, 2002.

[15] J. Krinke, “Context-sensitive slicing of concurrent programs,” Pro-
ceedings of the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international symposium on Foun-
dations of software engineering (ESEC/FSE-11), pp.178–187, 2003.

[16] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The program depen-
dence graph and its use in optimization,” International Symposium
on Programming, LNCS, vol.167, pp.125–132, 1984.

[17] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. Program.
Lang. Syst., vol.9, no.3, pp.319–349, 1987.

[18] S. Horwitz and T. Reps, “The use of program dependence graphs in
software engineering,” Proceedings of the 14th International Con-
ference on Software Engineering, ICSE’92, New York, NY, USA,
pp.392–411, Association for Computing Machinery, 1992.

[19] M. Florian, E. Gamble, and G. Holzmann, “Logic Model Checking
of Time-Periodic Real-Time Systems,” Infotech@Aerospace 2012,
2012.

[20] M.B. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, Robby, and T.
Wallentine, “Evaluating the Effectiveness of Slicing for Model Re-
duction of Concurrent Object-Oriented Programs,” Tools and Al-
gorithms for the Construction and Analysis of Systems, ed. H.
Hermanns and J. Palsberg, Berlin, Heidelberg, vol.3920, pp.73–89,
Springer Berlin Heidelberg, 2006.

[21] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pǎsǎreanu,
Robby, and H. Zheng, “Bandera: Extracting Finite-state Models
from Java Source Code,” Proceedings of the 22Nd International
Conference on Software Engineering, ICSE ’00, New York, NY,
USA, pp.439–448, ACM, 2000.

[22] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
Checking Programs,” Automated Software Engineering, vol.10,
no.2, pp.203–232, 2003.

[23] G.J. Holzmann and T.C. Ruys, “Effective Bug Hunting with Spin

http://dx.doi.org/10.1007/978-3-540-24622-0_17
http://dx.doi.org/10.1016/j.entcs.2017.02.002
http://dx.doi.org/10.1002/spe.2242
http://dx.doi.org/10.1007/s10270-014-0448-7
http://dx.doi.org/10.1109/tpwrd.2016.2635480
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/2187671.2187674
http://dx.doi.org/10.1145/1217295.1217297
http://dx.doi.org/10.1145/277631.277638
http://dx.doi.org/10.1145/940071.940096
http://dx.doi.org/10.1007/3-540-12925-1_33
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1145/143062.143156
http://dx.doi.org/10.2514/6.2012-2607
http://dx.doi.org/10.1007/11691372_5
http://dx.doi.org/10.1145/337180.337234
http://dx.doi.org/10.1023/a:1022920129859
http://dx.doi.org/10.1007/11537328_3


MATSUBARA and TSUCHIYA: MODEL CHECKING OF AUTOMOTIVE CONTROL SOFTWARE: AN INDUSTRIAL APPROACH
1805

and Modex,” Model Checking Software, ed. P. Godefroid, Berlin,
Heidelberg, p.24, Springer Berlin Heidelberg, 2005.

[24] M. Ichii, T. Myojin, Y. Nakagawa, M. Chikahisa, and H. Ogawa,
“A Rule-based Automated Approach for Extracting Models from
Source Code,” 2012 19th Working Conference on Reverse Engineer-
ing, pp.308–317, 2012.

[25] D. Giffhorn and C. Hammer, “An Evaluation of Slicing Algorithms
for Concurrent Programs,” Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM
2007), pp.17–26, 2007.

[26] D. Giffhorn and C. Hammer, “Precise slicing of concur-
rent programs,” Automated Software Engineering, vol.16, no.2,
pp.197–234, 2009.

[27] M.G. Nanda and S. Ramesh, “Interprocedural Slicing of Multi-
threaded Programs with Applications to Java,” ACM Trans. Pro-
gram. Lang. Syst., vol.28, no.6, pp.1088–1144, 2006.

[28] J. Krinke, “Visualization of program dependence and slices,”
IEEE International Conference on Software Maintenance, ICSM,
pp.168–177, 2004.

[29] J. Krinke, “Slicing, chopping, and path conditions with barriers,”
Software Quality Journal, vol.12, no.4, pp.339–360, 2004.

[30] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph,” Proceedings IWPC 2000. 8th International Workshop
on Program Comprehension, pp.241–247, 2000.

[31] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-Guided Abstraction Refinement for Symbolic
Model Checking,” Journal of the ACM, vol.50, no.5, pp.752–794,
2003.

[32] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker Blast,” International Journal on Software Tools for
Technology Transfer, vol.9, no.5-6, pp.505–525, 2007.

[33] T. Ball, V. Levin, and S.K. Rajamani, “A decade of software model
checking with SLAM,” Communications of the ACM, vol.54, no.7,
pp.68–76, 2011.

Masahiro Matsubara received the B.S. de-
gree in System Information Engineering from
the University of Tokyo in 2001. He is currently
with Hitachi Automotive Systems, Ltd.

Tatsuhiro Tsuchiya is a professor at the
graduate school of information science and tech-
nology at Osaka University. He received his
M.E. and Ph.D. degrees from Osaka University
in 1995 and 1998, respectively.

http://dx.doi.org/10.1007/11537328_3
http://dx.doi.org/10.1109/wcre.2012.40
http://dx.doi.org/10.1109/scam.2007.9
http://dx.doi.org/10.1007/s10515-009-0048-x
http://dx.doi.org/10.1145/1186632.1186636
http://dx.doi.org/10.1109/icsm.2004.1357801
http://dx.doi.org/10.1023/b:sqjo.0000039792.93414.a5
http://dx.doi.org/10.1109/wpc.2000.852498
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1145/1965724.1965743

